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1. (Exercise 6.1.2)

a) Find the pointwise limit 4
G
=

=
for G ∈ R.

Answer. First, we compute the limit

lim
=→∞

4
G
=

=
=

(
lim
=→∞

1
=

) (
lim
=→∞

4
G
=

=

)
= 0 · 1
= 0.

for all G ∈ R. Next, we will prove that 4
G
=

=
converges pointwise to the limit we found. Let n > 0 be given. Choose

# > ln(n). If = ≥ # , then we have ���� 4 G
=

=
− 0

���� = 4
G
=

=

≤ 4
G

=

≤ 4
G

#

= n .

So 4
G
=

=
converges pointwise to 0 for all G ∈ R. �

b) Is the limit uniform on R?

Answer. No. Choose n := 1
2 . Consider the sequence {G=} given by G= := =2. Next, we will prove the inequality =2 < 4=

for all positive integers =, which is an example of showing that exponential functions grow faster than polynomials. I
will choose to prove by induction, although there are also many other ways of showing this inequality. The base case
holds true because we have 12 = 1 < 4 = 41. For the induction step, we assume :2 < 4: and obtain

(: + 1)2 = :2 + 2: + 1

< 4: + 2: + 1

< 4: (1 + 4−: (2: + 1))
≤ 4:4
= 4:+1,

which would complete the induction proof provided that we show our claim 4−: (2: + 1) ≤ 4 − 1. Indeed, consider
the smooth function 4−G (2G + 1). Its first derivative is 4−G (−2G + 1), which is negative for all G > 1

2 . So the function
4−G (2G +1) is strictly decreasing for all G > 1

2 . Furthermore, the function 4−G (2G +1) attains a maximum of 2√
4

at G = 1
2 ,

and so at any integer : > 1 we obtain

4−: (2: + 1) < 2
√
4

< 4 − 1,

thereby establishing our claim. (As an alternative proof of =2 < 4= without resorting to first-year calculus, consider
showing by induction the inequality =2 ≤ 2= for all positive integers = ≠ 3, and combine this with 2= < 4=, which is true
because we have 2 < 4 and G= is an increasing function of G.) Therefore, =2 < 4= holds for all positive integers =, and



so we have ����� 4 G=
=

=
− 0

����� = 4
G=
=

=

=
4

=2
=

=

=
4=

=

>
=2

=

= =

≥ 1

>
1
2

= n .

So the limit is not uniform on R. �

c) Is the limit uniform on [0, 1]?
Answer. Let n > 0 be given. Choose # > 4

n
. Note that we have G

=
≤ 1

=
for all positive integers = and that 4G is an

increasing function of G, and so we have 4
G
= ≤ 4 1

= . Therefore, if = ≥ # , then we have���� 4 G
=

=
− 0

���� = 4
G
=

=

≤ 4
1
=

=

≤ 4

=

≤ 4

#

< n

for all 0 ≤ G ≤ 1. Since # depends only on n (and not on G), we conclude that the limit is uniform on [0, 1]. �

2. (Exercise 6.1.6) Find an example of a sequence of functions { 5=} and {6=} that converge uniformly to some 5 and 6 on some
set �, but such that { 5=6=} (the multiple) does not converge uniformly to 5 6 on �.

Hint: Let � := R, let 5 (G) := 6(G) := G. You can even pick 5= = 6=.

Answer. Let � := R. Choose 5= (G) := 6= (G) := G + 1
=

. Then { 5=} converges uniformly to 5 (G) := G, and {6=} converges
uniformly to 6(G) := G. (Perhaps you can prove these statements yourself as quick exercises.) We have

| ( 5=6=) (G) − ( 5 6) (G) | = | 5= (G)6= (G) − 5 (G)6(G) |

=

����(G + 1
=

) (
G + 1

=

)
− GG

����
=

�����(G + 1
=

)2

− G2

�����
=

����2=G + 1
=2

����
=
|2=G + 1|
=2

≥ 2=G + 1
=2

for all G ∈ R. Consider a sequence {G=} given by G= := =. Choose n := 2. Then we have

| ( 5=6=) (G=) − ( 5 6) (G=) | ≥
2=G= + 1
=2

=
2=(=) + 1

=2

= 2 + 1
=2

> 2
= n .

So { 5=6=} does not coinverge uniformly to 5 6 on � := R. �



3. (Exercise 6.1.7) Suppose there exists a sequence of functions {6=} uniformly converging to 0 on �. Now suppose we have a
sequence of functions { 5=} and a function 5 on � such that

| 5= (G) − 5 (G) | ≤ 6= (G)

for all G ∈ �. Show that { 5=} converges uniformly to 5 on �.

Proof. Since {6=} converges uniformly to 0 on �, for all n > 0, there exists # ∈ N such that for all = ≥ # we have

|6= (G) − 0| < n

for all G ∈ �. Note that the inequality
| 5= (G) − 5 (G) | ≤ 6= (G)

necessarily implies that 6= (G) is nonnegative; in other words, we have |6= (G) | = 6= (G), and so we can say in fact

6= (G) = |6= (G) |
= |6= (G) − 0|
< n.

Finally, we can combine our previous inequalities to conclude

| 5= (G) − 5 (G) | ≤ 6= (G)
< n

for all G ∈ �. Therefore, { 5=} converges uniformly to 5 on �. �

4. (Exercise 6.1.9) Let 5= : [0, 1] → R be a sequence of increasing functions (that is, 5= (G) ≥ 5= (H) whenever G ≥ H). Suppose
5= (0) = 0 and lim

=→∞
5= (1) = 0. Show that { 5=} converges uniformly to 0.

Proof. Since we have lim
=→∞

5= (1) = 0, for all n > 0, there exists # = # (n) ∈ N such that for all = ≥ # we have

| 5= (1) − 0| < n.

Since 5= is increasing, we have 5= (G) ≥ 5= (0) for all 0 ≤ G ≤ 1, which means 5= (G) − 5= (0) is nonnegative, and so we can
write

| 5= (G) − 5= (0) | = 5= (G) − 5= (0).

Since we assume 5= (0) = 0, we have in fact

| 5= (G) − 0| = | 5= (G) − 5= (0) |
= 5= (G) − 5= (0)
= 5= (G) − 0
= 5= (G)

for all 0 ≤ G ≤ 1. At G = 1, we have

5= (1) = | 5= (1) − 0|
< n.

Since 5= is increasing, we have
5= (G) ≤ 5= (1)

for all 0 ≤ G ≤ 1. So for all = ≥ # we conclude

| 5= (G) − 0| = 5= (G)
≤ 5= (1)
< n

for all 0 ≤ G ≤ 1. Therefore, { 5=} converges uniformly to 0. �

5. (Exercise 6.1.10) Let { 5=} be a sequence of functions defined on [0, 1]. Suppose there exists a sequence of distinct numbers
G= ∈ [0, 1] such that

5= (G=) = 1.

Prove or disprove the following statements:



a) True or false: There exists { 5=} as above that converges to 0 pointwise.

Answer. True. Consider, for example, the sequence {G=} given by G= := 1
=

and the sequence of functions { 5=} given by

5= (G) =
{
=G if 0 ≤ G < 1

2=2 ,
1
=G

if 1
2=2 ≤ G ≤ 1,

Then we would have 5= (G=) = 1 for any G= ∈ [0, 1]. Also, let n > 0 and choose # > max{ 1
2n ,

1
n G
} (that is, choose #

that satisfies # > 1
2n and # > 1

n G
). If = ≥ # and 0 ≤ G < 1

2=2 , then we would have

| 5= (G) − 5 (G) | = |=G − 0|
= =G

< =
1

2=2

=
1

2=

≤ 1
2#

< n

for all 0 ≤ G ≤ 1. If = ≥ # and 1
2=2 ≤ G ≤ 1, then we would have

| 5= (G) − 5 (G) | =
���� 1
=G
− 0

����
=

1
=G

≤ 1
#G

< n

for all 0 ≤ G ≤ 1. So { 5=} converges pointwise to 0 for all 0 ≤ G ≤ 1. By the way, my solution is only one example;
please construct your own example of 5= that satisfies all the given conditions! �

b) True or false: There exists { 5=} as above that converges to 0 uniformly on [0, 1].

Answer. False. Suppose to the contrary that there exists { 5=} as above that converges uniformly to 0. Then there exists
# ∈ N such that, if = ≥ # , then we would have | 5= (G) − 0| < n for all 0 ≤ G ≤ 1. Choose for instance n := 1

2 . Since
each G= is in [0, 1] and we assumed | 5= (G=) | = 1, we have in fact

1 = | 5= (G=) |
= | 5= (G=) − 0|
< n

=
1
2
,

which is a contradiction. �


