Homework 1 solutions

- 1. (Exercise 6.1.2)
 - a) Find the pointwise limit $\frac{e^{\frac{x}{n}}}{n}$ for $x \in \mathbb{R}$.

Answer. First, we compute the limit

$$\lim_{n \to \infty} \frac{e^{\frac{\pi}{n}}}{n} = \left(\lim_{n \to \infty} \frac{1}{n}\right) \left(\lim_{n \to \infty} \frac{e^{\frac{\pi}{n}}}{n}\right)$$
$$= 0 \cdot 1$$
$$= 0.$$

for all $x \in \mathbb{R}$. Next, we will prove that $\frac{e^{\frac{x}{n}}}{n}$ converges pointwise to the limit we found. Let $\epsilon > 0$ be given. Choose $N > \ln(\epsilon)$. If $n \ge N$, then we have

$$\frac{e^{\frac{x}{n}}}{n} - 0 \bigg| = \frac{e^{\frac{x}{n}}}{n}$$
$$\leq \frac{e^{x}}{n}$$
$$\leq \frac{e^{x}}{N}$$
$$= \epsilon.$$

So $\frac{e^{\frac{x}{n}}}{n}$ converges pointwise to 0 for all $x \in \mathbb{R}$.

b) Is the limit uniform on \mathbb{R} ?

Answer. No. Choose $\epsilon := \frac{1}{2}$. Consider the sequence $\{x_n\}$ given by $x_n := n^2$. Next, we will prove the inequality $n^2 < e^n$ for all positive integers n, which is an example of showing that exponential functions grow faster than polynomials. I will choose to prove by induction, although there are also many other ways of showing this inequality. The base case holds true because we have $1^2 = 1 < e = e^1$. For the induction step, we assume $k^2 < e^k$ and obtain

$$(k+1)^{2} = k^{2} + 2k + 1$$

< $e^{k} + 2k + 1$
< $e^{k}(1 + e^{-k}(2k + 1))$
 $\leq e^{k}e$
= e^{k+1}

which would complete the induction proof provided that we show our claim $e^{-k}(2k+1) \le e-1$. Indeed, consider the smooth function $e^{-x}(2x+1)$. Its first derivative is $e^{-x}(-2x+1)$, which is negative for all $x > \frac{1}{2}$. So the function $e^{-x}(2x+1)$ is strictly decreasing for all $x > \frac{1}{2}$. Furthermore, the function $e^{-x}(2x+1)$ attains a maximum of $\frac{2}{\sqrt{e}}$ at $x = \frac{1}{2}$, and so at any integer k > 1 we obtain

$$e^{-k}(2k+1) < \frac{2}{\sqrt{e}}$$
$$< e^{-1}$$

thereby establishing our claim. (As an alternative proof of $n^2 < e^n$ without resorting to first-year calculus, consider showing by induction the inequality $n^2 \le 2^n$ for all positive integers $n \ne 3$, and combine this with $2^n < e^n$, which is true because we have 2 < e and x^n is an increasing function of x.) Therefore, $n^2 < e^n$ holds for all positive integers n, and

п

 $\left|\frac{e^{\frac{x_n}{n}}}{n} - 0\right| = \frac{e^{\frac{x_n}{n}}}{n}$ $= \frac{e^{\frac{n^2}{n}}}{n}$ $= \frac{e^n}{n}$ $> \frac{n^2}{n}$ = n ≥ 1 $> \frac{1}{2}$ $= \epsilon.$

So the limit is not uniform on \mathbb{R} .

c) Is the limit uniform on [0, 1]?

Answer. Let $\epsilon > 0$ be given. Choose $N > \frac{e}{\epsilon}$. Note that we have $\frac{x}{n} \le \frac{1}{n}$ for all positive integers *n* and that e^x is an increasing function of *x*, and so we have $e^{\frac{x}{n}} \le e^{\frac{1}{n}}$. Therefore, if $n \ge N$, then we have

$$\frac{e^{\frac{x}{n}}}{n} - 0 \bigg| = \frac{e^{\frac{x}{n}}}{n}$$
$$\leq \frac{e^{\frac{1}{n}}}{n}$$
$$\leq \frac{e}{n}$$
$$\leq \frac{e}{N}$$
$$< \epsilon$$

for all $0 \le x \le 1$. Since N depends only on ϵ (and not on x), we conclude that the limit is uniform on [0, 1].

2. (Exercise 6.1.6) Find an example of a sequence of functions {f_n} and {g_n} that converge uniformly to some f and g on some set A, but such that {f_ng_n} (the multiple) does not converge uniformly to fg on A. *Hint: Let A* := ℝ, *let f(x) := g(x) := x. You can even pick f_n = g_n.*

Answer. Let $A := \mathbb{R}$. Choose $f_n(x) := g_n(x) := x + \frac{1}{n}$. Then $\{f_n\}$ converges uniformly to f(x) := x, and $\{g_n\}$ converges uniformly to g(x) := x. (Perhaps you can prove these statements yourself as quick exercises.) We have

$$|(f_ng_n)(x) - (fg)(x)| = |f_n(x)g_n(x) - f(x)g(x)|$$
$$= \left| \left(x + \frac{1}{n} \right) \left(x + \frac{1}{n} \right) - xx \right|$$
$$= \left| \left(x + \frac{1}{n} \right)^2 - x^2 \right|$$
$$= \left| \frac{2}{n}x + \frac{1}{n^2} \right|$$
$$= \frac{|2nx + 1|}{n^2}$$
$$\ge \frac{2nx + 1}{n^2}$$

for all $x \in \mathbb{R}$. Consider a sequence $\{x_n\}$ given by $x_n := n$. Choose $\epsilon := 2$. Then we have

$$|(f_ng_n)(x_n) - (fg)(x_n)| \ge \frac{2nx_n + 1}{n^2}$$
$$= \frac{2n(n) + 1}{n^2}$$
$$= 2 + \frac{1}{n^2}$$
$$> 2$$
$$= \epsilon.$$

So $\{f_n g_n\}$ does not coinverge uniformly to fg on $A := \mathbb{R}$.

3. (Exercise 6.1.7) Suppose there exists a sequence of functions $\{g_n\}$ uniformly converging to 0 on A. Now suppose we have a sequence of functions $\{f_n\}$ and a function f on A such that

$$|f_n(x) - f(x)| \le g_n(x)$$

for all $x \in A$. Show that $\{f_n\}$ converges uniformly to f on A.

Proof. Since $\{g_n\}$ converges uniformly to 0 on A, for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have

$$|g_n(x) - 0| < \epsilon$$

for all $x \in A$. Note that the inequality

$$|f_n(x) - f(x)| \le g_n(x)$$

necessarily implies that $g_n(x)$ is nonnegative; in other words, we have $|g_n(x)| = g_n(x)$, and so we can say in fact

$$g_n(x) = |g_n(x)|$$
$$= |g_n(x) - 0|$$
$$< \epsilon.$$

Finally, we can combine our previous inequalities to conclude

$$|f_n(x) - f(x)| \le g_n(x)$$

< ϵ

for all $x \in A$. Therefore, $\{f_n\}$ converges uniformly to f on A.

4. (Exercise 6.1.9) Let $f_n: [0,1] \to \mathbb{R}$ be a sequence of increasing functions (that is, $f_n(x) \ge f_n(y)$ whenever $x \ge y$). Suppose $f_n(0) = 0$ and $\lim_{x \to \infty} f_n(1) = 0$. Show that $\{f_n\}$ converges uniformly to 0.

Proof. Since we have $\lim_{n \to \infty} f_n(1) = 0$, for all $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$ such that for all $n \ge N$ we have

$$|f_n(1) - 0| < \epsilon.$$

Since f_n is increasing, we have $f_n(x) \ge f_n(0)$ for all $0 \le x \le 1$, which means $f_n(x) - f_n(0)$ is nonnegative, and so we can write

$$|f_n(x) - f_n(0)| = f_n(x) - f_n(0).$$

Since we assume $f_n(0) = 0$, we have in fact

$$|f_n(x) - 0| = |f_n(x) - f_n(0)|$$

= $f_n(x) - f_n(0)$
= $f_n(x) - 0$
= $f_n(x)$

for all $0 \le x \le 1$. At x = 1, we have

$$f_n(1) = |f_n(1) - 0|$$
< ϵ .

Since f_n is increasing, we have

$f_n(x) \le f_n(1)$

for all $0 \le x \le 1$. So for all $n \ge N$ we conclude

$$|f_n(x) - 0| = f_n(x)$$

$$\leq f_n(1)$$

$$\leq \epsilon$$

for all $0 \le x \le 1$. Therefore, $\{f_n\}$ converges uniformly to 0.

5. (Exercise 6.1.10) Let $\{f_n\}$ be a sequence of functions defined on [0, 1]. Suppose there exists a sequence of distinct numbers $x_n \in [0, 1]$ such that

$$f_n(x_n) = 1.$$

Prove or disprove the following statements:

a) True or false: There exists $\{f_n\}$ as above that converges to 0 pointwise.

Answer. True. Consider, for example, the sequence $\{x_n\}$ given by $x_n := \frac{1}{n}$ and the sequence of functions $\{f_n\}$ given by

$$f_n(x) = \begin{cases} nx & \text{if } 0 \le x < \frac{1}{2n^2}, \\ \frac{1}{nx} & \text{if } \frac{1}{2n^2} \le x \le 1, \end{cases}$$

Then we would have $f_n(x_n) = 1$ for any $x_n \in [0, 1]$. Also, let $\epsilon > 0$ and choose $N > \max\{\frac{1}{2\epsilon}, \frac{1}{\epsilon x}\}$ (that is, choose N that satisfies $N > \frac{1}{2\epsilon}$ and $N > \frac{1}{\epsilon x}$). If $n \ge N$ and $0 \le x < \frac{1}{2n^2}$, then we would have

$$\begin{split} |f_n(x) - f(x)| &= |nx - 0| \\ &= nx \\ &< n \frac{1}{2n^2} \\ &= \frac{1}{2n} \\ &\leq \frac{1}{2N} \\ &< \epsilon \end{split}$$

for all $0 \le x \le 1$. If $n \ge N$ and $\frac{1}{2n^2} \le x \le 1$, then we would have

$$|f_n(x) - f(x)| = \left|\frac{1}{nx} - 0\right|$$
$$= \frac{1}{nx}$$
$$\leq \frac{1}{Nx}$$
$$\leq \epsilon$$

for all $0 \le x \le 1$. So $\{f_n\}$ converges pointwise to 0 for all $0 \le x \le 1$. By the way, my solution is only one example; please construct your own example of f_n that satisfies all the given conditions!

b) True or false: There exists $\{f_n\}$ as above that converges to 0 uniformly on [0, 1].

Answer. False. Suppose to the contrary that there exists $\{f_n\}$ as above that converges uniformly to 0. Then there exists $N \in \mathbb{N}$ such that, if $n \ge N$, then we would have $|f_n(x) - 0| < \epsilon$ for all $0 \le x \le 1$. Choose for instance $\epsilon := \frac{1}{2}$. Since each x_n is in [0, 1] and we assumed $|f_n(x_n)| = 1$, we have in fact

$$1 = |f_n(x_n)|$$

= $|f_n(x_n) - 0$
< ϵ
= $\frac{1}{2}$,

which is a contradiction.