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1. (Exercise 6.1.2)

a) Find the pointwise limit £~ for x € R.

Answer. First, we compute the limit
. en o1 . en
lim — = (hm —) (hm —)
n—oo n n—oon n—o n
=0-1
=0.

for all x € R. Next, we will prove that % converges pointwise to the limit we found. Let € > O be given. Choose
N > In(e). If n = N, then we have
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So £- converges pointwise to 0 for all x € R.
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b) Is the limit uniform on R?

Answer. No. Choose € := % Consider the sequence {x,} given by x,, := n?. Next, we will prove the inequality n*> < e”
for all positive integers n, which is an example of showing that exponential functions grow faster than polynomials. I
will choose to prove by induction, although there are also many other ways of showing this inequality. The base case
holds true because we have 12 = 1 < ¢ = e!. For the induction step, we assume k? < e* and obtain

(k+1)?=k>+2k+1
<ef+2k+1

<ef(1+e X2k +1))

< eke

which would complete the induction proof provided that we show our claim e ¥ (2k + 1) < e — 1. Indeed, consider
the smooth function e™* (2x + 1). Its first derivative is e *(—2x + 1), which is negative for all x > % So the function
e™*(2x+1) is strictly decreasing for all x > % Furthermore, the function e ™ (2x + 1) attains a maximum of \/LE atx = %
and so at any integer k > 1 we obtain
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thereby establishing our claim. (As an alternative proof of n° < ¢’ without resorting to first-year calculus, consider
showing by induction the inequality n> < 2" for all positive integers n # 3, and combine this with 2" < ¢", which is true

because we have 2 < e and x" is an increasing function of x.) Therefore, n? < e" holds for all positive integers n, and



so we have
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So the limit is not uniform on R. O
¢) Is the limit uniform on [0, 1]?
Answer. Let € > 0 be given. Choose N > <. Note that we have 7 < rll for all positive integers n and that e* is an

e
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increasing function of x, and so we have en < en. Therefore, if n > N, then we have
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forall 0 < x < 1. Since N depends only on € (and not on x), we conclude that the limit is uniform on [0, 1]. O

2. (Exercise 6.1.6) Find an example of a sequence of functions { f;,} and {g, } that converge uniformly to some f and g on some
set A, but such that { f,,g, } (the multiple) does not converge uniformly to fg on A.

Hint: Let A :=R, let f(x) := g(x) :=x. You can even pick f,, = gn.

Answer. Let A .= R. Choose f,(x) := g,(x) :=x+ % Then {f,,} converges uniformly to f(x) := x, and {g,} converges
uniformly to g(x) := x. (Perhaps you can prove these statements yourself as quick exercises.) We have

|(fngn) (%) = (f) ()] = [fu(x)gn(x) = f(x)g ()]

- (x+%)(x+%)_xx

for all x € R. Consider a sequence {x,} given by x, := n. Choose € := 2. Then we have

|(fngn)(xn) - (fg)(xn)| 2

2nx, +1

So {fngn} does not coinverge uniformly to fg on A := R. O



3. (Exercise 6.1.7) Suppose there exists a sequence of functions {g,} uniformly converging to 0 on A. Now suppose we have a
sequence of functions { f;;} and a function f on A such that

|fn(x) = f(X)] < gn(x)

for all x € A. Show that { f;,} converges uniformly to f on A.

Proof. Since {g,} converges uniformly to 0 on A, for all € > 0, there exists N € N such that for all n > N we have
lgn(x) 0] <€

for all x € A. Note that the inequality
|fn(x) = f(X)] < gn(x)
necessarily implies that g, (x) is nonnegative; in other words, we have |g, (x)| = g,(x), and so we can say in fact
gn(x) = |gn(x)|

= lgn(x) = 0]
< €.

Finally, we can combine our previous inequalities to conclude

|fn(x) = fF()] < gn(x)

<€

for all x € A. Therefore, {f,} converges uniformly to f on A. O

4. (Exercise 6.1.9) Let f,,: [0, 1] — R be a sequence of increasing functions (that is, f,,(x) > f,,(y) whenever x > y). Suppose
fn(0) =0and lim f,(1) = 0. Show that {f,,} converges uniformly to 0.

Proof. Since we have lim f,(1) =0, for all € > 0, there exists N = N(¢€) € N such that for all n > N we have
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Since f; is increasing, we have f;(x) > f,(0) forall 0 < x < 1, which means f,(x) — f,,(0) is nonnegative, and so we can
write

|fn(x) - fn(0)| = fn(x) - fn(o)

Since we assume f;(0) = 0, we have in fact

|fn(x) = O] = [ fu(x) = fu(0)]
= fu(x) = fu(0)
= fu(x) -0
= fu(x)

forall0 < x < 1. Atx =1, we have

Ja(1) = 1fu(1) = 0|

< E.

Since f, is increasing, we have
Tn(x) < fu(1)

forall0 < x < 1. Soforall n > N we conclude
| fn(x) = 0] = fu(x)
< fu(1)

<€

for all 0 < x < 1. Therefore, { f;,} converges uniformly to 0. O

5. (Exercise 6.1.10) Let { f,,} be a sequence of functions defined on [0, 1]. Suppose there exists a sequence of distinct numbers
Xy, € [0, 1] such that
fu(xn) = 1.

Prove or disprove the following statements:



a) True or false: There exists { f,,} as above that converges to 0 pointwise.

Answer. True. Consider, for example, the sequence {x,} given by x,, := % and the sequence of functions { f;,} given by
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Then we would have f,,(x,) = 1 for any x,, € [0, 1]. Also, let € > 0 and choose N > max{5-, -~} (that is, choose N

2€’ ex
that satisfies N > i and N> L) Ifn>Nand0 <x < #, then we would have
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forall 0 < x < 1. So {f,} converges pointwise to 0 for all 0 < x < 1. By the way, my solution is only one example;
please construct your own example of f;, that satisfies all the given conditions! O

b) True or false: There exists { f,,} as above that converges to 0 uniformly on [0, 1].

Answer. False. Suppose to the contrary that there exists { f,,} as above that converges uniformly to 0. Then there exists
N € N such that, if n > N, then we would have |f,,(x) — 0| < € for all 0 < x < 1. Choose for instance € := % Since
each x, isin [0, 1] and we assumed | f;,(x,)| = 1, we have in fact

1= [fn(xn)l
= | fu(xn) = O
<€
1
= 7

which is a contradiction. O



