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Homework 2 solutions

1. (Exercise 6.2.1) While uniform convergence preserves continuity, it does not preserve differentiability. Find an explicit exam-
ple of a sequence of differentiable functions on [−1, 1] that converge uniformly to a function 5 such that 5 is not differentiable.

Hint: There are many possibilities, simplest is perhaps to combine |G | and
=

2
G2 + 1

2=
, another is to consider

√
G2 + 1

=2 . Show
that these functions are differentiable, converge uniformly, and then show that the limit is not differentiable.

Answer. Define for example 5= (G) =
√
G2 + 1

=2 , which is differentiable on [−1, 1] and 5 (G) = |G |, which is not differentiable

on [−1, 1]. First, we claim
√
0 + 1 ≤

√
0 +
√
1 for all 0, 1 ∈ R. The true statement

√
01 ≥ 0 implies

(
√
0 +
√
1)2 = (

√
0)2 + 2

√
0
√
1 + (

√
1)2

= 0 + 2
√
01 + 1

≥ 0 + 2 · 0 + 1
= 0 + 1
= (
√
0 + 1)2.

Since
√
G is an increasing function of G for all G ≥ 0, we can apply the square root to both sides of our previous inequality in

order to obtain the desired claim. Also, since we have 1
=2 ≥ 0 and

√
G is an increasing function of G for all G ≥ 0, we have√

G2 + 1
=2 − |G | ≥

√
G2 − |G |

= |G | − |G |
= 0,

which means
���� √G2 + 1

=2 − |G |
���� = √

G2 + 1
=2 − |G |. Applying our results, we obtain

| 5= (G) − 5 (G) | =
�����
√
G2 + 1

=2 − |G |
�����

=

√
G2 + 1

=2 − |G |

≤
√
G2 +

√
1
=2 − |G |

= |G | + 1
=
− |G |

=
1
=

for all −1 ≤ G ≤ 1. Finally, let n > 0. Choose # > 1
n

. If = ≥ # , then we would have

| 5= (G) − 5 (G) | ≤
1
=

≤ 1
#

< n

for all −1 ≤ G ≤ 1. So { 5=} converges uniformly to 5 on [−1, 1]. �

2. (Exercise 6.2.3) Let 5 : [0, 1] → R be a Riemann integrable (hence bounded) function. Find lim
=→∞

∫ 1

0

5 (G)
=

3G.

Answer. First, we will compute the limit (optional step). Since 5 is a bounded function on [0, 1], there exists " > 0 such that
5 satisfies | 5 (G) | ≤ " for all 0 ≤ G ≤ 1. We have

−" ≤ 5 (G) ≤ "

for all G ∈ [0, 1]. We can integrate over [0, 1] to obtain∫ 1

0
−" 3G ≤

∫ 1

0
5 (G) 3G ≤

∫ 1

0
" 3G,



which is

−" ≤
∫ 1

0
5 (G) 3G ≤ ".

Multiply by 1
=

to conclude

−"
=
≤

∫ 1

0

5 (G)
=

3G ≤ "

=
.

Now send =→∞ and invoke the Squeeze Theorem to conclude

lim
=→∞

∫ 1

0

5 (G)
=

3G = 0,

as desired.

Next, we will prove the limit (mandatory step). Let n > 0 be given, and choose # > "
n

. Since 5 is a bounded function on
[0, 1], there exists " > 0 such that 5 satisfies | 5 (G) | ≤ " for all 0 ≤ G ≤ 1. If = ≥ # , we have����∫ 1

0

5 (G)
=

3G − 0
���� ≤ ∫ 1

0

| 5 (G) |
=

3G

≤
∫ 1

0

"

=
3G

=
"

=

≤ "

#

< n,

as desired. �

3. (Exercise 6.2.5) Find an example of a sequence of continuous functions on (0, 1) that converges pointwise to a continuous
function on (0, 1), but the convergence is not uniform.

Answer. Define { 5=} by 5= (G) = 1
=G

and 5 (G) = 0, which are continuous on (0, 1). Let n > 0. Choose # > 1
Gn

. If = ≥ # ,
then we have

| 5= (G) − 5 (G) | =
���� 1
=G
− 0

����
=

1
=G

≤ 1
#G

< n

for all 0 < G < 1. So { 5=} converges pointwise to 0. However, if we choose n := 1
2 , and consider G= := 1

=
. Then we would

have

| 5= (G=) − 5 (G=) | =
1
=G=

=
1

=( 1
=
)

= 1

>
1
2

= n

for all 0 < G < 1. So { 5=} does not converge uniformly to 0 on (0, 1). �

4. (Exercise 6.2.6) True/False: prove or find a counterexample to the following statement:

If { 5=} is a sequence of everywhere discontinuous functions on [0, 1] that converge uniformly to a function 5 , then 5 is
everywhere discontinuous.

Answer. False. Define { 5=} by

5= (G) :=

{
1
=

if 0 ≤ G ≤ 1 is rational,
0 if 0 ≤ G ≤ 1 is irrational,



which is everywhere discontinuous on [0, 1]. Let n > 0 be given, and choose # > 1
n

. If = ≥ # , then we would have

| 5= (G) − 0| = 5= (G)

≤ 1
=

≤ 1
#

< n

for all 0 ≤ G ≤ 1. So { 5=} converges uniformly to 0. But 0 is a continuous function on [0, 1]. �

5. Suppose 5 : [0, 1] → R is Riemann integrable. For the following two exercises define the number

‖ 5 ‖!1 :=
∫ 1

0
| 5 (G) | 3G.

It is true that | 5 | is integrable whenever 5 is, see Exercise 5.2.15. The number is called the !1-norm and defines another very
common type of convergence called the !1-convergence.

(a) (Exercise 6.2.8) Suppose { 5=} is a sequence of Riemann integrable functions on [0, 1] that converges uniformly to 0.
Show that

lim
=→∞
‖ 5=‖!1 = 0.

Answer. Let n > 0 be given. Since { 5=} converges uniformly to 0, there exists # ∈ N such that, if = ≥ # , then we have
| 5= (G) − 0| < n for all 0 ≤ G ≤ 1. So we have

|‖ 5=‖!1 − 0| = ‖ 5=‖!1

=

∫ 1

0
| 5= (G) | 3G

=

∫ 1

0
| 5= (G) − 0| 3G

<

∫ 1

0
n 3G

= n,

which proves lim
=→∞
‖ 5=‖!1 = 0.

Alternatively, you can apply Theorem 6.2.4 of the Lebl textbook to write a shorter proof. �

6. (b) (Exercise 6.2.9) Find a sequence { 5=} of Riemann integrable functions on [0, 1] converging pointwise to 0, but

lim
=→∞
‖ 5=‖!1 does not exist (is∞).

Answer. Choose for instance (Estela’s example)

5= (G) :=


2=3G if 0 ≤ G < 1

2= ,

−2=3 (G − 1
=
) if 1

2= ≤ G <
1
=
,

0 if 1
=
≤ G ≤ 1.

The graph of 5= on [0, 1] is a triangle with vertices (0, 0), ( 1
2= , =

2), ( 1
=
, 0) for 0 ≤ G < 1

=
and the zero function for

1
=
≤ G ≤ 1. And this example of { 5=} converges pointwise to 0. The !1-norm of 5= is

‖ 5=‖!1 =

∫ 1

0
| 5= (G) | 3G

=
1
2
· 1
=
· =2

=
=

2
< ∞,

meaning that each 5= is Riemann integrable on [0, 1]. This also implies

lim
=→∞
‖ 5 ‖ = lim

=→∞
=

2
= ∞,

meaning that 5 is not Riemann integrable. �



7. We say that a sequence of functions 5= : R → R converges uniformly on compact subsets if for every : ∈ N, the sequence
{ 5=} converges uniformly on [−:, :].

(a) (Exercise 6.2.15. (a)) Prove that if 5= : R→ R is a sequence of continuous functions converging uniformly on compact
subsets, then the limit is continuous.

Answer. For any G ∈ R, there exists : > 0 such that G ∈ [−:, :]. Since we were given that 5 is continuous on [−:, :],
Theorem 6.2.2 of the Lebl textbook allows us to conclude that 5 is continuous on R. �

8. (b) Prove that if 5= : R→ R is a sequence of functions Riemann integrable on any closed and bounded interval [0, 1], and
converging uniformly on compact subsets to an 5 : R→ R, then for any interval [0, 1], we have 5 is Riemann integrable
on [0, 1], and ∫ 1

0

5 (G) 3G = lim
=→∞

∫ 1

0

5= (G) 3G,

as desired.

Answer. For any 0, 1 ∈ R, there exists : > 0 such that [0, 1] ⊂ [−:, :]. Since we were given that { 5=} converges
uniformly to 5 on [0, 1], Theorem 6.2.4 of the Lebl textbook allows us to conclude that 5 is Riemann integrable on R
and ∫ 1

0

5 (G) 3G = lim
=→∞

∫ 1

0

5= (G) 3G,

as desired. �

9. (a) (Exercise 6.2.18. (a)) Find a sequence of Lipschitz continuous functions on [0, 1] whose uniform limit is
√
G, which is

a non-Lipschitz function. See Definition 3.4.7. in the textbook for the definition of a “Lipschitz” function.

Answer. Let 5= (G) :=
√
G + 1

=
and 5 (G) :=

√
G for all 0 ≤ G ≤ 1. Then { 5=} converges uniformly to 5 . We have

| 5= (G) − 5= (H) | =
�����
√
G + 1

=
−

√
H + 1

=

�����
=

�����
√
G + 1

=
−

√
H + 1

=

�����
���� √G + 1

=
+

√
H + 1

=

�������� √G + 1
=
+

√
H + 1

=

����
=
| (G + 1

=
) − (H + 1

=
) |���� √G + 1

=
+

√
H + 1

=

����
=

|G − H |√
G + 1

=
+

√
H + 1

=

≤ |G − H |√
0 + 1

=
+

√
0 + 1

=

=

√
=

2
|G − H |

=  = |G − H |

for all 0 ≤ G ≤ 1 and 0 ≤ H ≤ 1, meaning that 5= (G) is Lipschitz continuous with  = :=
√
=

2 .
Now we will prove that 5 (G) is not Lipschitz continuous. Assume to the contrary that 5 (G) is Lipschitz continuous.
Then there exists  > 0 such that we have

| 5 (G) − 5 (H) | ≤  |G − H |

for all 0 ≤ G ≤ 1 and 0 ≤ H ≤ 1. By setting G := 0 and H := 1
=

, we obtain���� 5 (0) − 5 (
1
=

)���� = �����√0 −
√

1
=

�����
=

1
√
=



and ���� 5 (0) − 5 (
1
=

)���� ≤  ����0 − 1
=

����
=
 

=
.

We combine our results to conclude
1
√
=
≤  
=
,

or equivalently
 ≥

√
=,

implying that  depends on = (because it is bounded below by
√
=). But this contradicts our assumption that  does not

depend on = (because it is a uniform Lipschitz constant). �

(b) (Exercise 6.2.18. (b)) On the other hand, show that if 5= : ( → R are Lipschitz with a uniform constant  (meaning all
of them satisfy the definition with the same constant) and { 5=} converges pointwise to 5 : ( → R, then the limit 5 is a
Lipschitz continuous function with Lipschitz constant  .

Answer. Let n > 0 be given. Since { 5=} converges pointwise to 5 , there exists # = # (G, n) ∈ N such that, if = ≥ # ,
then we have

| 5= (G) − 5 (G) | <
n

2
for all G ∈ (. Also, since each 5= is Lipschitz continuous with a uniform constant  , we have

| 5= (G) − 5= (H) | ≤  |G − H |

for all G, H ∈ (. So we have

| 5 (G) − 5 (H) | = | 5 (G) − 5= (G) + 5= (G) − 5= (H) + 5= (H) − 5 (H) |
≤ | 5 (G) − 5= (G) | + | 5= (G) − 5= (H) | + | 5= (H) − 5 (H) |
≤ | 5 (G) − 5= (G) | +  |G − H | + | 5= (H) − 5 (H) |

<
n

2
+  |G − H | + n

2
=  |G − H | + n .

Since n > 0 is arbitrary, we conclude
| 5 (G) − 5 (H) | ≤  |G − H |,

meaning that 5 is also Lipschitz continuous. �


