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Homework 3 solutions

1. Find a closed form of the series
∞∑
:=2

:G:−2

and the largest set on which this formula is valid.

Solution. We start with the infinite geometric sum
∞∑
:=0

G: =
1

1 − G .

for all −1 < G < 1. Then we obtain
∞∑
:=2

:G:−1 =
3

3G

( ∞∑
:=2

G:

)
=

3

3G

( ∞∑
:=0

G: − 1 − G
)

=
3

3G

(
1

1 − G − 1 − G
)

=
1

(1 − G)2
− 1.

Furthermore, now assuming G ≠ 0, we obtain
∞∑
:=2

:G:−2 =
1
G

∞∑
:=2

:G:−1

=
1
G

(
1

(1 − G)2
− 1

)
=

1
G(1 − G)2

− 1
G

=
2 − G
(1 − G)2

for all G ∈ (−1, 0) ∪ (0, 1). �

2. (Exercise 6.2.21): Let 5= (G) :=
G

1 + (=G)2
. Notice that 5= are differentiable functions.

(a) Show that { 5=} converges uniformly to 0.

Solution. First, we will find the maximum of 5=. We have the first derivative

5 ′= (G) =
3

3G

(
G

1 + (=G)2

)
=

1 − (=G)2
(1 + (=G)2)2

.

We set 5 ′= (G) = 0 in order to obtain the critical points G = ± 1
=

, which yield the minimum 5 (− 1
=
) = − 1

2= and the maximum
5 ( 1

=
) = 1

2= . In other words, we obtain

− 1
2=
≤ 5= (G) ≤

1
2=

,

or equivalently

| 5= (G) | ≤
1

2=
.

Now we will apply this inequality. Let n > 0 be given, and choose # > 1
2n . If = ≥ # , then we have

| 5= (G) − 0| = | 5= (G) |

≤ 1
2=

≤ 1
2#

< n.

Therefore, { 5=} converges uniformly to 0. �



Alternate solution. For all positive integers =, we have

0 ≤ (=G − 1)2

= (=G)2 − 2=G + 1,

which is algebraically equivalent to
G

1 + (=G)2
≤ 1

2=
.

Now we will apply this inequality. Let n > 0 be given, and choose # > 1
2n . If = ≥ # , then we have

| 5= (G) − 0| =
���� G

1 + (=G)2
− 0

����
=

G

1 + (=G)2

≤ 1
2=

≤ 1
2#

< n.

Therefore, { 5=} converges uniformly to 0. �

(b) Show that | 5 ′= (G) | ≤ 1 for all G and all =.

Solution. We have the first derivative

5 ′= (G) =
3

3G

G

1 + (=G)2

=
1 + (=G)2 − 2(=G)2
(1 + (=G)2)2

=
1 − (=G)2
(1 + (=G)2)2

.

By the triangle inequality, we have

| 5 ′= (G) | =
���� 1 − (=G)2
(1 + (=G)2)2

����
=
|1 − (=G)2 |
(1 + (=G)2)2

≤ |1| + |−(=G)
2 |

(1 + (=G)2)2

=
1 + (=G)2
(1 + (=G)2)2

=
1

1 + (=G)2
≤ 1.

Therefore, we have established | 5 ′= (G) | ≤ 1 for all G ∈ R and all positive integers =. �

(c) Show that { 5 ′=} converges pointwise to a function discontinuous at the origin.

Solution. We will show that the limit of { 5 ′=} is

6(G) := lim
=→∞

5 ′= (G) =
{

0 if G ≠ 0,
1 if G = 0.

which is discontinuous at the origin. Suppose G ≠ 0. Let n > 0 be given, and choose # > 1√
n G

. If = ≥ # , then we have

| 5 ′= (G) − 6(G) | = | 5 ′= (G) − 0|
= | 5 ′= (G) |

≤ 1
1 + (=G)2

<
1
(=G)2

≤ 1
(#G)2

< n.



At G = 0; the argument becomes trivial; we have

| 5 ′= (0) − 6(0) | =
���� 1
(1 + (=(0))2)2

− 1
����

= |1 − 1|
= 0
< n.

Therefore, 5 ′= (G) converges pointwise to 6(G) for all G ∈ R. �

3. (Exercise 5.4.2): Let 1 > 0, 1 ≠ 1 be given.

(a) Show that for every H > 0, there exists a unique number G such that H = 1G . Define the logarithm base 1, log1 : (0,∞) →
R, by log1 (H) := G

Solution (by Estela Gavosto). Notice that it suffices to show that, for every H > 0, there exists a unique number G such
that H = 1G . That is, we have to show that H = 1G = exp(G ln(1)) is one-to-one. Suppose that, given H > 0, there exist
G1, G2 such that H = 1G1 = 1G2 . Then we have

ln(H) = ln(exp(G1 ln(1))
= G1 ln(1),

or equivalently G1 =
ln(H)
ln(1) . Similarly, we have

ln(H) = ln(exp(G2 ln(1))
= G2 ln(1),

or equivalently G2 =
ln(H)
ln(1) . So we obtain G1 = G2, and so we conclude that H = 1G is one-to-one. We are now able to

define the logarithm base 1, written log1 : (0,∞) → R, by log1 (H) := G. �

(b) Show that log1 (G) =
ln(G)
ln(1) .

Solution. Let H := log1 (G). Then by part (a) we can write G = 1H . Now substitute D := C
1
H , which gives H

D
3D = 1

C
3C, and

so we have

ln(G) = ln(1H)

=

∫ 1H

1

1
C
3C

=

∫ 1

1

H

D
3D

= H

∫ 1

1

1
D
3D

= H ln(1).

So we conclude H =
ln(G)
ln(1) , or log1 (G) =

ln(G)
ln(1) , as desired. �

(c) Prove that if 2 > 0, 2 ≠ 1, then log1 (G) =
log2 (G)
log2 (1)

.

Solution. Write H := log1 (G). Then by part (a), we can write G = 1H . By part (b) and our proof of part (b), we obtain

log2 (G) = log2 (1H)

=
ln(1H)
ln(2)

=
H ln(1)
ln(2)

= H
ln(1)
ln(2)

= H log2 (1).

So we conclude H =
log2 (G)
log2 (1)

, or log1 (G) =
log2 (G)
log2 (1)

, as desired. �

(d) Prove log1 (GH) = log1 (G) + log1 (H), and log1 (GH) = H log1 (G)



Solution. The professor has already proved ln(GH) = ln(G) + ln(H) in her lecture notes. Using this and part (b), we obtain

log1 (GH) =
ln(GH)
ln(1)

=
ln(G) + ln(H)

ln(1)

=
ln(G)
ln(1) +

ln(H)
ln(1)

= log1 (G) + log1 (H).

Next, we have already proved ln(GH) = H ln(G) in our proof of part (b). Using this and part (b), we obtain

log1 (GH) =
ln(GH)
ln(1)

=
H ln(G)
ln(1)

= H
ln(G)
ln(1)

= H log1 (G),

as desired. �

4. (Exercise 5.4.9): Using the logarithm find
lim
=→∞

=
1
=

Note: If you want to use L’Hopital’s rule, you need to prove the result first. Alternatively, you can use directly the mean value
theorem.

Solution. I will prove this using the Mean Value Theorem. Since ln(G) is a continuous function for all G > 0, the Mean Value
Theorem asserts that, for all integers = ≥ 2, there exists := ∈ [1, =] that satisfies

3

3G
ln(G)

����
G=:=

=
ln(=) − ln(1)

= − 1
,

or equivalently

:= =
= − 1
ln(=) .

Next, we want to show ln(=) <
√
= for all integers = ≥ 2. One way (that I am choosing) to prove our claim is to define

5 : (0,∞) → R by 5 (G) :=
√
G − ln(G). Then we have

5 ′(G) = 3

3G

(√
G − ln(G)

)
=

1
2
√
G
− 1
G

=
G − 2
√
G

≥ 0

for all G ≥ 2, which means that 5 is increasing for all G ≥ 2. We also have 5 (2) =
√

2 − ln(2) > 0. So we conclude 5 (G) > 0,
or equivalently ln(G) <

√
G, for all G ≥ 2. In particular, for all integers = ≥ 2, we have ln(=) <

√
=. Therefore, we have

:= =
= − 1
ln(=)

>
= − 1
√
=

=
√
= − 1
√
=
,

which implies lim
=→∞

:= = ∞, and in turn lim
=→∞

1
:=

= 0. So we have

ln(= 1
= ) = ln(=)

=

=
= − 1
=

ln(=)
= − 1

=

(
1 − 1

=

)
1
:=

.



Since ln(G) is continuous for all G > 0, we have

lim
=→∞

ln(= 1
= ) = lim

=→∞

(
1 − 1

=

)
lim
=→∞

1
:=

= 1 · 0
= 0.

Since 4G is continuous for all G ∈ R, we have

lim
=→∞

=
1
= = lim

=→∞
4ln(= 1

= )

= 4
lim
=→∞

ln(= 1
= )

= 40

= 1 ,

as desired. �

5. (Exercise 5.4.4): Use the geometric sum formula to show (for C ≠ −1)

1 − C + C2 − · · · + (−1)=C= =
1

1 + C −
(−1)=+1C=+1

1 + C

Using this fact show

ln(1 + G) =
∞∑
==1

(−1)=+1G=
=

for all G ∈ (−1, 1] (note that G = 1 is included). Finally, find the limit of the alternating harmonic series

∞∑
==1

(−1)=+1
=

= 1 − 1
2
+ 1

3
− 1

4
+ · · ·

Solution. Suppose |C | < 1. We have

1 − C + C2 − · · · + (−1)=C= = 1 + (−C) + (−C)2 − · · · + (−C)=

=
1 − (−C)=+1

1 − (−C)

=
1 − (−1)=+1C=+1

1 + C

=
1

1 + C −
(−1)=+1C=+1

1 + C .

Next, we claim the sequence of terms { (−1)=+1C=+1
1+C } of the summation converges uniformly to 0 for all |C | < 1, which will allow

us to interchange the summation and integral signs in our final calculations. To this end, let n > 0 be given, and, if we assume
C ∈ (−1, 0) ∪ (0, 1), choose # > log |C | (n) − 1. If = ≥ # , then we have���� (−1)=+1C=+1

1 + C − 0
���� = |C |=+11 + C

≤ |C |
=+1

1
= |C |=+1

≤ |C |#+1

< n.

Otherwise, if C = 0, then the argument becomes trivial; we have���� (−1)=+1 (0)=+1
1 + 0

− 0
���� = |0 − 0|

= 0
< n.



So we conclude that { (−1)=+1C=+1
1+C } of the summation converges uniformly to 0 for all |C | < 1, as we claimed. Now, we have

∞∑
:=0

(−1): C: = lim
=→∞
(1 − C + C2 − · · · + (−1)=C=)

= lim
=→∞

(
1

1 + C −
(−1)=+1C=+1

1 + C

)
=

1
1 + C .

Therefore, we obtain

ln(1 + G) = ln(1 + G) − ln(1 + 0)
= ln(1 + C) |G0

=

∫ G

0

1
1 + C 3C

=

∫ G

0

∞∑
:=0

(−1): C: 3C

=

∞∑
:=0

(−1):
∫ G

0
C: 3C

=

∞∑
:=0

(−1): C:+1
: + 1

�����G
0

=

∞∑
:=0

(−1):G:+1
: + 1

=

∞∑
==1

(−1)=+1G=
=

for all −1 < G < 1. Since all the hypotheses of Abel’s Theorem are true, Abel’s Theorem asserts here that the above series
also converges at G = 1. So we can substitute G = 1 to conclude

∞∑
==1

(−1)=+1
=

= ln(2),

as desired. �

6. (Exercise 5.4.8): Show that 4G is convex, in other words, show that if 0 ≤ G ≤ 1, then

4G ≤ 40
1 − G
1 − 0 + 4

1 G − 0
1 − 0 .

Solution. Define 5 : [0, 1] → R by

5 (G) := 40
1 − G
1 − 0 + 4

1 G − 0
1 − 0 − 4

G .

The first derivative is

5 ′(G) = 40
3

3G

1 − G
1 − 0 + 4

1 3

3G

G − 0
1 − 0 −

3

3G
4G

= 40
−1

1 − 0 + 4
1 1
1 − 0 − 4

G

=
41 − 40
1 − 0 − 4

G .

Setting 5 ′(G0) = 0 yields the positive critical point

G0 = ln
(
41 − 40
1 − 0

)
Moreover, the second derivative is

5 ′′(G) = 3

3G

(
41 − 40
1 − 0 − 4

G

)
= −4G

< 0,



which implies that the critical point G0 is a maximum. Finally, since we also have 5 (0) = 0 and 5 (1) = 0, we conclude
5 (G) ≥ 0 for all 0 ≤ G ≤ 1, which is equivalent to

4G ≤ 40
1 − G
1 − 0 + 4

1 G − 0
1 − 0

for all 0 ≤ G ≤ 1, as desired. �

Alternate solution. Define 5 : [0, 1] → R by

5 (G) := 40
1 − G
1 − 0 + 4

1 G − 0
1 − 0 − 4

G .

which is continuous (because it is the addition and scalar multiplication of the continuous functions 1 − G, G − 0, 4G) and
satisfies 5 (0) = 5 (1) = 0. We want to show 5 (G) ≥ 0 for all 0 ≤ G ≤ 1. By Rolle’s Theorem (the special case of the Mean
Value Theorem for zero slope), there exists 2 ∈ [0, 1] that satisfies 5 ′(2) = 0. Additionally, we have the first derivative

5 ′(G) = 40
3

3G

1 − G
1 − 0 + 4

1 3

3G

G − 0
1 − 0 −

3

3G
4G

= 40
−1

1 − 0 + 4
1 1
1 − 0 − 4

G

=
41 − 40
1 − 0 − 4

G .

First, suppose 0 ≤ G ≤ 2. Since 4G is an increasing function of G, it follows that G ≤ 2 implies 4G ≤ 42 , and so we have

5 ′(G) = 41 − 40
1 − 0 − 4

G

≥ 41 − 40
1 − 0 − 4

2

= 5 ′(2)
= 0

for all 0 ≤ G ≤ 2. So we have 5 (0) = 0 and 5 is increasing on [0, 2], which together imply 5 (G) ≥ 0 for all 0 ≤ G ≤ 2. Next,
suppose 2 ≤ G ≤ 1. Since 4G is an increasing function of G, it follows that G ≥ 2 implies 4G ≥ 42 , and so we have

5 ′(G) = 41 − 40
1 − 0 − 4

G

≤ 41 − 40
1 − 0 − 4

2

= 5 ′(2)
= 0

So we have 5 (1) = 0 and 5 is decreasing on [2, 1], which together imply 5 (G) ≥ 0 for all 2 ≤ G ≤ 1. Therefore, we conclude
5 (G) ≥ 0 for all 0 ≤ G ≤ 1, which is equivalent to

4G ≤ 40
1 − G
1 − 0 + 4

1 G − 0
1 − 0

for all 0 ≤ G ≤ 1, as desired. �


