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Homework 3 solutions

1. Find a closed form of the series

and the largest set on which this formula is valid.

Solution. We start with the infinite geometric sum

for all -1 < x < 1. Then we obtain

Furthermore, now assuming x # 0, we obtain
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forallx € (-1,0) U (0, 1). O

2. (Exercise 6.2.21): Let f,(x) := . Notice that f,, are differentiable functions.

X
1+ (nx)?
(a) Show that { f,} converges uniformly to O.
Solution. First, we will find the maximum of f;;. We have the first derivative
, d X
Jnlx) = dx (1 + (nx)2)
1= (nx)?
C (14 ()2

We set £,/ (x) = 01in order to obtain the critical points x = i%, which yield the minimum f (—%) = —ﬁ and the maximum
f (%) = ﬁ In other words, we obtain
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2n —
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1
< —.
)] < 5
Now we will apply this inequality. Let € > 0 be given, and choose N > ﬁ If n > N, then we have
[fu(x) = O] = | fu(x)]
1
S JR—
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1
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T 2N
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Therefore, { f,,} converges uniformly to O. O



Alternate solution. For all positive integers n, we have
0< (nx—1)°
= (nx)? = 2nx + 1,
which is algebraically equivalent to
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Now we will apply this inequality. Let € > 0 be given, and choose N > ﬁ If n > N, then we have
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Therefore, { f,,} converges uniformly to O. O
(b) Show that | f;;(x)| < 1 for all x and all n.
Solution. We have the first derivative
, d X
Julo) = dx 1+ (nx)?
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By the triangle inequality, we have
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Therefore, we have established | f,, (x)| < 1 for all x € R and all positive integers n. O
(c) Show that {f,} converges pointwise to a function discontinuous at the origin.
Solution. We will show that the limit of {f, } is

0 ifx=#0,

g = lim f1(x) = {1 N

which is discontinuous at the origin. Suppose x # 0. Let € > 0 be given, and choose N > —. If n > N, then we have

Vex’
|fn(x) = g(xX)] = | f(x) = 0]
| £ (0
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At x = 0; the argument becomes trivial; we have

1
0)-g(0) =|————= -1
(0 = O = | e
=|1-1]
=0
<e.
Therefore, f,, (x) converges pointwise to g(x) for all x € R. O

3. (Exercise 5.4.2): Let b > 0,b # 1 be given.

(a) Show that for every y > 0, there exists a unique number x such that y = b*. Define the logarithm base b, log,, : (0, c0) —

(b)

(©

(d)

R, by log, (y) :=x

Solution (by Estela Gavosto). Notice that it suffices to show that, for every y > 0, there exists a unique number x such
that y = b*. That is, we have to show that y = b* = exp(xIn(b)) is one-to-one. Suppose that, given y > 0, there exist
Xx1,Xx2 such that y = b*' = b*2. Then we have

In(y) = In(exp(x; In(b))
= x1 In(b),

or equivalently x| = }EEZ; . Similarly, we have

In(y) = In(exp(xz In(b))

=X ln(b),
or equivalently x, = }:Ez; So we obtain x; = x», and so we conclude that y = b* is one-to-one. We are now able to
define the logarithm base b, written log,, : (0, c0) — R, by log, (y) := x. O
Show that log,, (x) = iggi

1
Solution. Lety :=log, (x). Then by part (a) we can write x = b”. Now substitute u := ¢¥, which gives % du = % dt, and
so we have

In(x) = In(»”)
by
1
=/ —dt
1 t
b
=/ Xdu
1 u
b
1
=y/ —du
1 u

= yIn(d).

So we conclude y = % or log;, (x) = % as desired. O

Prove that if ¢ > 0, ¢ # 1, then log,, (x) = }gﬁ‘fﬁ

Solution. Write y := log,, (x). Then by part (a), we can write x = b”. By part (b) and our proof of part (b), we obtain

log, (x) = log, (b")
_ In(b”)
"~ In(c)
_ yIn(b)
~ In(c)
In(b)
In(c)
= ylog.(b).

=Y

log, (x)
Tog, (5)’

log, (x)

So we conclude y = g (5)

or log;, (x) = as desired. O

Prove log, (xy) = log, (x) +log, (y), and log,, (x”) = y log, (x)



Solution. The professor has already proved In(xy) = In(x) +In(y) in her lecture notes. Using this and part (b), we obtain

In(xy)

In(b)

_In(x) +1In(y)

B In(b)

_In@ _ Iny)
In(b) 1In(b)

logy, (xy) =

= log,, (x) +1og, (y).
Next, we have already proved In(x”) = y In(x) in our proof of part (b). Using this and part (b), we obtain
In(x”)
1 )=
08, (F") = 1)
_ yln(x)
"~ In(b)
_In(x)
= YIn(p)
=y logb (x)’
as desired. |
4. (Exercise 5.4.9): Using the logarithm find
lim n%
n—oo

Note: If you want to use L’Hopital’s rule, you need to prove the result first. Alternatively, you can use directly the mean value
theorem.

Solution. 1 will prove this using the Mean Value Theorem. Since In(x) is a continuous function for all x > 0, the Mean Value
Theorem asserts that, for all integers n > 2, there exists k,, € [1, n] that satisfies

d In(n) — In(1)
— In(x) =—,
dx x=k,, n—1
or equivalently
n—1
" In(n)’

Next, we want to show In(n) < +/n for all integers n > 2. One way (that I am choosing) to prove our claim is to define
f:(0,00) = Rby f(x) := vx —In(x). Then we have

f'(x) = — (Vx = In(x))

= N %l&
T2
= | =

B

>

)

for all x > 2, which means that f is increasing for all x > 2. We also have f(2) = V2 —In(2) > 0. So we conclude f(x) > 0,
or equivalently In(x) < +/x, for all x > 2. In particular, for all integers n > 2, we have In(n) < +/n. Therefore, we have

which implies lim k, = oo, and in turn lim ki = 0. So we have
In(n)

n
n—11n(n)

In(ni) =

n n-1

1\ 1
1——|—.
(-3,



Since In(x) is continuous for all x > 0, we have

1 1
lim In(n7) = lim (1 - -) lim —

n—oo n—oo njJ] n—oo kn
=1-0
=0.
Since e* is continuous for all x € R, we have
1
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. 1 .
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as desired. O

5. (Exercise 5.4.4): Use the geometric sum formula to show (for ¢ # —1)

1 (_])n+ltn+l

l—t+2 =+ (=D)"" =
=D 1+1¢ 1+1¢

Using this fact show
)n+1 K

ln(l +X) = i (_IT
n=1

for all x € (-1, 1] (note that x = 1 is included). Finally, find the limit of the alternating harmonic series

o (- 11 1
Z( ) :1——+—_—+...
o 2 3 4

Solution. Suppose |t| < 1. We have

L—t42 =+ (D" =1+ (=) + (=1)> =+ (=1)"
1= (—t)n+1
1= (-1)
1= (—l)"+1t”+1
1+1
1 (—1)"+1tn+1
1+ 1+t

_1\n+ln+l . . . .
Next, we claim the sequence of terms {(UTII} of the summation converges uniformly to O for all [¢] < 1, which will allow

us to interchange the summation and integral signs in our final calculations. To this end, let € > 0 be given, and, if we assume
t € (=1,0) U (0,1), choose N > log|,(e) — 1. If n > N, then we have

(—1)"+1t"+1 0‘ ~ |t|n+1
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<
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Otherwise, if t = 0, then the argument becomes trivial; we have
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So we conclude that {%

—— ) of the summation converges uniformly to O for all [¢| < 1, as we claimed. Now, we have
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Therefore, we obtain
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for all -1 < x < 1. Since all the hypotheses of Abel’s Theorem are true, Abel’s Theorem asserts here that the above series
also converges at x = 1. So we can substitute x = 1 to conclude

i (_1)n+1 _ ln(z)’
n=1

n

as desired. O

6. (Exercise 5.4.8): Show that ¢* is convex, in other words, show that if ¢ < x < b, then

b—x xX—a
e* < e b .
b—-a b—a

Solution. Define f : [a,b] — R by
b-x Lx-a
+e’—— —e*.

f(x)::e“b_a b—a

The first derivative is

by gdb-x ,dx-a d
fx)=e dxb—a+e dxb—-a dxe

-1 1

X

Moreover, the second derivative is




which implies that the critical point xp is a maximum. Finally, since we also have f(a) = 0 and f(b) = 0, we conclude
f(x) > 0forall a < x < b, which is equivalent to
b—-x pX—a

X a
e* <e
—-a b—a

for all a < x < b, as desired. O

Alternate solution. Define f : [a,b] — R by

b-x Lx-a
e
b-a b-a

—e".

f(x):=e“

which is continuous (because it is the addition and scalar multiplication of the continuous functions b — x,x — a, e*) and
satisfies f(a) = f(b) = 0. We want to show f(x) > 0 forall ¢ < x < b. By Rolle’s Theorem (the special case of the Mean
Value Theorem for zero slope), there exists ¢ € [a, b] that satisfies f’(c) = 0. Additionally, we have the first derivative

db-x ,dx-a d

’ — p,a + — —pX
flx)y=e dx b —a ¢ dxb—a dxe
-1 1
_ pa + b X
¢ b—a ¢ b-a ¢
=eb—e“_ex
b-a ’

First, suppose a < x < c. Since e¢* is an increasing function of x, it follows that x < ¢ implies ¢* < €, and so we have

’ eb_ea X
f =5
el —et
Z —_
b-a
= f'(c)
=0

forall a < x < c. So we have f(a) =0 and f is increasing on [a, c], which together imply f(x) > 0 for all a < x < c¢. Next,
suppose ¢ < x < b. Since e* is an increasing function of x, it follows that x > ¢ implies ¢* > e, and so we have

’ eb_ea X
fo =S
el —et
= b-a
=f'(c)
=0

So we have f(b) = 0 and f is decreasing on [c, b], which together imply f(x) > O for all ¢ < x < b. Therefore, we conclude
f(x) = 0forall a < x < b, which is equivalent to
b—x

xX—a
e* < e +el
b-a b—-a

for all a < x < b, as desired. O



