Homework 3 solutions

1. Find a closed form of the series

$$\sum_{k=2}^{\infty} k x^{k-2}$$

and the largest set on which this formula is valid.

Solution. We start with the infinite geometric sum

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}.$$

for all -1 < x < 1. Then we obtain

$$\sum_{k=2}^{\infty} kx^{k-1} = \frac{d}{dx} \left(\sum_{k=2}^{\infty} x^k \right)$$
$$= \frac{d}{dx} \left(\sum_{k=0}^{\infty} x^k - 1 - x \right)$$
$$= \frac{d}{dx} \left(\frac{1}{1-x} - 1 - x \right)$$
$$= \frac{1}{(1-x)^2} - 1.$$

Furthermore, now assuming $x \neq 0$, we obtain

$$\sum_{k=2}^{\infty} kx^{k-2} = \frac{1}{x} \sum_{k=2}^{\infty} kx^{k-1}$$
$$= \frac{1}{x} \left(\frac{1}{(1-x)^2} - 1 \right)$$
$$= \frac{1}{x(1-x)^2} - \frac{1}{x}$$
$$= \frac{2-x}{(1-x)^2}$$

for all $x \in (-1, 0) \cup (0, 1)$.

2. (Exercise 6.2.21): Let $f_n(x) := \frac{x}{1 + (nx)^2}$. Notice that f_n are differentiable functions.

(a) Show that $\{f_n\}$ converges uniformly to 0.

Solution. First, we will find the maximum of f_n . We have the first derivative

$$f'_n(x) = \frac{d}{dx} \left(\frac{x}{1 + (nx)^2} \right)$$
$$= \frac{1 - (nx)^2}{(1 + (nx)^2)^2}.$$

We set $f'_n(x) = 0$ in order to obtain the critical points $x = \pm \frac{1}{n}$, which yield the minimum $f(-\frac{1}{n}) = -\frac{1}{2n}$ and the maximum $f(\frac{1}{n}) = \frac{1}{2n}$. In other words, we obtain

$$-\frac{1}{2n} \le f_n(x) \le \frac{1}{2n},$$

or equivalently

$$|f_n(x)| \le \frac{1}{2n}$$

Now we will apply this inequality. Let $\epsilon > 0$ be given, and choose $N > \frac{1}{2\epsilon}$. If $n \ge N$, then we have

$$|f_n(x) - 0| = |f_n(x)|$$

$$\leq \frac{1}{2n}$$

$$\leq \frac{1}{2N}$$

$$< \epsilon.$$

Therefore, $\{f_n\}$ converges uniformly to 0.

Alternate solution. For all positive integers n, we have

$$0 \le (nx - 1)^2$$

= $(nx)^2 - 2nx + 1$,

which is algebraically equivalent to

$$\frac{x}{1+(nx)^2} \le \frac{1}{2n}.$$

Now we will apply this inequality. Let $\epsilon > 0$ be given, and choose $N > \frac{1}{2\epsilon}$. If $n \ge N$, then we have

$$|f_n(x) - 0| = \left| \frac{x}{1 + (nx)^2} - 0 \right|$$
$$= \frac{x}{1 + (nx)^2}$$
$$\leq \frac{1}{2n}$$
$$\leq \frac{1}{2N}$$
$$< \epsilon.$$

Therefore, $\{f_n\}$ converges uniformly to 0.

(b) Show that |f'_n(x)| ≤ 1 for all x and all n.
 Solution. We have the first derivative

$$f'_n(x) = \frac{d}{dx} \frac{x}{1 + (nx)^2}$$
$$= \frac{1 + (nx)^2 - 2(nx)^2}{(1 + (nx)^2)^2}$$
$$= \frac{1 - (nx)^2}{(1 + (nx)^2)^2}.$$

By the triangle inequality, we have

$$|f'_n(x)| = \left| \frac{1 - (nx)^2}{(1 + (nx)^2)^2} \right|$$
$$= \frac{|1 - (nx)^2|}{(1 + (nx)^2)^2}$$
$$\le \frac{|1| + |-(nx)^2}{(1 + (nx)^2)^2}$$
$$= \frac{1 + (nx)^2}{(1 + (nx)^2)^2}$$
$$= \frac{1}{1 + (nx)^2}$$
$$\le 1.$$

Therefore, we have established $|f'_n(x)| \le 1$ for all $x \in \mathbb{R}$ and all positive integers *n*.

(c) Show that $\{f'_n\}$ converges pointwise to a function discontinuous at the origin.

Solution. We will show that the limit of $\{f'_n\}$ is

$$g(x) := \lim_{n \to \infty} f'_n(x) = \begin{cases} 0 & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$

which is discontinuous at the origin. Suppose $x \neq 0$. Let $\epsilon > 0$ be given, and choose $N > \frac{1}{\sqrt{\epsilon_x}}$. If $n \ge N$, then we have

$$|f'_{n}(x) - g(x)| = |f'_{n}(x) - 0|$$

= $|f'_{n}(x)|$
 $\leq \frac{1}{1 + (nx)^{2}}$
 $< \frac{1}{(nx)^{2}}$
 $\leq \frac{1}{(Nx)^{2}}$
 $\leq \epsilon.$

At x = 0; the argument becomes trivial; we have

$$|f'_n(0) - g(0)| = \left| \frac{1}{(1 + (n(0))^2)^2} - 1 \right|$$

= |1 - 1|
= 0
< \epsilon.

Therefore, $f'_n(x)$ converges pointwise to g(x) for all $x \in \mathbb{R}$.

- 3. (Exercise 5.4.2): Let $b > 0, b \neq 1$ be given.
 - (a) Show that for every y > 0, there exists a unique number x such that $y = b^x$. Define the logarithm base $b, \log_b : (0, \infty) \to \mathbb{R}$, by $\log_b(y) := x$

Solution (by Estela Gavosto). Notice that it suffices to show that, for every y > 0, there exists a unique number x such that $y = b^x$. That is, we have to show that $y = b^x = \exp(x \ln(b))$ is one-to-one. Suppose that, given y > 0, there exist x_1, x_2 such that $y = b^{x_1} = b^{x_2}$. Then we have

$$\ln(y) = \ln(\exp(x_1 \ln(b)))$$
$$= x_1 \ln(b),$$

or equivalently $x_1 = \frac{\ln(y)}{\ln(b)}$. Similarly, we have

$$\ln(y) = \ln(\exp(x_2 \ln(b)))$$
$$= x_2 \ln(b).$$

or equivalently $x_2 = \frac{\ln(y)}{\ln(b)}$. So we obtain $x_1 = x_2$, and so we conclude that $y = b^x$ is one-to-one. We are now able to define the logarithm base *b*, written $\log_b : (0, \infty) \to \mathbb{R}$, by $\log_b(y) := x$.

(b) Show that $\log_b(x) = \frac{\ln(x)}{\ln(b)}$.

Solution. Let $y := \log_b(x)$. Then by part (a) we can write $x = b^y$. Now substitute $u := t^{\frac{1}{y}}$, which gives $\frac{y}{u} du = \frac{1}{t} dt$, and so we have

ln

$$(x) = \ln(b^{y})$$
$$= \int_{1}^{b^{y}} \frac{1}{t} dt$$
$$= \int_{1}^{b} \frac{y}{u} du$$
$$= y \int_{1}^{b} \frac{1}{u} du$$
$$= y \ln(b).$$

So we conclude $y = \frac{\ln(x)}{\ln(b)}$, or $\log_b(x) = \frac{\ln(x)}{\ln(b)}$, as desired.

(c) Prove that if $c > 0, c \neq 1$, then $\log_b(x) = \frac{\log_c(x)}{\log_c(b)}$.

Solution. Write $y := \log_b(x)$. Then by part (a), we can write $x = b^y$. By part (b) and our proof of part (b), we obtain

$$\log_{c}(x) = \log_{c}(b^{y})$$
$$= \frac{\ln(b^{y})}{\ln(c)}$$
$$= \frac{y \ln(b)}{\ln(c)}$$
$$= y \frac{\ln(b)}{\ln(c)}$$
$$= y \log_{c}(b)$$

So we conclude $y = \frac{\log_c(x)}{\log_c(b)}$, or $\log_b(x) = \frac{\log_c(x)}{\log_c(b)}$, as desired.

(d) Prove $\log_b(xy) = \log_b(x) + \log_b(y)$, and $\log_b(x^y) = y \log_b(x)$

Solution. The professor has already proved $\ln(xy) = \ln(x) + \ln(y)$ in her lecture notes. Using this and part (b), we obtain

$$\log_b(xy) = \frac{\ln(xy)}{\ln(b)}$$
$$= \frac{\ln(x) + \ln(y)}{\ln(b)}$$
$$= \frac{\ln(x)}{\ln(b)} + \frac{\ln(y)}{\ln(b)}$$
$$= \log_b(x) + \log_b(y).$$

Next, we have already proved $\ln(x^y) = y \ln(x)$ in our proof of part (b). Using this and part (b), we obtain

$$\log_b(x^y) = \frac{\ln(x^y)}{\ln(b)}$$
$$= \frac{y \ln(x)}{\ln(b)}$$
$$= y \frac{\ln(x)}{\ln(b)}$$
$$= y \log_b(x),$$

as desired.

4. (Exercise 5.4.9): Using the logarithm find

 $\lim_{n\to\infty}n^{\frac{1}{n}}$

Note: If you want to use L'Hopital's rule, you need to prove the result first. Alternatively, you can use directly the mean value theorem.

Solution. I will prove this using the Mean Value Theorem. Since ln(x) is a continuous function for all x > 0, the Mean Value Theorem asserts that, for all integers $n \ge 2$, there exists $k_n \in [1, n]$ that satisfies

$$\left. \frac{d}{dx} \ln(x) \right|_{x=k_n} = \frac{\ln(n) - \ln(1)}{n-1},$$

or equivalently

$$k_n = \frac{n-1}{\ln(n)}.$$

Next, we want to show $\ln(n) < \sqrt{n}$ for all integers $n \ge 2$. One way (that I am choosing) to prove our claim is to define $f: (0, \infty) \to \mathbb{R}$ by $f(x) := \sqrt{x} - \ln(x)$. Then we have

$$f'(x) = \frac{d}{dx} \left(\sqrt{x} - \ln(x) \right)$$
$$= \frac{1}{2\sqrt{x}} - \frac{1}{x}$$
$$= \frac{x - 2}{\sqrt{x}}$$
$$> 0$$

for all $x \ge 2$, which means that f is increasing for all $x \ge 2$. We also have $f(2) = \sqrt{2} - \ln(2) > 0$. So we conclude f(x) > 0, or equivalently $\ln(x) < \sqrt{x}$, for all $x \ge 2$. In particular, for all integers $n \ge 2$, we have $\ln(n) < \sqrt{n}$. Therefore, we have

$$k_n = \frac{n-1}{\ln(n)}$$

> $\frac{n-1}{\sqrt{n}}$
= $\sqrt{n} - \frac{1}{\sqrt{n}}$,

which implies $\lim_{n \to \infty} k_n = \infty$, and in turn $\lim_{n \to \infty} \frac{1}{k_n} = 0$. So we have

$$\ln(n^{\frac{1}{n}}) = \frac{\ln(n)}{n}$$
$$= \frac{n-1}{n} \frac{\ln(n)}{n-1}$$
$$= \left(1 - \frac{1}{n}\right) \frac{1}{k_{I}}$$

Since ln(x) is continuous for all x > 0, we have

$$\lim_{n \to \infty} \ln(n^{\frac{1}{n}}) = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) \lim_{n \to \infty} \frac{1}{k_n}$$
$$= 1 \cdot 0$$
$$= 0.$$

Since e^x is continuous for all $x \in \mathbb{R}$, we have

$$\lim_{n \to \infty} n^{\frac{1}{n}} = \lim_{n \to \infty} e^{\ln(n^{\frac{1}{n}})}$$
$$= e^{\lim_{n \to \infty} \ln(n^{\frac{1}{n}})}$$
$$= e^{0}$$
$$= 1,$$

as desired.

5. (Exercise 5.4.4): Use the geometric sum formula to show (for $t \neq -1$)

$$1 - t + t^{2} - \dots + (-1)^{n} t^{n} = \frac{1}{1 + t} - \frac{(-1)^{n+1} t^{n+1}}{1 + t}$$

Using this fact show

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

for all $x \in (-1, 1]$ (note that x = 1 is included). Finally, find the limit of the alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Solution. Suppose |t| < 1. We have

$$1 - t + t^{2} - \dots + (-1)^{n} t^{n} = 1 + (-t) + (-t)^{2} - \dots + (-t)^{n}$$
$$= \frac{1 - (-t)^{n+1}}{1 - (-t)}$$
$$= \frac{1 - (-1)^{n+1} t^{n+1}}{1 + t}$$
$$= \frac{1}{1 + t} - \frac{(-1)^{n+1} t^{n+1}}{1 + t}.$$

Next, we claim the sequence of terms $\{\frac{(-1)^{n+1}t^{n+1}}{1+t}\}$ of the summation converges uniformly to 0 for all |t| < 1, which will allow us to interchange the summation and integral signs in our final calculations. To this end, let $\epsilon > 0$ be given, and, if we assume $t \in (-1, 0) \cup (0, 1)$, choose $N > \log_{|t|}(\epsilon) - 1$. If $n \ge N$, then we have

$$\begin{aligned} \left| \frac{(-1)^{n+1} t^{n+1}}{1+t} - 0 \right| &= \frac{|t|^{n+1}}{1+t} \\ &\leq \frac{|t|^{n+1}}{1} \\ &= |t|^{n+1} \\ &\leq |t|^{N+1} \\ &< \epsilon. \end{aligned}$$

Otherwise, if t = 0, then the argument becomes trivial; we have

$$\left| \frac{(-1)^{n+1}(0)^{n+1}}{1+0} - 0 \right| = |0-0|$$
$$= 0$$
$$< \epsilon.$$

So we conclude that $\left\{\frac{(-1)^{n+1}t^{n+1}}{1+t}\right\}$ of the summation converges uniformly to 0 for all |t| < 1, as we claimed. Now, we have

$$\sum_{k=0}^{\infty} (-1)^k t^k = \lim_{n \to \infty} (1 - t + t^2 - \dots + (-1)^n t^n)$$
$$= \lim_{n \to \infty} \left(\frac{1}{1 + t} - \frac{(-1)^{n+1} t^{n+1}}{1 + t} \right)$$
$$= \frac{1}{1 + t}.$$

Therefore, we obtain

$$\ln(1+x) = \ln(1+x) - \ln(1+0)$$

= $\ln(1+t)|_0^x$
= $\int_0^x \frac{1}{1+t} dt$
= $\int_0^x \sum_{k=0}^\infty (-1)^k t^k dt$
= $\sum_{k=0}^\infty (-1)^k \int_0^x t^k dt$
= $\sum_{k=0}^\infty \frac{(-1)^k t^{k+1}}{k+1} \Big|_0^x$
= $\sum_{k=0}^\infty \frac{(-1)^k x^{k+1}}{k+1}$
= $\sum_{n=1}^\infty \frac{(-1)^{n+1} x^n}{n}$

for all -1 < x < 1. Since all the hypotheses of Abel's Theorem are true, Abel's Theorem asserts here that the above series also converges at x = 1. So we can substitute x = 1 to conclude

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln(2),$$

as desired.

6. (Exercise 5.4.8): Show that e^x is convex, in other words, show that if $a \le x \le b$, then

$$e^{x} \le e^{a} \frac{b-x}{b-a} + e^{b} \frac{x-a}{b-a}.$$

Solution. Define $f : [a, b] \to \mathbb{R}$ by

$$f(x) := e^a \frac{b-x}{b-a} + e^b \frac{x-a}{b-a} - e^x.$$

The first derivative is

$$f'(x) = e^a \frac{d}{dx} \frac{b-x}{b-a} + e^b \frac{d}{dx} \frac{x-a}{b-a} - \frac{d}{dx} e^x$$
$$= e^a \frac{-1}{b-a} + e^b \frac{1}{b-a} - e^x$$
$$= \frac{e^b - e^a}{b-a} - e^x.$$

Setting $f'(x_0) = 0$ yields the positive critical point

$$x_0 = \ln\left(\frac{e^b - e^a}{b - a}\right)$$

Moreover, the second derivative is

$$f''(x) = \frac{d}{dx} \left(\frac{e^b - e^a}{b - a} - e^x \right)$$
$$= -e^x$$
$$< 0,$$

which implies that the critical point x_0 is a maximum. Finally, since we also have f(a) = 0 and f(b) = 0, we conclude $f(x) \ge 0$ for all $a \le x \le b$, which is equivalent to

$$e^{x} \le e^{a} \frac{b-x}{b-a} + e^{b} \frac{x-a}{b-a}$$

for all $a \le x \le b$, as desired.

Alternate solution. Define $f : [a, b] \to \mathbb{R}$ by

$$f(x):=e^a\frac{b-x}{b-a}+e^b\frac{x-a}{b-a}-e^x.$$

which is continuous (because it is the addition and scalar multiplication of the continuous functions $b - x, x - a, e^x$) and satisfies f(a) = f(b) = 0. We want to show $f(x) \ge 0$ for all $a \le x \le b$. By Rolle's Theorem (the special case of the Mean Value Theorem for zero slope), there exists $c \in [a, b]$ that satisfies f'(c) = 0. Additionally, we have the first derivative

$$f'(x) = e^{a} \frac{d}{dx} \frac{b-x}{b-a} + e^{b} \frac{d}{dx} \frac{x-a}{b-a} - \frac{d}{dx} e^{x}$$
$$= e^{a} \frac{-1}{b-a} + e^{b} \frac{1}{b-a} - e^{x}$$
$$= \frac{e^{b} - e^{a}}{b-a} - e^{x}.$$

First, suppose $a \le x \le c$. Since e^x is an increasing function of x, it follows that $x \le c$ implies $e^x \le e^c$, and so we have

$$f'(x) = \frac{e^b - e^a}{b - a} - e^x$$
$$\geq \frac{e^b - e^a}{b - a} - e^c$$
$$= f'(c)$$
$$= 0$$

for all $a \le x \le c$. So we have f(a) = 0 and f is increasing on [a, c], which together imply $f(x) \ge 0$ for all $a \le x \le c$. Next, suppose $c \le x \le b$. Since e^x is an increasing function of x, it follows that $x \ge c$ implies $e^x \ge e^c$, and so we have

$$f'(x) = \frac{e^b - e^a}{b - a} - e^x$$
$$\leq \frac{e^b - e^a}{b - a} - e^c$$
$$= f'(c)$$
$$= 0$$

So we have f(b) = 0 and f is decreasing on [c, b], which together imply $f(x) \ge 0$ for all $c \le x \le b$. Therefore, we conclude $f(x) \ge 0$ for all $a \le x \le b$, which is equivalent to

$$e^{x} \le e^{a} \frac{b-x}{b-a} + e^{b} \frac{x-a}{b-a}$$

for all $a \le x \le b$, as desired.