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Homework 4 solutions

1. (Exercise 7.1.7): Let X be the set of continuous functions on [0, 1]. Let ¢: [0, 1] — (0, o) be continuous. Define
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Show that (X, d) is a metric space.

Proof. Let f, g, h € X be given. For nonnegativity, we have
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and that d(f, g) = 0if and only if f, g satisfy
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if and only if | f(x) — g(x)| = 0, if and only if f(x) = g(x) for all x € [0, 1], if and only if f = g. For symmetry, we have
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=d(g, f).

For triangle inequality, we have
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=d(f,g)+d(g, h).

Therefore, d is a metric, and so (X, d) is a metric space. O
2. (Exercise 7.1.12): Let C'([a, b],R) be the set of once continuously differentiable functions on [a, b]. Define
d(f.g) = —gllu+lf =& llus
where ||-]|,, is the uniform norm. Prove that d is a metric.

Proof. Let f,g,h € C'([a, b],R) be given. For nonnegativity, we have

d(f.e)=If—gllu+Ilf" =gl
>0+0

=0

and that d(f, g) = 0if and only if f, g satisfy
If = gllu+1f" =8 llus



if and only if ||/ — g|l. =0 and || f* — g’|l. = 0, if and only if f(x) = g(x) and f'(x) = g’(x) for all x € [0, 1], if and only if
f = g. For symmetry, we have

d(f.8) =IIf = gllu+Ilf" =gl
=lg = fllu+ 18" = f'llu
=d(g. f).
For triangle inequality, we have
d(f.h) =If = hllu +I1f" = 2|l
= =8+ @ =Ml +1(f =g)+ (" = h)lu
<(f = gllu+lig=hll) + ULf" =&l + 118" = A'llu)
= (f = gllu+11f" =& llu) + (llg = Allu + 8" = 2'llu)
=d(f,8) +d(g, h).

Therefore, d is a metric. O

3. (Exercise 7.2.9): Let X be a set and d;, d, be two metrics on X. Suppose there exists an @ > 0 and 8 > 0 such that
ady(x,y) < dp(x,y) < Bdy(x,y) forallx,y € X.
Show that U is open in (X, d;) if and only if U is open in (X, d»). That is, the topologies of (X, d;) and (X, d,) are the same.

Proof. First, suppose that U is open in (X, d;). Consider a point y € By (x, @d). Then we have
1
di(x,y) < ;dz(x,y)
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which implies y € By (x, ). So we have B, (x, ad) C By(x,8) C U, which means that U is open in (X, d).
Conversely, suppose that U is open in (X, d3). Consider a point y € B;(x, 36). Then we have

dr(x.y) < édl (x.)
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which implies y € B (x, d). So we have By (x, ad) C Ba(x,6) C U, which means that U is open in (X, d;). O
4. (Exercise 7.2.13): Let (X, d) be a metric space.
(a) For any x € X and 6 > 0, show m c C(x,9).

Proof. Suppose we have x € B(x, d). Then x is in the intersection of all closed sets containing B(x, §). In other words, x
is in every closed set containing B(x, §). For instance, C(x, §) is the closed ball containing B(x, §). Therefore, we have
x € C(x,6), and so we conclude B(x,d) c C(x,0). O

(b) Is it always true that B(x, §) = C(x, §)? Prove or find a counterexample.
Counterexample. Consider the discrete metric d defined by

1 ifx #y,

dx,y) = {o ifx=y

forall x,y € (X, d). If we select 6 := 1, then the discrete metric d implies B(x,1) = {y € X : d(x,y) < 1} = {x}. Since
singleton sets are closed, we have B(x, 1) = B(x, 1) = {x}. But the closed ball is

Cx,)={yeX:dx,y) <1}
=B(x,1)U{ye X :d(x,y) =1}
={x}U{y}.

If x, y are distinct, then we conclude
B(x, 1) = {x}
#{x}U{y}
=C(x,1),

as desired. O



5. (Exercise 7.2.18): For every x € R" and every 6 > 0 define the rectangle

R(x,0) :=(x; =6, x1+6) X (x0 =8, x4+ 06) X+ X (xp — 6,%x, +0).

Show that these sets generate the same open sets as the balls in standard metric. That is, show that a set U c R” is open in the
sense of the standard metric if and only if for every point x € U, there exists a ¢ > 0 such that R(x, ) c U.

Proof. Suppose U C R" is open in the sense of the standard metric. Then for any x = (x, X2, ...,x,) € U, there exists § > 0
that satisfies B(x,n8) c U. For any y € R(x, ), we have |y; —x;| < é foralli =1,2,...,n, which implies

”y_x” = ||(yl’)’2,--~’)’n) - (.X'],)CZ,...,XH)”
=[|(v1 = x1,y2 = X2, .-, yu = Xn) |l

= V1 —x1)2+ (2 = x2)2 + -+ (yn — Xp)?

VO =x1)2+ V(y2 = x2)2 + -+ V(yn —xa)2

[yr —x1] +|y2 = xaf + -+ + [yn — xn]
<0+d0+---+06
=no,

IA

which signifies that the rectangle R(x, ¢) is contained in B(x, nd).

Conversely, suppose that, for every point x € U, there exists a > 0 such that R(x, ) c U. Consider the open ball B(x, %).
Then for any y € B(x, §), we have

lyi —xi| < |ly —x||
=6,

which means y € R(x, ), and so B(x, %) is contained in the rectangle R(x,d). So we have the set inclusions B(x, %) c
R(x,6) c U, which signifies that U ¢ R”" is open in the sense of the standard metric. O

6. (Exercise 7.3.5): Suppose {x,}; , converges to x. Suppose f : N — N is a one-to-one function. Show that {xs )},
converges to x.
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Proof (by Estela Gavosto). Let € > 0 be given. Since {x, },-_, converges to x, there exists N € N that satisfies |x, —x| < € for
all integers n > N. Moreover, since f is a one-to-one function, we have f(n) > N for all n > M, where

M = max{ £~ ({1}), F7' (2D, F7 (3., fHUND) 1}

So we conclude |x ¢ (,) — x| < € for all integers n > M, which means {x ()}, converges to x. O

7. (Exercise 7.3.7): A set S C X is said to be dense in X if X C S or in other words if for every x € X, there exists a sequence
{x,} in S that converges to x. Prove that R" contains a countable dense subset.

Proof. Consider for instance the set Q" := {(x1,x2,...,x,) € R" : x; € Q,i = 1,2,...,n}. Then we have Q" c R", and we
want to show that Q" is countable and dense. First, we will now that ~ is dense. By Theorem 1.2.4(ii) of the Lebl textbook,
Q is dense in R, which means that, given any i = 1, ..., n, there exists a sequence {(xi)k}z":] in Q that converges to x;. By

definition, for any € > 0, there exists N € N such that, if £ > N, then |(x;)x — x;| < ﬁ This implies

e, x2, X)) = (e x2, - X)L = 100Dk (02)ks -+ (B)k) = (X1, %2, -0 X))l
= | ((c)k = x1, (02)k =22, ..., (X)k —xn) ||
SOk —x1| + 1)k = x2] + -+ + [ () k — Xal

€ € €
<-4 -t -
n n

n

=e€.
Therefore, {(x1,x2, ... ,xn)k}z’:] converges to (x1,x2,...,X,), and so Q" is dense in R”. Next, we will show that Q" is also
countable. I will prove this by induction. By Example 0.3.32 of the Lebl textbook, Q is countable. Now assume that QF is
countable. We will prove that Q¥*! is countable. We can write Q**! = Q¥ x Q = {((x1,x2,...,xx),y) € RE xR : xj €
Rk, y€eR,j=1,...,k}. Since we know that Q is countable and we assumed that QF is countable, the set Q¥*! = Q¥ x Q is

in one-to-one correspondence with N x N, which is countable by Example 0.3.31 of the Lebl textbook. So we conclude that
Q"1 is countable, completing our proof by induction. O



