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1. (Exercise 7.1.7): Let - be the set of continuous functions on [0, 1]. Let i : [0, 1] → (0,∞) be continuous. Define

3 ( 5 , 6) :=
∫ 1

0
| 5 (G) − 6(G) |i(G) 3G.

Show that (-, 3) is a metric space.

Proof. Let 5 , 6, ℎ ∈ - be given. For nonnegativity, we have

3 ( 5 , 6) =
∫ 1

0
| 5 (G) − 6(G) |i(G) 3G

≥
∫ 1

0
0i(G) 3G

= 0

and that 3 ( 5 , 6) = 0 if and only if 5 , 6 satisfy ∫ 1

0
| 5 (G) − 6(G) |i(G) 3G = 0,

if and only if | 5 (G) − 6(G) | = 0, if and only if 5 (G) = 6(G) for all G ∈ [0, 1], if and only if 5 = 6. For symmetry, we have

3 ( 5 , 6) =
∫ 1

0
| 5 (G) − 6(G) |i(G) 3G

=

∫ 1

0
|6(G) − 5 (G) |i(G) 3G

= 3 (6, 5 ).

For triangle inequality, we have

3 ( 5 , ℎ) =
∫ 1

0
| 5 (G) − ℎ(G) |i(G) 3G

=

∫ 1

0
| 5 (G) − 6(G) + 6(G) − ℎ(G) |i(G) 3G

≤
∫ 1

0
( | 5 (G) − 6(G) | + |6(G) − ℎ(G) |)i(G) 3G

=

∫ 1

0
| 5 (G) − 6(G) |i(G) + |6(G) − ℎ(G) |i(G) 3G

=

∫ 1

0
| 5 (G) − 6(G) |i(G) 3G +

∫ 1

0
|6(G) − ℎ(G) |i(G) 3G

= 3 ( 5 , 6) + 3 (6, ℎ).

Therefore, 3 is a metric, and so (-, 3) is a metric space. �

2. (Exercise 7.1.12): Let �1 ( [0, 1],R) be the set of once continuously differentiable functions on [0, 1]. Define

3 ( 5 , 6) := ‖ 5 − 6‖D + ‖ 5 ′ − 6′‖D ,

where ‖·‖D is the uniform norm. Prove that 3 is a metric.

Proof. Let 5 , 6, ℎ ∈ �1 ( [0, 1],R) be given. For nonnegativity, we have

3 ( 5 , 6) = ‖ 5 − 6‖D + ‖ 5 ′ − 6′‖D
≥ 0 + 0
= 0

and that 3 ( 5 , 6) = 0 if and only if 5 , 6 satisfy
‖ 5 − 6‖D + ‖ 5 ′ − 6′‖D ,



if and only if ‖ 5 − 6‖D = 0 and ‖ 5 ′ − 6′‖D = 0, if and only if 5 (G) = 6(G) and 5 ′(G) = 6′(G) for all G ∈ [0, 1], if and only if
5 = 6. For symmetry, we have

3 ( 5 , 6) = ‖ 5 − 6‖D + ‖ 5 ′ − 6′‖D
= ‖6 − 5 ‖D + ‖6′ − 5 ′‖D
= 3 (6, 5 ).

For triangle inequality, we have

3 ( 5 , ℎ) = ‖ 5 − ℎ‖D + ‖ 5 ′ − ℎ′‖D
= ‖( 5 − 6) + (6 − ℎ)‖D + ‖( 5 ′ − 6′) + (6′ − ℎ′)‖D
≤ (‖ 5 − 6‖D + ‖6 − ℎ‖D) + (‖ 5 ′ − 6′‖D + ‖6′ − ℎ′‖D)
= (‖ 5 − 6‖D + ‖ 5 ′ − 6′‖D) + (‖6 − ℎ‖D + ‖6′ − ℎ′‖D)
= 3 ( 5 , 6) + 3 (6, ℎ).

Therefore, 3 is a metric. �

3. (Exercise 7.2.9): Let - be a set and 31, 32 be two metrics on - . Suppose there exists an U > 0 and V > 0 such that

U31 (G, H) ≤ 32 (G, H) ≤ V31 (G, H) for all G, H ∈ -.

Show that* is open in (-, 31) if and only if* is open in (-, 32). That is, the topologies of (-, 31) and (-, 32) are the same.

Proof. First, suppose that* is open in (-, 31). Consider a point H ∈ �2 (G, UX). Then we have

31 (G, H) ≤
1
U
32 (G, H)

≤ 1
U
(UX)

= X,

which implies H ∈ �1 (G, X). So we have �2 (G, UX) ⊆ �1 (G, X) ⊂ *, which means that* is open in (-, 32).
Conversely, suppose that* is open in (-, 32). Consider a point H ∈ �1 (G, VX). Then we have

32 (G, H) ≤
1
V
31 (G, H)

≤ 1
V
(VX)

= X,

which implies H ∈ �2 (G, X). So we have �1 (G, UX) ⊆ �2 (G, X) ⊂ *, which means that* is open in (-, 31). �

4. (Exercise 7.2.13): Let (-, 3) be a metric space.

(a) For any G ∈ - and X > 0, show �(G, X) ⊂ � (G, X).

Proof. Suppose we have G ∈ �(G, X). Then G is in the intersection of all closed sets containing �(G, X). In other words, G
is in every closed set containing �(G, X). For instance, � (G, X) is the closed ball containing �(G, X). Therefore, we have
G ∈ � (G, X), and so we conclude �(G, X) ⊂ � (G, X). �

(b) Is it always true that �(G, X) = � (G, X)? Prove or find a counterexample.

Counterexample. Consider the discrete metric 3 defined by

3 (G, H) :=

{
1 if G ≠ H,
0 if G = H

for all G, H ∈ (-, 3). If we select X := 1, then the discrete metric 3 implies �(G, 1) = {H ∈ - : 3 (G, H) < 1} = {G}. Since
singleton sets are closed, we have �(G, 1) = �(G, 1) = {G}. But the closed ball is

� (G, 1) = {H ∈ - : 3 (G, H) ≤ 1}
= �(G, 1) ∪ {H ∈ - : 3 (G, H) = 1}
= {G} ∪ {H}.

If G, H are distinct, then we conclude

�(G, 1) = {G}
≠ {G} ∪ {H}
= � (G, 1),

as desired. �



5. (Exercise 7.2.18): For every G ∈ R= and every X > 0 define the rectangle

'(G, X) := (G1 − X, G1 + X) × (G2 − X, G2 + X) × · · · × (G= − X, G= + X).

Show that these sets generate the same open sets as the balls in standard metric. That is, show that a set* ⊂ R= is open in the
sense of the standard metric if and only if for every point G ∈ *, there exists a X > 0 such that '(G, X) ⊂ *.

Proof. Suppose * ⊂ R= is open in the sense of the standard metric. Then for any G = (G1, G2, . . . , G=) ∈ *, there exists X > 0
that satisfies �(G, =X) ⊂ *. For any H ∈ '(G, X), we have |H8 − G8 | < X for all 8 = 1, 2, . . . , =, which implies

‖H − G‖ = ‖(H1, H2, . . . , H=) − (G1, G2, . . . , G=)‖
= ‖(H1 − G1, H2 − G2, . . . , H= − G=)‖

=
√
(H1 − G1)2 + (H2 − G2)2 + · · · + (H= − G=)2

≤
√
(H1 − G1)2 +

√
(H2 − G2)2 + · · · +

√
(H= − G=)2

= |H1 − G1 | + |H2 − G2 | + · · · + |H= − G= |
< X + X + · · · + X
= =X,

which signifies that the rectangle '(G, X) is contained in �(G, =X).
Conversely, suppose that, for every point G ∈ *, there exists a X > 0 such that '(G, X) ⊂ *. Consider the open ball �(G, X

=
).

Then for any H ∈ �(G, X), we have

|H8 − G8 | ≤ ‖H − G‖
= X,

which means H ∈ '(G, X), and so �(G, X
=
) is contained in the rectangle '(G, X). So we have the set inclusions �(G, X

=
) ⊂

'(G, X) ⊂ *, which signifies that* ⊂ R= is open in the sense of the standard metric. �

6. (Exercise 7.3.5): Suppose {G=}∞==1 converges to G. Suppose 5 : N → N is a one-to-one function. Show that {G 5 (=) }∞==1
converges to G.

Proof (by Estela Gavosto). Let n > 0 be given. Since {G=}∞==1 converges to G, there exists # ∈ N that satisfies |G= − G | < n for
all integers = ≥ # . Moreover, since 5 is a one-to-one function, we have 5 (=) ≥ # for all = ≥ " , where

" := max{ 5 −1 ({1}), 5 −1 ({2}), 5 −1 ({3}), . . . , 5 −1 ({#}), 1}

So we conclude |G 5 (=) − G | < n for all integers = ≥ " , which means {G 5 (=) }∞==1 converges to G. �

7. (Exercise 7.3.7): A set ( ⊂ - is said to be dense in - if - ⊂ ( or in other words if for every G ∈ - , there exists a sequence
{G=} in ( that converges to G. Prove that R= contains a countable dense subset.

Proof. Consider for instance the set Q= := {(G1, G2, . . . , G=) ∈ R= : G8 ∈ Q, 8 = 1, 2, . . . , =}. Then we have Q= ⊂ R=, and we
want to show that Q= is countable and dense. First, we will now that n is dense. By Theorem 1.2.4(ii) of the Lebl textbook,
Q is dense in R, which means that, given any 8 = 1, . . . , =, there exists a sequence {(G8): }∞:=1 in Q that converges to G8 . By
definition, for any n > 0, there exists # ∈ N such that, if : ≥ # , then | (G8): − G8 | < n

=
. This implies

‖(G1, G2, . . . , G=): − (G1, G2, . . . , G=)‖ = ‖((G1): , (G2): , . . . , (G=): ) − (G1, G2, . . . , G=)‖
= ‖((G1): − G1, (G2): − G2, . . . , (G=): − G=)‖
≤ |(G1): − G1 | + |(G2): − G2 | + · · · + |(G=): − G= |

<
n

=
+ n
=
+ · · · + n

=

= n .

Therefore, {(G1, G2, . . . , G=): }∞:=1 converges to (G1, G2, . . . , G=), and so Q= is dense in R=. Next, we will show that Q= is also
countable. I will prove this by induction. By Example 0.3.32 of the Lebl textbook, Q is countable. Now assume that Q: is
countable. We will prove that Q:+1 is countable. We can write Q:+1 = Q: × Q = {((G1, G2, . . . , G: ), H) ∈ R: × R : G 9 ∈
R: , H ∈ R, 9 = 1, . . . , :}. Since we know that Q is countable and we assumed that Q: is countable, the set Q:+1 = Q: × Q is
in one-to-one correspondence with N × N, which is countable by Example 0.3.31 of the Lebl textbook. So we conclude that
Q:+1 is countable, completing our proof by induction. �


