

MATH 151B - Advanced Calculus

Homework 4

Due date: Tuesday, March 2 at 11:59pm

Instructions:

- * You are encourage to work in group but you have to write your individual solution
- * You can use any book, article or web-based mathematical material or computational software
- * You can ask Chulan, Ryan, or Estela questions
- * Chegg, Math Stack Exchange, or any other source where you can copy solutions is not allowed
- * The homework needs to be typeset in "LaTeX" .

1. (Exercise 8.4.1): Define $f: \mathbb{R}^2 \to \mathbb{R}$ as:

$$f(x,y) := \begin{cases} (x^2 + y^2) \sin((x^2 + y^2)^{-1}) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{else.} \end{cases}$$

Show that f is differentiable at the origin, but that it is not continuously differentiable. Note: Feel free to use what you know about sine and cosine from calculus.

- 2. (Exercise 8.4.3): Let $B(0,1) \subset \mathbb{R}^2$ be the unit ball (disc), that is, the set given by $x^2 + y^2 < 1$. Suppose $f: B(0,1) \to \mathbb{R}$ is a differentiable function such that $|f(0,0)| \leq 1$, and $\left|\frac{\partial f}{\partial x}\right| \leq 1$ and $\left|\frac{\partial f}{\partial y}\right| \leq 1$ for all points in B(0,1).
 - a) Find an $M \in \mathbb{R}$ such that $||f'(x,y)|| \le M$ for all $(x,y) \in B(0,1)$.
 - b) Find a $B \in \mathbb{R}$ such that $|f(x,y)| \le B$ for all $(x,y) \in B(0,1)$

3. (Exercise 8.4.8): Suppose $f : \mathbb{R}^n \to \mathbb{R}$ and $h : \mathbb{R}^n \to \mathbb{R}$ are two differentiable functions such that f'(x) = h'(x) for all $x \in \mathbb{R}^n$. Prove that if f(0) = h(0), then f(x) = h(x) for all $x \in \mathbb{R}^n$.

- 4. (Exercise 8.5.3): Define $f : \mathbb{R}^2 \to \mathbb{R}^2 \setminus \{(0,0)\}$ by $f(x,y) := (e^x \cos(y), e^x \sin(y))$.
 - a) Show that f is onto.
 - b) Show that f' is invertible at all points.
 - c) Show that f is not one -to-one, in fact for every $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$, there exist infunitely many different points $(x,y) \in \mathbb{R}^2$ such that f(x,y) = (a,b)

Therefore, invertible derivative at every point does not mean that f is invertible globally.

Note: Feel free to use what you know about sine and cosine from calculus.

5. (Exercise 8.5.9): Let $H:=\left\{(x,y)\in\mathbb{R}^2:y>0\right\}$, and for $(x,y)\in H$ define

$$F(x,y) := \left(\frac{x^2 + y^2 - 1}{x^2 + 2y + y^2 + 1}, \frac{-2x}{x^2 + 2y + y^2 + 1}\right)$$

Prove that F is a bijective mapping from H to B(0,1), it is continuously differentiable on H, and its inverse is also continuously differentiable.

6. (Exercise 8.5.10): Suppose $U \subset \mathbb{R}^2$ is an open set and $f : U \to \mathbb{R}$ is a C^1 function such that $\nabla f(x,y) \neq 0$ for all $(x,y) \in U$. Show that every level set is aC^1 smooth curve. That is, for every $(x,y) \in U$, there exists aC^t function $\gamma : (-\delta, \delta) \to \mathbb{R}^2$ with $\gamma'(0) \neq 0$ such that $f(\gamma(t))$ is constant for all $t \in (-\delta, \delta)$.