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Homework 6 solutions

1. (Exercise 8.4.1): Define f : R> — R as:

(x2 +y?) sin( =) if (x,y) # (0,0)

x2+y?

f('x7y) ::{ 0 1f(x,y)=(070)

Show that f is differentiable at the origin, but that it is not continuously differentiable.

Note: Feel free to use what you know about sine and cosine from calculus.

Solution. According to Definition 8.3.1 of the Lebl textbook, f is differentiable at the origin (0, 0) if there exists A € L(R?, R)

such that
“f(hls hz) - f(O, 0) - A(hl’ h2)“ — O
(h1.h2)=(0.0) | (A1, h) |

If the derivative exists, it is in L(RZ, R), so it can be represented by a 1 X 2 matrix [a b] for some scalars a, b € R, which
means

X

A(x,y) = [a b] [ ]
y
=ax + by.

So we have

Iy, ) = £(0,0) = G, ) IO+ AD)sinGrig) —0 = (ahy + bho)
(1, Bl - (A1, ho)l
\/(h% +h2)? sin’ (1) + (ahy + bhy)?

2 2
hi+h3

Jh2+ 13

. 1 (ah1 + bh2)2
h? + h2) sin? + .
J(l 2) h? + 3 h? +

If we choose a = 0 and b = 0, so that the linear map becomes A(x, y) = 0, then our expression becomes

L (e ha) = 0.0 = Al I _ | g2y o (1), (O +0ho)2
b 2 +

(A1, ha)l - h? + h3
,/h2+h2 sin ;
e VY
[12 . 42
hi + hs,

hi, hy) — £(0,0) — A(hy, h ,
lim Il f(h1, ko) — £(0,0) — A(hy, ha)l| < lim /h%+h%
(h1,h2)=(0,0) [(A1, ho)l| (h1,h2)=(0,0)
= V02 +0?

=0,

IA

which implies

from which we conclude
Il (1, ha) = (0,0) = A(h1, o)l _

(h1.12)=(0,0) (A1, h2) |
and so f is differentiable at the origin. Now we will show that f is not continuously differentiable. We have

0»

of _ . f(,0) = £(0,0)

Ox (0,0) = hlllglo h
L (h? +0%) sin(hlziy) -0
B hllino /’ll

1
= lim h;sin|—
hllglo lsm(}ﬂ)

1
=0



and

of . f(0,h2) - £(0,0)
' =1
gy 00 = lim I
(0% + 13) sin(Gz12) = O
= lim 2
h2—>0 hz
. .1
= lim h; sin (—)
ha—0 h2
2
=0.

However, for all (x, y) # (0,0), we have the partial derivative

of 0 . 1
6—x(x,y) = P ((x2 +y2) sin (XZT)’Z))

9 2 2 1 2, 290 1
=a—x(x +y)SlIl(x2Ty2)+(x +y)a—xSlIl szyz

. 1 2 2 2x 1
= 2xsin (x—2+y2) + (x°+y°) (_(x2+y2)2 cos (x2 +y2))

2x o 1
_ S ,
2 +y2 X2+y2 X2 +y2

=2x sin(

whose limit as (x, y) — (0, 0) does not exist because the limit

X 1
lim cos
(x,)—(0,0) x2 + y? (x2 + y2)

does not exist. Indeed, if we choose sequences {(x,,y,)} and {(X,, y,)} given by x,, = y,, := /m and %, = J, =
A ,_71(21+n) , then we would have x,, — 0 and y,, — 0, but also

i e () i e )
im cos im cos

noe g tyn \Xatya) mORxptyn o \x+n

lim 47 (1 +n)cos2ra(1+n))
n—oo

lim v4n(l+n)-1

n—o0

lim v4n(1+n)

n—oo

=0

and

. Tn . n 1
i e () e ()
= lim 2r(2+n) cos(n(2+n))
= lim V27(2+n) - (-1)
=~ lim V2x(2+n)
.

This contradicts our earlier result % (0,0) = 0. So Proposition 8.4.6 implies here that f is not continuously differentiable. 0O

. (Exercise 8.4.3): Let B(0, 1) c R? be the unit ball (disc), that is, the set given by x*> + y> < 1. Suppose f : B(0,1) — Risa
differentiable function such that | f(0,0)| < 1, and |%I <1land |%| < 1 for all points in B(0, 1).
a) Find an M € R such that || f'(x, y)|| < M for all (x,y) € B(0, 1).

Solution. We have for all (x, y) € B(0, 1) the derivative

Fa =% %



which implies its norm

ox y
2 2
) <)
0x y
_ (91|94
ox ady
<1+1
=2
=M,
provided that we choose M := 2. O

b) Find a B € R such that | f(x, y)| < B forall (x,y) € B(0,1)

Solution. Since B(0, 1) is a convex open set and f : B(0, 1) — R is a differentiable function that satisfies || f(x, y)|| <
M, by Proposition 8.4.2 of the Lebl textbook, we have

|f (x. y) = £(0,0)] < M||(x,y) = (0,0)]|

for all (x,y) € B(0, 1). We also have, using the reverse triangle inequality and | f(0,0)| < 1,

1f (e y) = £(0,0)] 2 |/ (x, ) = (0, 0)]
2 [f(x,y)| -1

Therefore, we conclude

lf G I < [f(x,y) = £(0,0)[ +1
< MJ|(x,y) = (0,0)[| + 1

=2/, Il +1
=24x2+y2+1
<2V1+1
=3
=B,
provided that we choose B := 3. O
3. (Exercise 8.4.8): Suppose f : R” — Rand & : R" — R are two differentiable functions such that f’(x) = h’(x) for all x € R".
Prove that if f(0) = h(0), then f(x) = h(x) for all x € R".

Solution. Define g : R" — R by g(x) := f(x) — h(x) for all x € R". Then, by Proposition 8.3.6 of the Lebl textbook,
g = f — his differentiable, and we have the derivative g’(x) = f’(x) — h’(x). In fact, with the assumption f’(x) = h’(x) for
all x € R", we have
g'(x)=f"(x) = h'(x)
=h'(x) - h(x)
=0,
which implies by Corollary 8.4.4 of the Lebl textbook that g is a constant. But the assumption f(0) = g(0) implies
8(0) = f(0) - h(0)
= h(0) — h(0)
=0,

which forces the constant to be zero. In other words, we have g(x) = 0 for all x € R”, which is equivalent to the desired
conclusion f(x) — h(x) =0, or f(x) = h(x), for all x € R™. O

4. (Exercise 8.5.3): Define f : R> — R?\{(0,0)} by f(x,y) := (e* cos(y), e* sin(y)).

(a) Show that f is onto.



Solution. First, we have

1/ (e, 911 = V(e¥ cos(1))? + (e sin(y))>

= \/e2x(cos2(y) +sin*(y))

¥

=le
=e*
>0,

meaning that we have f(x,y) # (0,0) for all (x,y) € R? and that f is onto for R? \ {(0,0)}. O

(b) Show that f” is invertible at all points.

Solution. For all (x,y) € R?, we have

Fony) = [a%(ex cos(y) g (e" cos(y))l

%(e" sin(y)) g5 (e sin(y))

i

_|e*cos(y) —e*sin(y)
T lefsin(y)  e¥cos(y)

whose Jacobian is
Jpo(x,y) = det(f'(x,y))
= (e* cos(y))(e* cos(y)) — (¢* sin(y))(—e” sin(y))
= e?*(cos?(y) + sin?(y))
— er
# 0,
meaning that f” is invertible on R2. Let (a, b) € R?\ {(0,0)}. Then we have the system of equations
a = e* cos(y),
b = e*sin(y),

from which we can solve simultaneously to obtain

x =In(Va? + b?),

—1 a .- b
y = cos (—) — sin (—) ,
Va2 + b? Va2 + b?
meaning that f is onto. O

(c) Show that f is not one-to-one, in fact for every (a, b) € R*\{(0,0)}, there exist infinitely many different points (x, y) €

R? such that f(x,y) = (a, b).

Solution. Since we have

a
—F <1,
Va? + b?

b
— <1,
Va2 +b

2

-1<
-1<

there exist 01, 6, € [0, 2x) that satisfy
0 = cos™! (L)

Va? + b2

b
0, = sin”! (—) ,
Va? + b2

respectively. Furthermore, we can write
y =6, +2rk =02+27Tk

for any k € Z, which implies that there exist infinitely many different points (x, y) € R? such that f(x,y) = (a,b). O

Therefore, invertible derivative at every point does not mean that f is invertible globally.

Note: Feel free to use what you know about sine and cosine from calculus.



5. (Exercise 8.5.9): Let H := {(x,y) € R? : y > 0}, and for (x,y) € H define

x2+y? -1 2x

F(x,y) = ,—
(x.) X242y +y2+1 x2+2y+y2+1

Prove that F is a bijective mapping from H to B(0, 1), it is continuously differentiable on H, and its inverse is also continuously
differentiable.

Solution. First, we will show that F maps H to B(0, 1) because its norm satisfies. If we assume (x,y) € H, then we have

y > 0, and so we obtain
x2+y2 -1 2+ 2x 2
X2+2y+y2+1 X242y +y2+1

VG2 +y2 = 1)2 + (-2x)2
X242y +y2+1

Vet +2x2(y2 = 1) + (32 — 1)2 +4x2
X242y +y2+1

Vat +2x2y2 = 2x2 4 y4 —2y2 + 1 +4x2

xX2+2y+y2+1

\/164+2x2yz+y4+2x2 -2y2+1

X2+2y+y2+1

I1F e )l

Vx4 2x2y2 4y 422 +2y2 + 1
X2+2y+y2+1
V@) 422 +y2) + 1
B 2+2y+y2+1

_x2+2y+y2+1

o xP 4yt
X242y +y2+1
x2+yr+1
x2+y2+1

=1,

which implies that F maps into B(0, 1). Next, we need to show that F is onto. Let (a, b) € B(0, 1). Then we can write

_ xr+yr-1 _ X2 +y? -1
T2 H2y 49241 X2+ (y+ )Y
2x 2x

242y +y2+ 1 :_x2+(y+1)2'

Substitute u := y + 1, so that we can in fact write

_)c2+(u—1)2—1_)c2+142—2u_1 2u
x2 +u? x2 +u? x2 +u?’
2x

b=-——.
x2+u

Observe that we have

2 2
(1—a)2+b2=( 2u )+( 2 )

x2 +u? X2 ul
_ 4y? 452
(X2 +u?)? * (x% + u?)?
3 4(x* +u?)
B 4
P
4




or equivalently
4

2 2
) A —
RS e e

Also, from the second equation b = —ﬁ, we obtain

(1—a)2+b?
=———"b
2
~ 2b
 (1-a)2+bY

2u

Likewise, the first equation a = 1 — %5
X“+u

implies

y=u-1
_ l-a
T2(x2+u?)
(1 —a)(x® +u?)
= !
(I-a)(*+(y+1?)

= 1
2

l1-a 4 _1

2 (1-a)?+b?

2(1 —a)
(1-a)2+b2
_ 2(1-a) (1-a)®+0b?
T (1-a)2+bh2 (1-a)2+b?
(1-a)2-(1-a))+b?

(1-a)?+b?
_(1-a)(1+a)+b?
 (1-a)2+b?
B 1-a?+b?
Ui+

>0

since (a, b) € B(0, 1) (thatis, |[(a, b)|| < 1 which implies a < 1,b < 1) implies 1 —a” + b*> > 1 —a? > 0. In other words, we
found (x, y) € H as an explicit expression of (a, b) € B(0, 1); that is,

2b 1—a2+b2)

(3) = (_(l—a)2+b2’ (1-a)2 + b2

which implies that F is onto. Next, we need to show that F is one-to-one; we will establish: For all (xy, y1), (x2, y2) € H and
(a1, by), (az,b) € B(0, 1), if (x1,y1) # (x2,y2), then (ay, by) # (az, by). Suppose (x1,y1), (x2,y2) € H are distinct; that is,
we have (x1, y1) # (x2,y2). Then this is equivalent to

~ 2b, 1-a?+b? ~ 2b, 1-a3+b3
(1 —a1)2+b%’ (1—ay)?+b? (1 —a2)2+b%’ (1 - a2)? + b} ’

which is in turn equivalent to
(=2b1, 1 —aj +b}) # (=2b2, 1 — a5 + b3)

for any (ay, b1), (az, ba) € B(0, 1). Coordinate-wise, we have one of the following:
—2by # =2b,,
1—at+b#1-aj+b3.

If we assume —2b| # —2b;, then we obtain b; # b, and therefore (ai, by) # (az, by), and so we are done with this case. If
we assume 1 — a? + b7 # 1 — a3 + b3, then we have equivalently a§ — a3 # b7 — b3, which is in turn equivalent to

(ay +az)(a) — az) # (b1 +b2)(by — b2).

If we assume a; # a; and b| # b», then we already have (ay, b)) # (az, by). If we assume a; = ay, then a; — a; = 0, which
implies b| + by # 0 and b| — by # 0O; in particular, we have b; — b, # 0, which is equivalent to b; # b,, which implies



(a1, b1) = (az,b1) # (az,by). By similar reasoning, if we assume b; = by, then we have (ay,by) = (a1, b2) # (a2, by).
Finally, notice that the remaining case a; = a and b; = b, presents an immediate contradiction to (a; + az)(a; — az) #
(b1 +by)(by — by). Therefore, F is ont-to-one. Since F is both one-to-one and onto, we conclude that F is bijective. We also
have the derivative

RO e N S Y QU i el B
’ — | Ox\x2+2y+y2+1 0y * x2+2y+y2+1
F(x.y) = SCRy R S Ry (R — - S—
Ox N x2+2y+y2+1 Oy N xZ+2y+y?+1
4x(y+1) 2(y27x2+2y+1)
_ | (F2y+y2+1)2 (x2+2y+y2+1)?
- _2(y27x +2y+1) 4x(y+1) ’

(x24+2y+y2+1)2 (x242y+y2+1)2

which implies the Jacobian

Jri(x,y) = det(F'(x, y))
dx(y+1) dx(y+1) 2y =x2+2y+ D\ 202 = x2+2y + 1)
- 242y +y2+1)2 (22 42y 432+ 1)2 | (2242y+y2+1)2) (2 +2y+y2+1)?
16x2(y + 1)2 +4(y*> = x> +2y + 1)?
- (x2+2y+y2+1)*

If x # 0, then we have

16x2(y + D2 +4(y? —x2 +2y + 1)?
(x2+2y+y2+1)*
16x%(y + 1)?
T2+ 2y+y2+ 1)
16x?
>
(x2+2y+y2+1)*
> 0,

JF/(x’y) =

and if x = 0, then we have

16x2(y + )2 +4(y> = x> +2y + 1)?

(X2 +2y+y2+1)4
_16(0)2(y + D? +4(y* - (0)2 +2y + 1)?
- ((0)2+2y+y2+1)4
3 4(y2 +2y+ 1)2
ARSI
_ 4
SOy 1)
> 0.

JF'(x’y) =

In either case, we have Jg/(x,y) > 0 (namely, Jr/(x,y) # 0), which implies that F” is invertible, from which the Inverse
Function Theorem implies that F is injective on H. Since F is both locally one-to-one and onto, F' is bijective. Also,
since all the matrix entries of F’(x, y) are continuous, Proposition 8.4.6 of the Lebl textbook asserts that F is continuously
differentiable. Also by the Inverse Function Theorem, there exists locally a function g : B(0,1) — H defined by g(u,v) :=
F~'(u,v) for all (u,v) € B(0, 1) that is continuously differentiable. I am not sure about writing an argument about proving
the global inverse. O

. (Exercise 8.5.10): Suppose U c R? is an open set and f : U — R is a C! function such that V f(x, y) # 0 for all (x,y) € U.
Show that every level set is a C! smooth curve. That is, for every (x, y) € U, there exists a C' function y : (=8, §) — R? with
v’(0) # 0 such that f(y(z)) is constant for all r € (=6, 6).

Solution. Since we have V f # 0, it follows from the definition of the gradient V f = (%, %) that we have either ?T; #0or

g—’; # 0. Assume Z—J; # 0 without loss of generality. Now, fix a point (xg, yo) € U and define F : R> — R by

F(X,y) = f(x’y) - f(xo’ yO)

Then we have F(xg,yo) = f(x0,y0) — f(x0,y0) = 0 and g—f = % # 0; namely, F’(x,y) # 0. By the Implicit Function
Theorem, there exist open sets W, W’ c R such that xo € W, yo € W, Wx W c R*anda C'(W) mapy : W — W’
with y(xg) = yo, and for all (x,y) € W such that F(x,y(x)) = 0. Since W C R is an open set, there exists § > 0 such that
B(x0,6) € W. Now we can define y : (-6,5) — R? by

y(t) = (xo +1,y(x0 +1)).



(Notice that we have y(tr) € W x W’ for all =6 < t < §, which means F (xqg + ¢, y(xg + t)) = 0.) Then we have

v(0) = (x0 + 0, y(xp +0))
= (xo, y(x0))
= (X0, Y0)-

We also obtain its first derivative
, d
Y0 = 2o+ 1,300 +1)

d d
= E(xo +1), E()’(XO +1))
= (1sy,(-x0+t))’

from which we see in particular

Y'(0) = (1,y"(x0 +0))
= (1,¥(x0))
#(0,0)

because we have, of course, 1 # 0 in the first coordinate. Finally, for all t € (-6, §), we have

fly(0) = F(y (1)) + f(x0,y0)
= F(xo +1,y(xo +1)) + f(x0, yo)
=0+ f(x0,Y0)
= f(x0,Y0)
= f(x0+0,y(xo +0))
= f(y(0)),

which implies that f(7y(¢)) is constant for all ¢ € (=4, §).



