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Homework 6 solutions

1. (Exercise 8.4.1): Define 5 : R2 → R as:

5 (G, H) :=
{
(G2 + H2) sin( 1

G2+H2 ) if (G, H) ≠ (0, 0)
0 if (G, H) = (0, 0)

Show that 5 is differentiable at the origin, but that it is not continuously differentiable.

Note: Feel free to use what you know about sine and cosine from calculus.

Solution. According to Definition 8.3.1 of the Lebl textbook, 5 is differentiable at the origin (0, 0) if there exists � ∈ ! (R2,R)
such that

lim
(ℎ1 ,ℎ2)→(0,0)

‖ 5 (ℎ1, ℎ2) − 5 (0, 0) − �(ℎ1, ℎ2)‖
‖(ℎ1, ℎ2)‖

= 0.

If the derivative exists, it is in ! (R2,R), so it can be represented by a 1 × 2 matrix
[
0 1

]
for some scalars 0, 1 ∈ R, which

means

�(G, H) =
[
0 1

] [
G

H

]
= 0G + 1H.

So we have

‖ 5 (ℎ1, ℎ2) − 5 (0, 0) − �(ℎ1, ℎ2)‖
‖(ℎ1, ℎ2)‖

=
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1 + ℎ

2
2) sin( 1
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2
) − 0 − (0ℎ1 + 1ℎ2)‖

‖(ℎ1, ℎ2)‖

=

√
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2
2)2 sin2 ( 1
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2
2
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ℎ2
1 + ℎ
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2

=

√√√
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1 + ℎ
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)
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1 + ℎ

2
2

.

If we choose 0 = 0 and 1 = 0, so that the linear map becomes �(G, H) = 0, then our expression becomes

‖ 5 (ℎ1, ℎ2) − 5 (0, 0) − �(ℎ1, ℎ2)‖
‖(ℎ1, ℎ2)‖

=

√√√
(ℎ2

1 + ℎ
2
2) sin2

(
1

ℎ2
1 + ℎ

2
2

)
+ (0ℎ1 + 0ℎ2)2
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1 + ℎ

2
2

=

√
ℎ2

1 + ℎ
2
2

�����sin

(
1

ℎ2
1 + ℎ

2
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)�����
≤

√
ℎ2

1 + ℎ
2
2,

which implies

lim
(ℎ1 ,ℎ2)→(0,0)

‖ 5 (ℎ1, ℎ2) − 5 (0, 0) − �(ℎ1, ℎ2)‖
‖(ℎ1, ℎ2)‖

≤ lim
(ℎ1 ,ℎ2)→(0,0)

√
ℎ2

1 + ℎ
2
2

=
√

02 + 02

= 0,

from which we conclude
lim

(ℎ1 ,ℎ2)→(0,0)

‖ 5 (ℎ1, ℎ2) − 5 (0, 0) − �(ℎ1, ℎ2)‖
‖(ℎ1, ℎ2)‖

= 0,

and so 5 is differentiable at the origin. Now we will show that 5 is not continuously differentiable. We have

m 5

mG
(0, 0) = lim

ℎ1→0

5 (ℎ1, 0) − 5 (0, 0)
ℎ1

= lim
ℎ1→0

(ℎ2
1 + 02) sin( 1

ℎ2
1+02 ) − 0

ℎ1

= lim
ℎ1→0

ℎ1 sin

(
1
ℎ2

1

)
= 0



and

m 5

mH
(0, 0) = lim

ℎ2→0

5 (0, ℎ2) − 5 (0, 0)
ℎ2

= lim
ℎ2→0

(02 + ℎ2
2) sin( 1

02+ℎ2
2
) − 0

ℎ2

= lim
ℎ2→0

ℎ2 sin

(
1
ℎ2

2

)
= 0.

However, for all (G, H) ≠ (0, 0), we have the partial derivative

m 5

mG
(G, H) = m

mG

(
(G2 + H2) sin

(
1

G2 + H2

))
=
m

mG
(G2 + H2) sin

(
1

G2 + H2

)
+ (G2 + H2) m

mG
sin

(
1

G2 + H2

)
= 2G sin

(
1

G2 + H2

)
+ (G2 + H2)

(
− 2G
(G2 + H2)2

cos
(

1
G2 + H2

))
= 2G sin

(
1

G2 + H2

)
− 2G
G2 + H2 cos

(
1

G2 + H2

)
,

whose limit as (G, H) → (0, 0) does not exist because the limit

lim
(G,H)→(0,0)

2G
G2 + H2 cos

(
1

G2 + H2

)
does not exist. Indeed, if we choose sequences {(G=, H=)} and {(G̃=, H̃=)} given by G= = H= :=

√
1

4c (1+=) and G̃= = H̃= :=√
1

c (2+=) , then we would have G= → 0 and H= → 0, but also

lim
=→∞

2G=
G2
= + H2

=

cos
(

1
G2
= + H2

=

)
= lim
=→∞

2G=
G2
= + H2

=

cos
(

1
G2
= + H2

=

)
= lim
=→∞

√
4c(1 + =) cos(2c(1 + =))

= lim
=→∞

√
4c(1 + =) · 1

= lim
=→∞

√
4c(1 + =)

= ∞

and

lim
=→∞

2G̃=
G2
= + H2

=

cos
(

1
G2
= + H2

=

)
= lim
=→∞

2G=
G2
= + H2

=

cos
(

1
G2
= + H2

=

)
= lim
=→∞

√
2c(2 + =) cos(c(2 + =))

= lim
=→∞

√
2c(2 + =) · (−1)

= − lim
=→∞

√
2c(2 + =)

= −∞

This contradicts our earlier result m 5
mG
(0, 0) = 0. So Proposition 8.4.6 implies here that 5 is not continuously differentiable. �

2. (Exercise 8.4.3): Let �(0, 1) ⊂ R2 be the unit ball (disc), that is, the set given by G2 + H2 < 1. Suppose 5 : �(0, 1) → R is a
differentiable function such that | 5 (0, 0) | ≤ 1, and | m 5

mG
| ≤ 1 and | m 5

mH
| ≤ 1 for all points in �(0, 1).

a) Find an " ∈ R such that ‖ 5 ′(G, H)‖ ≤ " for all (G, H) ∈ �(0, 1).

Solution. We have for all (G, H) ∈ �(0, 1) the derivative

5 ′(G, H) =
[
m 5

mG

m 5

mH

]
,



which implies its norm

‖ 5 ′(G, H)‖ =

√(
m 5

mG

)2

+
(
m 5

mH

)2

≤

√(
m 5

mG

)2

+

√(
m 5

mH

)2

=

����m 5mG ���� + ����m 5mH ����
≤ 1 + 1
= 2
= ",

provided that we choose " := 2. �

b) Find a � ∈ R such that | 5 (G, H) | ≤ � for all (G, H) ∈ �(0, 1)

Solution. Since �(0, 1) is a convex open set and 5 : �(0, 1) → R is a differentiable function that satisfies ‖ 5 ′(G, H)‖ ≤
" , by Proposition 8.4.2 of the Lebl textbook, we have

| 5 (G, H) − 5 (0, 0) | ≤ " ‖(G, H) − (0, 0)‖

for all (G, H) ∈ �(0, 1). We also have, using the reverse triangle inequality and | 5 (0, 0) | ≤ 1,

| 5 (G, H) − 5 (0, 0) | ≥ | 5 (G, H) | − | 5 (0, 0) |
≥ | 5 (G, H) | − 1.

Therefore, we conclude

| 5 (G, H) | ≤ | 5 (G, H) − 5 (0, 0) | + 1
≤ " ‖(G, H) − (0, 0)‖ + 1
= 2‖(G, H)‖ + 1

= 2
√
G2 + H2 + 1

< 2
√

1 + 1
= 3
= �,

provided that we choose � := 3. �

3. (Exercise 8.4.8): Suppose 5 : R= → R and ℎ : R= → R are two differentiable functions such that 5 ′(G) = ℎ′(G) for all G ∈ R=.
Prove that if 5 (0) = ℎ(0), then 5 (G) = ℎ(G) for all G ∈ R=.

Solution. Define 6 : R= → R by 6(G) := 5 (G) − ℎ(G) for all G ∈ R=. Then, by Proposition 8.3.6 of the Lebl textbook,
6 = 5 − ℎ is differentiable, and we have the derivative 6′(G) = 5 ′(G) − ℎ′(G). In fact, with the assumption 5 ′(G) = ℎ′(G) for
all G ∈ R=, we have

6′(G) = 5 ′(G) − ℎ′(G)
= ℎ′(G) − ℎ′(G)
= 0,

which implies by Corollary 8.4.4 of the Lebl textbook that 6 is a constant. But the assumption 5 (0) = 6(0) implies

6(0) = 5 (0) − ℎ(0)
= ℎ(0) − ℎ(0)
= 0,

which forces the constant to be zero. In other words, we have 6(G) = 0 for all G ∈ R=, which is equivalent to the desired
conclusion 5 (G) − ℎ(G) = 0, or 5 (G) = ℎ(G), for all G ∈ R=. �

4. (Exercise 8.5.3): Define 5 : R2 → R2\{(0, 0)} by 5 (G, H) := (4G cos(H), 4G sin(H)).

(a) Show that 5 is onto.



Solution. First, we have

‖ 5 (G, H)‖ =
√
(4G cos(H))2 + (4G sin(H))2

=

√
42G (cos2 (H) + sin2 (H))

=
√
42G

= |4G |
= 4G

> 0,

meaning that we have 5 (G, H) ≠ (0, 0) for all (G, H) ∈ R2 and that 5 is onto for R2 \ {(0, 0)}. �

(b) Show that 5 ′ is invertible at all points.

Solution. For all (G, H) ∈ R2, we have

5 ′(G, H) =
[
m
mG
(4G cos(H)) m

mH
(4G cos(H))

m
mG
(4G sin(H)) m

mH
(4G sin(H))

]
=

[
4G cos(H) −4G sin(H)
4G sin(H) 4G cos(H)

]
,

whose Jacobian is

� 5 ′ (G, H) = det( 5 ′(G, H))
= (4G cos(H)) (4G cos(H)) − (4G sin(H)) (−4G sin(H))
= 42G (cos2 (H) + sin2 (H))
= 42G

≠ 0,

meaning that 5 ′ is invertible on R2. Let (0, 1) ∈ R2 \ {(0, 0)}. Then we have the system of equations

0 = 4G cos(H),
1 = 4G sin(H),

from which we can solve simultaneously to obtain

G = ln(
√
02 + 12),

H = cos−1
(

0
√
02 + 12

)
= sin−1

(
1

√
02 + 12

)
,

meaning that 5 is onto. �

(c) Show that 5 is not one-to-one, in fact for every (0, 1) ∈ R2\{(0, 0)}, there exist infinitely many different points (G, H) ∈
R2 such that 5 (G, H) = (0, 1).

Solution. Since we have

−1 ≤ 0
√
02 + 12

≤ 1,

−1 ≤ 1
√
02 + 12

≤ 1,

there exist \1, \2 ∈ [0, 2c) that satisfy

\1 = cos−1
(

0
√
02 + 12

)
,

\2 = sin−1
(

1
√
02 + 12

)
,

respectively. Furthermore, we can write
H = \1 + 2c: = \2 + 2c:

for any : ∈ Z, which implies that there exist infinitely many different points (G, H) ∈ R2 such that 5 (G, H) = (0, 1). �

Therefore, invertible derivative at every point does not mean that 5 is invertible globally.

Note: Feel free to use what you know about sine and cosine from calculus.



5. (Exercise 8.5.9): Let � := {(G, H) ∈ R2 : H > 0}, and for (G, H) ∈ � define

� (G, H) :=
(

G2 + H2 − 1
G2 + 2H + H2 + 1

,− 2G
G2 + 2H + H2 + 1

)
Prove that � is a bijective mapping from � to �(0, 1), it is continuously differentiable on �, and its inverse is also continuously
differentiable.

Solution. First, we will show that � maps � to �(0, 1) because its norm satisfies. If we assume (G, H) ∈ �, then we have
H > 0, and so we obtain

‖� (G, H)‖ =

√(
G2 + H2 − 1

G2 + 2H + H2 + 1

)2

+
(
− 2G
G2 + 2H + H2 + 1

)2

=

√
(G2 + H2 − 1)2 + (−2G)2
G2 + 2H + H2 + 1

=

√
G4 + 2G2 (H2 − 1) + (H2 − 1)2 + 4G2

G2 + 2H + H2 + 1

=

√
G4 + 2G2H2 − 2G2 + H4 − 2H2 + 1 + 4G2

G2 + 2H + H2 + 1

=

√
G4 + 2G2H2 + H4 + 2G2 − 2H2 + 1

G2 + 2H + H2 + 1

<

√
G4 + 2G2H2 + H4 + 2G2 + 2H2 + 1

G2 + 2H + H2 + 1

=

√
(G2 + H2)2 + 2(G2 + H2) + 1

G2 + 2H + H2 + 1

=

√
(G2 + H2 + 1)2

G2 + 2H + H2 + 1

=
G2 + H2 + 1

G2 + 2H + H2 + 1

<
G2 + H2 + 1
G2 + H2 + 1

= 1,

which implies that � maps into �(0, 1). Next, we need to show that � is onto. Let (0, 1) ∈ �(0, 1). Then we can write

0 =
G2 + H2 − 1

G2 + 2H + H2 + 1
=

G2 + H2 − 1
G2 + (H + 1)2

,

1 = − 2G
G2 + 2H + H2 + 1

= − 2G
G2 + (H + 1)2

.

Substitute D := H + 1, so that we can in fact write

0 =
G2 + (D − 1)2 − 1

G2 + D2 =
G2 + D2 − 2D
G2 + D2 = 1 − 2D

G2 + D2 ,

1 = − 2G
G2 + D2 .

Observe that we have

(1 − 0)2 + 12 =

(
2D

G2 + D2

)2

+
(
− 2G
G2 + D2

)2

=
4D2

(G2 + D2)2
+ 4G2

(G2 + D2)2

=
4(G2 + D2)
(G2 + D2)2

=
4

G2 + D2

=
4

G2 + (H + 1)2
,



or equivalently

G2 + (H + 1)2 =
4

(1 − 0)2 + 12 .

Also, from the second equation 1 = − 2G
G2+D2 , we obtain

G = −G
2 + D2

2
1

= −
4

(1−0)2+12

2
1

= − 21
(1 − 0)2 + 12 .

Likewise, the first equation 0 = 1 − 2D
G2+D2 implies

H = D − 1

=
1 − 0

2(G2 + D2)
− 1

=
(1 − 0) (G2 + D2)

2
− 1

=
(1 − 0) (G2 + (H + 1)2)

2
− 1

=
1 − 0

2
4

(1 − 0)2 + 12 − 1

=
2(1 − 0)
(1 − 0)2 + 12 − 1

=
2(1 − 0)
(1 − 0)2 + 12 −

(1 − 0)2 + 12

(1 − 0)2 + 12

=
(1 − 0) (2 − (1 − 0)) + 12

(1 − 0)2 + 12

=
(1 − 0) (1 + 0) + 12

(1 − 0)2 + 12

=
1 − 02 + 12

(1 − 0)2 + 12

> 0

since (0, 1) ∈ �(0, 1) (that is, ‖(0, 1)‖ < 1 which implies 0 < 1, 1 < 1) implies 1 − 02 + 12 ≥ 1 − 02 > 0. In other words, we
found (G, H) ∈ � as an explicit expression of (0, 1) ∈ �(0, 1); that is,

(G, H) =
(
− 21
(1 − 0)2 + 12 ,

1 − 02 + 12

(1 − 0)2 + 12

)
,

which implies that � is onto. Next, we need to show that � is one-to-one; we will establish: For all (G1, H1), (G2, H2) ∈ � and
(01, 11), (02, 12) ∈ �(0, 1), if (G1, H1) ≠ (G2, H2), then (01, 11) ≠ (02, 12). Suppose (G1, H1), (G2, H2) ∈ � are distinct; that is,
we have (G1, H1) ≠ (G2, H2). Then this is equivalent to(

− 211

(1 − 01)2 + 12
1

,
1 − 02

1 + 1
2
1

(1 − 01)2 + 12
1

)
≠

(
− 212

(1 − 02)2 + 12
2

,
1 − 02

2 + 1
2
2

(1 − 02)2 + 12
2

)
,

which is in turn equivalent to
(−211, 1 − 02

1 + 1
2
1) ≠ (−212, 1 − 02

2 + 1
2
2)

for any (01, 11), (02, 12) ∈ �(0, 1). Coordinate-wise, we have one of the following:

−211 ≠ −212,

1 − 02
1 + 1

2
1 ≠ 1 − 02

2 + 1
2
2.

If we assume −211 ≠ −212, then we obtain 11 ≠ 12 and therefore (01, 11) ≠ (02, 12), and so we are done with this case. If
we assume 1 − 02

1 + 1
2
1 ≠ 1 − 02

2 + 1
2
2, then we have equivalently 02

1 − 0
2
2 ≠ 12

1 − 1
2
2, which is in turn equivalent to

(01 + 02) (01 − 02) ≠ (11 + 12) (11 − 12).

If we assume 01 ≠ 02 and 11 ≠ 12, then we already have (01, 11) ≠ (02, 12). If we assume 01 = 02, then 01 − 02 = 0, which
implies 11 + 12 ≠ 0 and 11 − 12 ≠ 0; in particular, we have 11 − 12 ≠ 0, which is equivalent to 11 ≠ 12, which implies



(01, 11) = (02, 11) ≠ (02, 12). By similar reasoning, if we assume 11 = 12, then we have (01, 11) = (01, 12) ≠ (02, 12).
Finally, notice that the remaining case 01 = 02 and 11 = 12 presents an immediate contradiction to (01 + 02) (01 − 02) ≠
(11 + 12) (11 − 12). Therefore, � is ont-to-one. Since � is both one-to-one and onto, we conclude that � is bijective. We also
have the derivative

� ′(G, H) =
[
m
mG
( G2+H2−1
G2+2H+H2+1 )

m
mH
( G2+H2−1
G2+2H+H2+1 )

m
mG
(− 2G

G2+2H+H2+1 )
m
mH
(− 2G

G2+2H+H2+1 )

]
=


4G (H+1)

(G2+2H+H2+1)2
2(H2−G2+2H+1)
(G2+2H+H2+1)2

− 2(H2−G2+2H+1)
(G2+2H+H2+1)2

4G (H+1)
(G2+2H+H2+1)2

 ,
which implies the Jacobian

�� ′ (G, H) = det(� ′(G, H))

=
4G(H + 1)

(G2 + 2H + H2 + 1)2
4G(H + 1)

(G2 + 2H + H2 + 1)2
−

(
−2(H2 − G2 + 2H + 1)
(G2 + 2H + H2 + 1)2

)
2(H2 − G2 + 2H + 1)
(G2 + 2H + H2 + 1)2

=
16G2 (H + 1)2 + 4(H2 − G2 + 2H + 1)2

(G2 + 2H + H2 + 1)4
.

If G ≠ 0, then we have

�� ′ (G, H) =
16G2 (H + 1)2 + 4(H2 − G2 + 2H + 1)2

(G2 + 2H + H2 + 1)4

≥ 16G2 (H + 1)2
(G2 + 2H + H2 + 1)4

≥ 16G2

(G2 + 2H + H2 + 1)4
> 0,

and if G = 0, then we have

�� ′ (G, H) =
16G2 (H + 1)2 + 4(H2 − G2 + 2H + 1)2

(G2 + 2H + H2 + 1)4

=
16(0)2 (H + 1)2 + 4(H2 − (0)2 + 2H + 1)2

((0)2 + 2H + H2 + 1)4

=
4(H2 + 2H + 1)2
(H2 + 2H + 1)4

=
4

(H2 + 2H + 1)2
> 0.

In either case, we have �� ′ (G, H) > 0 (namely, �� ′ (G, H) ≠ 0), which implies that � ′ is invertible, from which the Inverse
Function Theorem implies that � is injective on �. Since � is both locally one-to-one and onto, � is bijective. Also,
since all the matrix entries of � ′(G, H) are continuous, Proposition 8.4.6 of the Lebl textbook asserts that � is continuously
differentiable. Also by the Inverse Function Theorem, there exists locally a function 6 : �(0, 1) → � defined by 6(D, E) :=
�−1 (D, E) for all (D, E) ∈ �(0, 1) that is continuously differentiable. I am not sure about writing an argument about proving
the global inverse. �

6. (Exercise 8.5.10): Suppose * ⊂ R2 is an open set and 5 : * → R is a �1 function such that ∇ 5 (G, H) ≠ 0 for all (G, H) ∈ *.
Show that every level set is a �1 smooth curve. That is, for every (G, H) ∈ *, there exists a �1 function W : (−X, X) → R2 with
W′(0) ≠ 0 such that 5 (W(C)) is constant for all C ∈ (−X, X).

Solution. Since we have ∇ 5 ≠ 0, it follows from the definition of the gradient ∇ 5 = ( m 5
mG
,
m 5

mH
) that we have either m 5

mG
≠ 0 or

m 5

mH
≠ 0. Assume m 5

mH
≠ 0 without loss of generality. Now, fix a point (G0, H0) ∈ * and define � : R2 → R by

� (G, H) := 5 (G, H) − 5 (G0, H0).

Then we have � (G0, H0) = 5 (G0, H0) − 5 (G0, H0) = 0 and m�
mG

=
m 5

mG
≠ 0; namely, � ′(G, H) ≠ 0. By the Implicit Function

Theorem, there exist open sets ,,, ′ ⊂ R such that G0 ∈ , , H0 ∈ , ′, , × , ′ ⊂ R2 and a �1 (,) map H : , → , ′

with H(G0) = H0, and for all (G, H) ∈ , such that � (G, H(G)) = 0. Since , ⊂ R is an open set, there exists X > 0 such that
�(G0, X) ⊂ , . Now we can define W : (−X, X) → R2 by

W(C) := (G0 + C, H(G0 + C)).



(Notice that we have W(C) ∈ , ×, ′ for all −X < C < X, which means � (G0 + C, H(G0 + C)) = 0.) Then we have

W(0) = (G0 + 0, H(G0 + 0))
= (G0, H(G0))
= (G0, H0).

We also obtain its first derivative

W′(C) = 3

3C
(G0 + C, H(G0 + C))

=

(
3

3C
(G0 + C),

3

3C
(H(G0 + C))

)
= (1, H′(G0 + C)),

from which we see in particular

W′(0) = (1, H′(G0 + 0))
= (1, H′(G0))
≠ (0, 0)

because we have, of course, 1 ≠ 0 in the first coordinate. Finally, for all C ∈ (−X, X), we have

5 (W(C)) = � (W(C)) + 5 (G0, H0)
= � (G0 + C, H(G0 + C)) + 5 (G0, H0)
= 0 + 5 (G0, H0)
= 5 (G0, H0)
= 5 (G0 + 0, H(G0 + 0))
= 5 (W(0)),

which implies that 5 (W(C)) is constant for all C ∈ (−X, X). �


