MATH 151C - Advanced Calculus HIGHER STAKES HOMEWORK 1

Due date: Wednesday, March 21 at 11:59pm

Instructions:

* Work individually in the problems. You can ask questions to Estela, Chulan, or Ryan
* You can use any book, article or web-based mathematical material or computational software
* Chegg, Math Stack Exchange, or any other source where you can copy solutions is not allowed
* The homework needs to be typeset in "LaTeX" and uploaded through Gradescope in the iLearn Lecture page
* If a problem is similar to a problem in Hw \#1 or Hw \#2, you need to adapt the proof for this problem, not just refer or reproduce all the solution of the problem in the homework.
- Problem 1: Let $f, g \in R[a, b]$. Define

$$
(f \vee g)(x)=\frac{(f+g)(x)+|(f-g)(x)|}{2}
$$

(Note that $(f \vee g)(x)=\max \{f(x), g(x)\}$.)
Show that $(f \vee g)$ is Riemann integrable in $[a, b]$.

- Problem 2: Let $g_{n}:[a, b] \rightarrow \mathbb{R}, g_{n} \geq 0$, and $g_{n} \in R[a, b]$ be a sequence of functions that satisfies

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} g_{n}(x) d x=0
$$

a) Show that if $f \in R[a, b]$, then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) g_{n}(x) d x=0
$$

b) Show that if $f \in R[0,1]$, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0
$$

You can use that $\int x^{n} d x=\frac{x^{n+1}}{n+1}$.

- Problem 3:) Let $c>0$. For a set $A \subseteq \mathbb{R}$, define $c A$ by

$$
c A=\{y \in \mathbb{R} \mid y=c x \text { for some } x \in A\} .
$$

a) Prove that $m^{*}(c A)=c m^{*}(A)$.
b) (Extra Credit) What happens in \mathbb{R}^{n} ?

- Problem 4: If E_{1}, E_{2} are Lebesgue measurable subets of \mathbb{R}, show that $E_{1} \times E_{2}$ is Lebesgue measurable and

$$
m\left(E_{1} \times E_{2}\right)=m\left(E_{1}\right) m\left(E_{2}\right) .
$$

