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Higher-Stakes Homework 1 solutions

1. Let f,g € R[a, b]. Define

(fVvex) = (f+8)(x) +2|(f—g)(x)|_

(Note that (f'V g)(x) = max{f(x), g(x)}.)
Show that (f Vv g) is Riemann integrable in [a, b].

Proof. We will use Theorem 0.3.1 of Nelson several times in this proof. Since we assume f, g € R([a, b]), Theorem 0.3.1 of
Nelson asserts that we have f +g, f —g € R([a, b]). We also assume that an absolute value of a Riemann integrable function
is again Riemann integrable; that said, we have |f — g| € R([a, b]). By Theorem 0.3.1 of Nelson, we have f + g+ |f — g| €
R([a, b]). By Theorem 0.3.1 of Nelson once last time, we conclude f V g = ﬂ%‘f_g‘ € R([a, b)), as desired. O

2. Letg, : [a,b] > R, g, >0, and g, € R[a, b] be a sequence of functions that satisfies
b

lim gn(x)dx =0.
n—oo a
(a) Show thatif f € R[a, b], then
b
lim / f(x)gn(x)dx = 0.
n—oo a

Proof. Since we assume f € R([a, b]), by definition of Riemann integrability, f is also bounded on [a, b]. So there
exists a number M > 0 that satisfies | f(x)| < M for all x € [a,b]. Now let € > 0 be given. The definition of the
hypothesis

n—oo

b
lim / gn(x)dx =0

is that there exists N > 0 such that, if n > N, then we have

/abgnoc)dx—o

Also, since we assumed g, > 0 in the hypothesis, we have |g,(x)| = g,(x) for all x € [a, b]. Now, using the triangle
inequality for integrals, we have

€
< —.
M

/ ! 0)en()

b
/ F)gn () dx - 0‘ -

b
< / £ ()l lgn (0] dx

a

b
s/ Mlgn ()] dx

b
=M/ gn(x) dx

/a " g () d

/abgn(x) dx—O‘

€
<M—
M

=M

=M

= E,
and so we conclude b
lim / f(x)gn(x)dx =0,
n—oo a
as desired. O

(b) Show thatif f € R[O0, 1], then
1

lim x" f(x)dx = 0.

n—oo 0

xn+l

Hint: You can use / xdx =
n+1



Proof. Since we assume f € R([0, 1]), its Riemann integral over [0, 1] exists and is

1 n+l
X
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which implies
1
lim x"dx = lim
n—e Jq n—oon+ 1
=0.

By setting g, (x) := x",a := 0, b := 1, we can use part (a) to conclude
1
lim x" f(x)dx =0,

n—e Jo
as desired.
3. Letc > 0. Foraset A C R, define cA by
cA={yeR|y=cxforsomex e A}.

(a) Prove that m*(cA) = cm™(A).

Proof. Consider the intervals I; C R that satisfy A C (J; Ix. Then S := {I;} is a covering of A by closed intervals.

Also, if we define
cly ={y el |y=cxforsomex e I},

then S, := {cIt} is a covering of cA by closed intervals. Now, for intervals we have

v(cly) = cby — cay
= c(br — ay)
= cv(lk),

which implies

o(cS) = Z v(cly)
k

=) ev(n)
k

= CZ v(Ii)

k
=co(9).
So we have

m*(cA) = inf{o(cS) : ¢S is a covering of cA by closed intervals}
< o(cS)
=co($),

from which we take infimum over S both sides to obtain m*(A) < c¢m*(A). Analogously, if ¢ # 0 (the separate case
¢ = 0 is trivial), then we have

m*(A) = inf{o(S) : S is a covering of A by closed intervals}
<o(S)

1
= —co($),
C

from which we take infimum over S both sides to obtain m*(A) < %m*(cA), or equivalently m*(cA) > cm*(A).
Combine the inequalities to conclude m*(cA) = cm™(cA). O

(b) (Extra Credit) What happens in R"?



Proof. Consider the intervals I € R” that satisfy A € |J; Ix. Then S := {Ii} is a covering of A by closed intervals.

Also, if we define
cly ={y € Ix | y = cx for some x € I},

then S. := {cIx} is a covering of cA by closed intervals. Now, for intervals we have

viel) = | [(ebi ~cap)
i=1

= [ Jtcvi—a
i=1

=c" H(bi —a;)
i=1
=c"v(Ik),
which implies

o(cS) = Z v(cly)

k

chv(lk)

k

C"Zv(lk)

k
=c"o(S).

So we have

m*(cA) =inf{o(cS) : ¢S is a covering of cA by closed intervals}
<o(cS)
=c"o(S),

from which we take infimum over S both sides to obtain m*(A) < cm*(A). Analogously, if ¢ # 0 (the separate case
¢ = 0 is trivial), then we have

m*(A) = inf{c(S) : S is a covering of A by closed intervals}
<o(S)

1 n
= c a(9),

from which we take infimum over S both sides to obtain m*(A) < cl,,m*(cA), or equivalently m*(cA) > c"m*(A).
Combine the inequalities to conclude m*(cA) = ¢"m*(cA). O

4. If Ey, E, are Lebesgue measurable subets of R, show that E| X E; is Lebesgue measurable and

m(E| X E2) = m(E)m(E).

Proof. Since Ej, E; C R are Lebesgue measurable, there exist open sets G, G, C R that satisfy m*(G; \ E|) < € and
m*(G, \ E») < €. Now consider the open set G| X G C R2. Notice that we can write

(G1XG2) \ (E1 XxEy) = ((G1 \ E1) X E2) U (E1 X (G2 \ E2)) U ((G1\ E) X (G2 \ E?)),

Also, for any two sets A, B C R, let S = {I;} be a covering of A by closed intervals Iy, and let T = {J,} be a covering of B by
closed intervals J,. Then we have

m"(A X B) =inf{o (S X T) : S X T is a covering of A X B by closed intervals}
<o(SxT)

ZZZV(IkXJg)
k¢

= > 2 v
k¢

= > v Y v
k 14

=o(S)o(T),



from which we take the infimum over both sides to conclude

m*(A x B) =inf{m*(A X B) : S, T are coverings of A, B by closed intervals, respectively}
<inf{o(S)o(T) : S, T are coverings of A, B by closed intervals, respectively}
=m*(A)m*(B).

Likewise, we have

m*(A)m™(B) = inf{o(S) : S is a covering of A by closed intervals}
xinf{o(T) : T is a covering of B by closed intervals}
<o(S)o(T)

= > v Y v
k 14

= > 2 v
k ¢

= ZZV([k X.Ig)
kK ¢

=o(SxT),

from which we take the infimum over both sides to conclude

m*(A)m*(B) = inf{m"(A)m*(B) : S, T are coverings of A, B by closed intervals, respectively}
<inf{o(SxT) : S,T are coverings of A, B by closed intervals, respectively}
=m"(A X B).

Combine m*(A X B) < m*(A)m*(B) and m*(A X B) > m*(A)m*(B) to conclude m*(A X B) = m*(A)m*(B). So we have

m*((G1 x G2) \ (E1 X E2)) =m*((G1 \ E1) X E2) U (E1 X (G2 \ E2)) U ((G1 \ E1) X (G2 \ E2))
m*((G1\ E1) X E3) +m*(E1 X (G2 \ E2)) +m"((G1 \ E1) X (G2 \ E2))
m*(Gy \ E\)m"(Ep) + m"(E;)m" (G2 \ E2) +m" (G \ EN)m* (G2 \ E2)
em*(Ey) + m*(E1)e + €€

(m*(El) +m*(E2) + 6)6.

IA

A

Also, notice that G| X G, is open because G, G, are open. Therefore, E| X E; is Lebesgue measurable, and we readily have

m(E1 X Ez) = m*(El X Ez)
=m"(E1)m"(Ez)
=m(E)m(E),

as desired. |



