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Higher-Stakes Homework 1 solutions

1. Let 5 , 6 ∈ '[0, 1]. Define

( 5 ∨ 6) (G) = ( 5 + 6) (G) + |( 5 − 6) (G) |
2

.

(Note that ( 5 ∨ 6) (G) = max{ 5 (G), 6(G)}.)
Show that ( 5 ∨ 6) is Riemann integrable in [0, 1].

Proof. We will use Theorem 0.3.1 of Nelson several times in this proof. Since we assume 5 , 6 ∈ '( [0, 1]), Theorem 0.3.1 of
Nelson asserts that we have 5 + 6, 5 − 6 ∈ '( [0, 1]). We also assume that an absolute value of a Riemann integrable function
is again Riemann integrable; that said, we have | 5 − 6 | ∈ '( [0, 1]). By Theorem 0.3.1 of Nelson, we have 5 + 6 + | 5 − 6 | ∈
'( [0, 1]). By Theorem 0.3.1 of Nelson once last time, we conclude 5 ∨ 6 =

5 +6+| 5 −6 |
2 ∈ '( [0, 1]), as desired. �

2. Let 6= : [0, 1] → R, 6= ≥ 0, and 6= ∈ '[0, 1] be a sequence of functions that satisfies

lim
=→∞

∫ 1

0

6= (G)3G = 0.

(a) Show that if 5 ∈ '[0, 1], then

lim
=→∞

∫ 1

0

5 (G)6= (G)3G = 0.

Proof. Since we assume 5 ∈ '( [0, 1]), by definition of Riemann integrability, 5 is also bounded on [0, 1]. So there
exists a number " > 0 that satisfies | 5 (G) | ≤ " for all G ∈ [0, 1]. Now let n > 0 be given. The definition of the
hypothesis

lim
=→∞

∫ 1

0

6= (G) 3G = 0

is that there exists # > 0 such that, if = ≥ # , then we have����∫ 1

0

6= (G) 3G − 0
���� < n

"
.

Also, since we assumed 6= ≥ 0 in the hypothesis, we have |6= (G) | = 6= (G) for all G ∈ [0, 1]. Now, using the triangle
inequality for integrals, we have ����∫ 1

0

5 (G)6= (G) 3G − 0
���� = ����∫ 1

0

5 (G)6= (G) 3G
����

≤
∫ 1

0

| 5 (G) | |6= (G) | 3G

≤
∫ 1

0

" |6= (G) | 3G

= "

∫ 1

0

6= (G) 3G

= "

����∫ 1

0

6= (G) 3G
����

= "

����∫ 1

0

6= (G) 3G − 0
����

< "
n

"

= n,

and so we conclude

lim
=→∞

∫ 1

0

5 (G)6= (G)3G = 0,

as desired. �

(b) Show that if 5 ∈ '[0, 1], then

lim
=→∞

∫ 1

0
G= 5 (G)3G = 0.

Hint: You can use
∫

G=3G =
G=+1

= + 1
.



Proof. Since we assume 5 ∈ '( [0, 1]), its Riemann integral over [0, 1] exists and is∫ 1

0
G= 3G =

G=+1

= + 1

����1
0

=
(1)=+1 − (0)=+1

= + 1

=
1

= + 1
,

which implies

lim
=→∞

∫ 1

0
G= 3G = lim

=→∞
1

= + 1
= 0.

By setting 6= (G) := G=, 0 := 0, 1 := 1, we can use part (a) to conclude

lim
=→∞

∫ 1

0
G= 5 (G)3G = 0,

as desired. �

3. Let 2 > 0. For a set � ⊆ R, define 2� by

2� = {H ∈ R | H = 2G for some G ∈ �} .

(a) Prove that <∗ (2�) = 2<∗ (�).

Proof. Consider the intervals �: ⊆ R that satisfy � ⊆ ⋃
: �: . Then ( := {�: } is a covering of � by closed intervals.

Also, if we define
2�: = {H ∈ �: | H = 2G for some G ∈ �: },

then (2 := {2�: } is a covering of 2� by closed intervals. Now, for intervals we have

E(2�: ) = 21: − 20:
= 2(1: − 0: )
= 2E(�: ),

which implies

f(2() =
∑
:

E(2�: )

=
∑
:

2E(�: )

= 2
∑
:

E(�: )

= 2f(().

So we have

<∗ (2�) = inf{f(2() : 2( is a covering of 2� by closed intervals}
≤ f(2()
= 2f((),

from which we take infimum over ( both sides to obtain <∗ (�) ≤ 2<∗ (�). Analogously, if 2 ≠ 0 (the separate case
2 = 0 is trivial), then we have

<∗ (�) = inf{f(() : ( is a covering of � by closed intervals}
≤ f(()

=
1
2
2f((),

from which we take infimum over ( both sides to obtain <∗ (�) ≤ 1
2
<∗ (2�), or equivalently <∗ (2�) ≥ 2<∗ (�).

Combine the inequalities to conclude <∗ (2�) = 2<∗ (2�). �

(b) (Extra Credit) What happens in R=?



Proof. Consider the intervals �: ⊆ R= that satisfy � ⊆ ⋃
: �: . Then ( := {�: } is a covering of � by closed intervals.

Also, if we define
2�: = {H ∈ �: | H = 2G for some G ∈ �: },

then (2 := {2�: } is a covering of 2� by closed intervals. Now, for intervals we have

E(2�: ) =
=∏
8=1

(218 − 208)

=

=∏
8=1

(2(18 − 08))

= 2=
=∏
8=1

(18 − 08)

= 2=E(�: ),

which implies

f(2() =
∑
:

E(2�: )

=
∑
:

2=E(�: )

= 2=
∑
:

E(�: )

= 2=f(().

So we have

<∗ (2�) = inf{f(2() : 2( is a covering of 2� by closed intervals}
≤ f(2()
= 2=f((),

from which we take infimum over ( both sides to obtain <∗ (�) ≤ 2<∗ (�). Analogously, if 2 ≠ 0 (the separate case
2 = 0 is trivial), then we have

<∗ (�) = inf{f(() : ( is a covering of � by closed intervals}
≤ f(()

=
1
2=
2=f((),

from which we take infimum over ( both sides to obtain <∗ (�) ≤ 1
2=
<∗ (2�), or equivalently <∗ (2�) ≥ 2=<∗ (�).

Combine the inequalities to conclude <∗ (2�) = 2=<∗ (2�). �

4. If �1, �2 are Lebesgue measurable subets of R, show that �1 × �2 is Lebesgue measurable and

<(�1 × �2) = <(�1)<(�2).

Proof. Since �1, �2 ⊆ R are Lebesgue measurable, there exist open sets �1, �2 ⊆ R that satisfy <∗ (�1 \ �1) < n and
<∗ (�2 \ �2) < n . Now consider the open set �1 × �2 ⊆ R2. Notice that we can write

(�1 × �2) \ (�1 × �2) = ((�1 \ �1) × �2) ∪ (�1 × (�2 \ �2)) ∪ ((�1 \ �1) × (�2 \ �2)),

Also, for any two sets �, � ⊆ R, let ( = {�: } be a covering of � by closed intervals �: , and let ) = {�ℓ } be a covering of � by
closed intervals �ℓ . Then we have

<∗ (� × �) = inf{f(( × )) : ( × ) is a covering of � × � by closed intervals}
≤ f(( × ))

=
∑
:

∑
ℓ

E(�: × �ℓ)

=
∑
:

∑
ℓ

E(�: )E(�ℓ)

=
∑
:

E(�: )
∑
ℓ

E(�ℓ)

= f(()f()),



from which we take the infimum over both sides to conclude

<∗ (� × �) = inf{<∗ (� × �) : (, ) are coverings of �, � by closed intervals, respectively}
≤ inf{f(()f()) : (, ) are coverings of �, � by closed intervals, respectively}
= <∗ (�)<∗ (�).

Likewise, we have

<∗ (�)<∗ (�) = inf{f(() : ( is a covering of � by closed intervals}
× inf{f()) : ) is a covering of � by closed intervals}

≤ f(()f())

=
∑
:

E(�: )
∑
ℓ

E(�ℓ)

=
∑
:

∑
ℓ

E(�: )E(�ℓ)

=
∑
:

∑
ℓ

E(�: × �ℓ)

= f(( × )),

from which we take the infimum over both sides to conclude

<∗ (�)<∗ (�) = inf{<∗ (�)<∗ (�) : (, ) are coverings of �, � by closed intervals, respectively}
≤ inf{f(( × )) : (, ) are coverings of �, � by closed intervals, respectively}
= <∗ (� × �).

Combine <∗ (� × �) ≤ <∗ (�)<∗ (�) and <∗ (� × �) ≥ <∗ (�)<∗ (�) to conclude <∗ (� × �) = <∗ (�)<∗ (�). So we have

<∗ ((�1 × �2) \ (�1 × �2)) = <∗ ((�1 \ �1) × �2) ∪ (�1 × (�2 \ �2)) ∪ ((�1 \ �1) × (�2 \ �2))
≤ <∗ ((�1 \ �1) × �2) + <∗ (�1 × (�2 \ �2)) + <∗ ((�1 \ �1) × (�2 \ �2))
= <∗ (�1 \ �1)<∗ (�2) + <∗ (�1)<∗ (�2 \ �2) + <∗ (�1 \ �1)<∗ (�2 \ �2)
< n<∗ (�2) + <∗ (�1)n + nn
= (<∗ (�1) + <∗ (�2) + n)n .

Also, notice that �1 ×�2 is open because �1, �2 are open. Therefore, �1 × �2 is Lebesgue measurable, and we readily have

<(�1 × �2) = <∗ (�1 × �2)
= <∗ (�1)<∗ (�2)
= <(�1)<(�2),

as desired. �


