Higher-Stakes Homework 1 solutions

1. Let $f, g \in R[a, b]$. Define

$$
(f \vee g)(x)=\frac{(f+g)(x)+|(f-g)(x)|}{2}
$$

(Note that $(f \vee g)(x)=\max \{f(x), g(x)\}$.)
Show that $(f \vee g)$ is Riemann integrable in $[a, b]$.
Proof. We will use Theorem 0.3.1 of Nelson several times in this proof. Since we assume $f, g \in R([a, b])$, Theorem 0.3.1 of Nelson asserts that we have $f+g, f-g \in R([a, b])$. We also assume that an absolute value of a Riemann integrable function is again Riemann integrable; that said, we have $|f-g| \in R([a, b])$. By Theorem 0.3.1 of Nelson, we have $f+g+|f-g| \in$ $R([a, b])$. By Theorem 0.3.1 of Nelson once last time, we conclude $f \vee g=\frac{f+g+|f-g|}{2} \in R([a, b])$, as desired.
2. Let $g_{n}:[a, b] \rightarrow \mathbb{R}, g_{n} \geq 0$, and $g_{n} \in R[a, b]$ be a sequence of functions that satisfies

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} g_{n}(x) d x=0
$$

(a) Show that if $f \in R[a, b]$, then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) g_{n}(x) d x=0
$$

Proof. Since we assume $f \in R([a, b])$, by definition of Riemann integrability, f is also bounded on $[a, b]$. So there exists a number $M>0$ that satisfies $|f(x)| \leq M$ for all $x \in[a, b]$. Now let $\epsilon>0$ be given. The definition of the hypothesis

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} g_{n}(x) d x=0
$$

is that there exists $N>0$ such that, if $n \geq N$, then we have

$$
\left|\int_{a}^{b} g_{n}(x) d x-0\right|<\frac{\epsilon}{M}
$$

Also, since we assumed $g_{n} \geq 0$ in the hypothesis, we have $\left|g_{n}(x)\right|=g_{n}(x)$ for all $x \in[a, b]$. Now, using the triangle inequality for integrals, we have

$$
\begin{aligned}
\left|\int_{a}^{b} f(x) g_{n}(x) d x-0\right| & =\left|\int_{a}^{b} f(x) g_{n}(x) d x\right| \\
& \leq \int_{a}^{b}|f(x)|\left|g_{n}(x)\right| d x \\
& \leq \int_{a}^{b} M\left|g_{n}(x)\right| d x \\
& =M \int_{a}^{b} g_{n}(x) d x \\
& =M\left|\int_{a}^{b} g_{n}(x) d x\right| \\
& =M\left|\int_{a}^{b} g_{n}(x) d x-0\right| \\
& <M \frac{\epsilon}{M} \\
& =\epsilon,
\end{aligned}
$$

and so we conclude

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) g_{n}(x) d x=0
$$

as desired.
(b) Show that if $f \in R[0,1]$, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0
$$

Hint: You can use $\int x^{n} d x=\frac{x^{n+1}}{n+1}$.

Proof. Since we assume $f \in R([0,1])$, its Riemann integral over $[0,1]$ exists and is

$$
\begin{aligned}
\int_{0}^{1} x^{n} d x & =\left.\frac{x^{n+1}}{n+1}\right|_{0} ^{1} \\
& =\frac{(1)^{n+1}-(0)^{n+1}}{n+1} \\
& =\frac{1}{n+1}
\end{aligned}
$$

which implies

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} d x & =\lim _{n \rightarrow \infty} \frac{1}{n+1} \\
& =0
\end{aligned}
$$

By setting $g_{n}(x):=x^{n}, a:=0, b:=1$, we can use part (a) to conclude

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0
$$

as desired.
3. Let $c>0$. For a set $A \subseteq \mathbb{R}$, define $c A$ by

$$
c A=\{y \in \mathbb{R} \mid y=c x \text { for some } x \in A\}
$$

(a) Prove that $m^{*}(c A)=c m^{*}(A)$.

Proof. Consider the intervals $I_{k} \subseteq \mathbb{R}$ that satisfy $A \subseteq \bigcup_{k} I_{k}$. Then $S:=\left\{I_{k}\right\}$ is a covering of A by closed intervals. Also, if we define

$$
c I_{k}=\left\{y \in I_{k} \mid y=c x \text { for some } x \in I_{k}\right\}
$$

then $S_{c}:=\left\{c I_{k}\right\}$ is a covering of $c A$ by closed intervals. Now, for intervals we have

$$
\begin{aligned}
v\left(c I_{k}\right) & =c b_{k}-c a_{k} \\
& =c\left(b_{k}-a_{k}\right) \\
& =c v\left(I_{k}\right),
\end{aligned}
$$

which implies

$$
\begin{aligned}
\sigma(c S) & =\sum_{k} v\left(c I_{k}\right) \\
& =\sum_{k} c v\left(I_{k}\right) \\
& =c \sum_{k} v\left(I_{k}\right) \\
& =c \sigma(S)
\end{aligned}
$$

So we have

$$
\begin{aligned}
m^{*}(c A) & =\inf \{\sigma(c S): c S \text { is a covering of } c A \text { by closed intervals }\} \\
& \leq \sigma(c S) \\
& =c \sigma(S)
\end{aligned}
$$

from which we take infimum over S both sides to obtain $m^{*}(A) \leq c m^{*}(A)$. Analogously, if $c \neq 0$ (the separate case $c=0$ is trivial), then we have

$$
\begin{aligned}
m^{*}(A) & =\inf \{\sigma(S): S \text { is a covering of } A \text { by closed intervals }\} \\
& \leq \sigma(S) \\
& =\frac{1}{c} c \sigma(S)
\end{aligned}
$$

from which we take infimum over S both sides to obtain $m^{*}(A) \leq \frac{1}{c} m^{*}(c A)$, or equivalently $m^{*}(c A) \geq c m^{*}(A)$. Combine the inequalities to conclude $m^{*}(c A)=c m^{*}(c A)$.
(b) (Extra Credit) What happens in \mathbb{R}^{n} ?

Proof. Consider the intervals $I_{k} \subseteq \mathbb{R}^{n}$ that satisfy $A \subseteq \bigcup_{k} I_{k}$. Then $S:=\left\{I_{k}\right\}$ is a covering of A by closed intervals. Also, if we define

$$
c I_{k}=\left\{y \in I_{k} \mid y=c x \text { for some } x \in I_{k}\right\}
$$

then $S_{c}:=\left\{c I_{k}\right\}$ is a covering of $c A$ by closed intervals. Now, for intervals we have

$$
\begin{aligned}
v\left(c I_{k}\right) & =\prod_{i=1}^{n}\left(c b_{i}-c a_{i}\right) \\
& =\prod_{i=1}^{n}\left(c\left(b_{i}-a_{i}\right)\right) \\
& =c^{n} \prod_{i=1}^{n}\left(b_{i}-a_{i}\right) \\
& =c^{n} v\left(I_{k}\right),
\end{aligned}
$$

which implies

$$
\begin{aligned}
\sigma(c S) & =\sum_{k} v\left(c I_{k}\right) \\
& =\sum_{k} c^{n} v\left(I_{k}\right) \\
& =c^{n} \sum_{k} v\left(I_{k}\right) \\
& =c^{n} \sigma(S)
\end{aligned}
$$

So we have

$$
\begin{aligned}
m^{*}(c A) & =\inf \{\sigma(c S): c S \text { is a covering of } c A \text { by closed intervals }\} \\
& \leq \sigma(c S) \\
& =c^{n} \sigma(S)
\end{aligned}
$$

from which we take infimum over S both sides to obtain $m^{*}(A) \leq c m^{*}(A)$. Analogously, if $c \neq 0$ (the separate case $c=0$ is trivial), then we have

$$
\begin{aligned}
m^{*}(A) & =\inf \{\sigma(S): S \text { is a covering of } A \text { by closed intervals }\} \\
& \leq \sigma(S) \\
& =\frac{1}{c^{n}} c^{n} \sigma(S)
\end{aligned}
$$

from which we take infimum over S both sides to obtain $m^{*}(A) \leq \frac{1}{c^{n}} m^{*}(c A)$, or equivalently $m^{*}(c A) \geq c^{n} m^{*}(A)$. Combine the inequalities to conclude $m^{*}(c A)=c^{n} m^{*}(c A)$.
4. If E_{1}, E_{2} are Lebesgue measurable subets of \mathbb{R}, show that $E_{1} \times E_{2}$ is Lebesgue measurable and

$$
m\left(E_{1} \times E_{2}\right)=m\left(E_{1}\right) m\left(E_{2}\right) .
$$

Proof. Since $E_{1}, E_{2} \subseteq \mathbb{R}$ are Lebesgue measurable, there exist open sets $G_{1}, G_{2} \subseteq \mathbb{R}$ that satisfy $m^{*}\left(G_{1} \backslash E_{1}\right)<\epsilon$ and $m^{*}\left(G_{2} \backslash E_{2}\right)<\epsilon$. Now consider the open set $G_{1} \times G_{2} \subseteq \mathbb{R}^{2}$. Notice that we can write

$$
\left(G_{1} \times G_{2}\right) \backslash\left(E_{1} \times E_{2}\right)=\left(\left(G_{1} \backslash E_{1}\right) \times E_{2}\right) \cup\left(E_{1} \times\left(G_{2} \backslash E_{2}\right)\right) \cup\left(\left(G_{1} \backslash E_{1}\right) \times\left(G_{2} \backslash E_{2}\right)\right),
$$

Also, for any two sets $A, B \subseteq \mathbb{R}$, let $S=\left\{I_{k}\right\}$ be a covering of A by closed intervals I_{k}, and let $T=\left\{J_{\ell}\right\}$ be a covering of B by closed intervals J_{ℓ}. Then we have

$$
\begin{aligned}
m^{*}(A \times B) & =\inf \{\sigma(S \times T): S \times T \text { is a covering of } A \times B \text { by closed intervals }\} \\
& \leq \sigma(S \times T) \\
& =\sum_{k} \sum_{\ell} v\left(I_{k} \times J_{\ell}\right) \\
& =\sum_{k} \sum_{\ell} v\left(I_{k}\right) v\left(J_{\ell}\right) \\
& =\sum_{k} v\left(I_{k}\right) \sum_{\ell} v\left(J_{\ell}\right) \\
& =\sigma(S) \sigma(T)
\end{aligned}
$$

from which we take the infimum over both sides to conclude

$$
\begin{aligned}
m^{*}(A \times B) & =\inf \left\{m^{*}(A \times B): S, T \text { are coverings of } A, B \text { by closed intervals, respectively }\right\} \\
& \leq \inf \{\sigma(S) \sigma(T): S, T \text { are coverings of } A, B \text { by closed intervals, respectively }\} \\
& =m^{*}(A) m^{*}(B)
\end{aligned}
$$

Likewise, we have

$$
\begin{aligned}
m^{*}(A) m^{*}(B)= & \inf \{\sigma(S): S \text { is a covering of } A \text { by closed intervals }\} \\
& \times \inf \{\sigma(T): T \text { is a covering of } B \text { by closed intervals }\} \\
\leq & \sigma(S) \sigma(T) \\
= & \sum_{k} v\left(I_{k}\right) \sum_{\ell} v\left(J_{\ell}\right) \\
= & \sum_{k} \sum_{\ell} v\left(I_{k}\right) v\left(J_{\ell}\right) \\
= & \sum_{k} \sum_{\ell} v\left(I_{k} \times J_{\ell}\right) \\
= & \sigma(S \times T)
\end{aligned}
$$

from which we take the infimum over both sides to conclude

$$
\begin{aligned}
m^{*}(A) m^{*}(B) & =\inf \left\{m^{*}(A) m^{*}(B): S, T \text { are coverings of } A, B \text { by closed intervals, respectively }\right\} \\
& \leq \inf \{\sigma(S \times T): S, T \text { are coverings of } A, B \text { by closed intervals, respectively }\} \\
& =m^{*}(A \times B)
\end{aligned}
$$

Combine $m^{*}(A \times B) \leq m^{*}(A) m^{*}(B)$ and $m^{*}(A \times B) \geq m^{*}(A) m^{*}(B)$ to conclude $m^{*}(A \times B)=m^{*}(A) m^{*}(B)$. So we have

$$
\begin{aligned}
m^{*}\left(\left(G_{1} \times G_{2}\right) \backslash\left(E_{1} \times E_{2}\right)\right) & =m^{*}\left(\left(G_{1} \backslash E_{1}\right) \times E_{2}\right) \cup\left(E_{1} \times\left(G_{2} \backslash E_{2}\right)\right) \cup\left(\left(G_{1} \backslash E_{1}\right) \times\left(G_{2} \backslash E_{2}\right)\right) \\
& \leq m^{*}\left(\left(G_{1} \backslash E_{1}\right) \times E_{2}\right)+m^{*}\left(E_{1} \times\left(G_{2} \backslash E_{2}\right)\right)+m^{*}\left(\left(G_{1} \backslash E_{1}\right) \times\left(G_{2} \backslash E_{2}\right)\right) \\
& =m^{*}\left(G_{1} \backslash E_{1}\right) m^{*}\left(E_{2}\right)+m^{*}\left(E_{1}\right) m^{*}\left(G_{2} \backslash E_{2}\right)+m^{*}\left(G_{1} \backslash E_{1}\right) m^{*}\left(G_{2} \backslash E_{2}\right) \\
& <\epsilon m^{*}\left(E_{2}\right)+m^{*}\left(E_{1}\right) \epsilon+\epsilon \epsilon \\
& =\left(m^{*}\left(E_{1}\right)+m^{*}\left(E_{2}\right)+\epsilon\right) \epsilon .
\end{aligned}
$$

Also, notice that $G_{1} \times G_{2}$ is open because G_{1}, G_{2} are open. Therefore, $E_{1} \times E_{2}$ is Lebesgue measurable, and we readily have

$$
\begin{aligned}
m\left(E_{1} \times E_{2}\right) & =m^{*}\left(E_{1} \times E_{2}\right) \\
& =m^{*}\left(E_{1}\right) m^{*}\left(E_{2}\right) \\
& =m\left(E_{1}\right) m\left(E_{2}\right),
\end{aligned}
$$

as desired.

