MATH 151C - Advanced Calculus

Homework 1

Due date: Tuesday, April 6 at 11:59pm

Instructions:

* You are encourage to work in group but you have to write your individual solution
* You can use any book, article or web-based mathematical material or computational software
* You can ask Ryan, or Estela questions
* Chegg, Math Stack Exchange, or any other source where you can copy solutions is not allowed
* The problems from the textbook will be indicated by the chapter and corresponding number.
* The homework needs to be typeset in "LaTeX" .

1. (Chapter 0 , Problem 3) Let $f, g \in R[a, b]$ with $f(x) \leq g(x)$ for all $x \in[a, b]$. Prove that

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

2. (Chapter 0, Problem 5) Assume $f \in R[a, b]$.
a) Let $c \in[a, b]$. Suppose g is defined on $[a, b]$ and $g(x)=f(x)$ for all $x \neq c$. Show $g \in R[a, b]$.
b) Suppose g differs from f at a finite number of points. Show $g \in R[a, b]$.
c) Does this extend to the case where g and f differ at a countable number of points? Prove or give a counterexample.
3. (Chapter 0, Problem 6) Let $\left\{f_{n}\right\}$ be a sequence of functions with $f_{n} \in R[a, b]$ for each n. Suppose the sequence $\left\{f_{n}\right\}$ converges uniformly to f on $[a, b]$. Show that $f \in R[a, b]$.
4. (Chapter 0, Problem 7) Prove or modify and then prove: Let $f \in B[a, b]$. Define

$$
\begin{aligned}
& f^{+}(x)= \begin{cases}f(x) & \text { if } f(x) \geq 0 \\
0 & \text { otherwise }\end{cases} \\
& f^{-}(x)= \begin{cases}0 & \text { if } f(x) \geq 0 \\
-f(x) & \text { otherwise }\end{cases}
\end{aligned}
$$

Then $f \in R[a, b]$ if and only if both $f^{+} \in R[a, b]$ and $f^{-} \in R[a, b]$.
5. (Chapter 0, Problem 11) Let $\left\{r_{1}, r_{2}, \ldots, r_{n}, \ldots\right\}$ be a counting of the rational numbers in the interval $[0,1]$. For each natural number k, define the function f_{k} by

$$
f_{k}(x)= \begin{cases}1 & \text { if } x \in\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

a) Find f, the pointwise limit of the sequence $\left\{f_{k}\right\}$.
b) Show that $f_{k} \in R[0,1]$ for each k.
c) In general, if $\left\{f_{n}\right\}$ is a sequence of Riemann integrable functions which converge pointwise to f, is f Riemann integrable?

