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Homework 1 solutions

1. (Chapter 0, Problem 3) Let f, g € R[a, b] with f(x) < g(x) for all x € [a, b]. Prove that

/abf(x)dx < ng(x)dx.

Proof. Consider the partition P = {xg, x1,X2,...,X,}. Since we have f(x) < g(x) for all x € [a, b], we have in particular
f(x) < g(x) forany x € [x;-1,x;], fori =1,2,...,n. Take the infimum and supremum of f and g over [x;_1,x;] to conclude
m! = inf f(x)

x€[xi-1,x;]

< inf  g(x)
xe[x;-1,x]
8

=m;,

which implies

L(f,P) = Y m] (xi = xi-1)
i=0

n
< Z m}g(xi - Xi-1)
=0

=L(g, P).

But we also assume f, g € R[a, b], which means

b
/ F(x)dx = L(f. P)
< L(g,P)

= ‘/abg(x) dx

as desired. (Observe that, because we assume f,g € R([a, b]), we have L(f,P) = U(f,P) annd L(g,P) = U(g, P); the
above argument using U (f, P) < U(g, P) is exactly the same as the one using L(f,P) < L(g, P).) O

2. (Chapter 0, Problem 5) Assume f € R[a, b].

(a) Let ¢ € [a, b]. Suppose g is defined on [a, b] and g(x) = f(x) for all x # ¢. Show g € R[a, b].

(b

~

Proof. First, we write g = (g — f) + f. By Theorem 0.3.1 of Nelson, we only need to show g — f € R([a, b]). Lete > 0
be given (and sufficiently small). If ¢ € [a, b] is an interior point, consider the partition P := {a,c — €, ¢ + €, b}. Then
we have
U(g—f,P)=0((c—€)—a)+max{g — f,0}((c+€)—(c—€))+0(b - (c+¢€))
= 2emax{g — f,0}

and
L(g—f,P)=0((c—€)—a)+min{g — f,0}((c+€)—(c—¢€))+0(b - (c+¥€))
=2emin{g — f,0},

which implies the difference

U(g-f,P)-L(g—- f,P) =2emax{g — f,0} —2e min{g — f,0}

= Z(max{g - f’ 0} - mln{g - f’ 0})6,

and so we conclude g — f € R([a, b]). O
Suppose g differs from f at a finite number of points. Show g € R[a, b].

Proof. We will prove this by induction. We have already established the base case in part (a). For the induction step,
assume that, if g differs from f at n points r, 72, ..., r,, then g € R([a, b]). Consider a new function 4 on [a, b]. So
we will show that, if & differs from f at n + 1 points r{,r3,...,ru+1, then & € R([a, b]). From the construction of A,
we see that & differs from g at r,,41. Apply the argument of part (a) to # and the point ¢ = r,,41 to complete the proof by
induction. O



(c) Does this extend to the case where g and f differ at a countable number of points? Prove or give a counterexample.
Proof. No. Let f = 0 and let g be the Dirichlet function
1 ifxeQnla,b],
g(x) = :
0 ifxe (R\Q) N Ja,b].

Since Q is a countable set, it follows that g differs from f at a countable number of points. However, we have f €
R([a,b]) and g ¢ R([a, b]). The proofs of these statements can be found in lecture and in the Nelson textbook, so I will
not include their proofs again here. O

3. (Chapter 0, Problem 6) Let {f,} be a sequence of functions with f;, € R[a, b] for each n. Suppose the sequence {f,}
converges uniformly to f on [a, b]. Show that f € R[a, b].

Proof. Let € > 0 be given. Since {f,} converges uniformly to f on [a, b], there exists N > 0 such that, if n > N, then
| fn(x) = f(x)| < € for all x € [a, b], which implies in particular |Ml.f - Mif"l < e and |mf mlf"l < €, and so we have

i —_

k
UCf,P) = U(fus P < 3" I = M Gek = i)

i=1
k

< Z €(xr — xx-1)
i=1

=¢e(b-a)

and

k
IL(f,P) = L(fa, P) < D " = m] | (ox = xeo)
i=1

k
< Zf(xk - Xk-1)
i=1
=¢e(b-a)
Since we have f,, € R([a, b]), there exists a partition P that satisfies U(f,, P) — L( f,,, P) < €. So we have
U(f,P)=L(f,P)=U(f,P) = U(fu, P) + U(fn, P) = L(fn, P) + L(fn, P) = L(f, P)
<|U(f,P) =U(fu, P)| + U(fu, P) = L(fu, P) + |L(fn., P) = L(f, P)|
<e(b—a)+e+e(b-a)
=Q2(b-a)+1e.

So, by Theorem 0.2.4 of Nelson, we conclude f € R([a, b]). O

4. (Chapter 0, Problem 7) Prove or modify and then prove: Let f € B[a, b]. Define
x) if f(x) >0
) Z{ S i

otherwise
_,v_]0 if f(x) >0
fmx) = { —f(x) otherwise
Then f € R[a, b] if and only if both f* € R[a, b] and f~ € R[a, b].
Proof. Suppose f*, f~ € R([a, b]). Observe based on the definitions of f*, f~ that, for any f € B([a, b]), we have
f&) =) - f (%)

for all x € [a, b]. By Theorem 0.3.1 of Nelson, we conclude f = f* — f~ € R([a, b]).

Conversely, suppose f € R([a, b]). Then for all € > 0, there exists a partition P of [a, b] that satisfies U(f, P) - L(f, P) < €.
First, we notice

IfO] = f7(x) + £~ (x).

So we have
prcg = HOHI®),
iy = OIS,

By Theorem 0.3.1 of Nelson, we have f*, f~ € R([a, b]), provided that we prove | f| € R([a, b]). (Check the Lebl textbook;
maybe there is a proof for | f| € R([a, b]); I am not including that proof here.) O



5. (Chapter O, Problem 11) Let {r;,r2,...,ry,...} be a counting of the rational numbers in the interval [0, 1]. For each natural
number k, define the function fj by

(a)

(b)

(©

1 ifxe{r,ra. .l
fk(x)_{ 0 otherwise

Find f, the pointwise limit of the sequence { f }.

Proof. The pointwise limit of { fi } is f, given by

1 ifxeqn(o.1],
fla) = {o ifxe (R\Q) N[0, 1],

which is the Dirichlet function on [0, 1]. O

Show that f; € R[O0, 1] for each k.

Proof. Consider g, defined by g(x) := 0 for all x € [0, 1]. Then we have g € R([0, 1]) because, for any € > 0, we have
U(f,P)-L(f,P)=0-0 < €. Also, g differs from f at only a finite number of points, namely at x = ry,73,...,rg. By
Exercise 2(b) (Chapter 0, Problem 5(b) of Nelson), we conclude f; € R([0, 1]) for each k. O

In general, if {f,,} is a sequence of Riemann integrable functions which converge pointwise to f, is f Riemann inte-
grable?

Proof. No. For instance, if f is the Dirichlet function as mentioned in part (a), then we have f ¢ R([0, 1]). I proved
this already in my solution to Exercise 2(c). O



