Homework 1 solutions

1. (Chapter 0, Problem 3) Let $f, g \in R[a, b]$ with $f(x) \leq g(x)$ for all $x \in[a, b]$. Prove that

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

Proof. Consider the partition $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$. Since we have $f(x) \leq g(x)$ for all $x \in[a, b]$, we have in particular $f(x) \leq g(x)$ for any $x \in\left[x_{i-1}, x_{i}\right]$, for $i=1,2, \ldots, n$. Take the infimum and supremum of f and g over $\left[x_{i-1}, x_{i}\right]$ to conclude

$$
\begin{aligned}
m_{i}^{f} & :=\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x) \\
& \leq \inf _{x \in\left[x_{i-1}, x_{i}\right]} g(x) \\
& =: m_{i}^{g},
\end{aligned}
$$

which implies

$$
\begin{aligned}
L(f, P) & =\sum_{i=0}^{n} m_{i}^{f}\left(x_{i}-x_{i-1}\right) \\
& \leq \sum_{i=0}^{n} m_{i}^{g}\left(x_{i}-x_{i-1}\right) \\
& =L(g, P)
\end{aligned}
$$

But we also assume $f, g \in R[a, b]$, which means

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =L(f, P) \\
& \leq L(g, P) \\
& =\int_{a}^{b} g(x) d x
\end{aligned}
$$

as desired. (Observe that, because we assume $f, g \in R([a, b])$, we have $L(f, P)=U(f, P)$ annd $L(g, P)=U(g, P)$; the above argument using $U(f, P) \leq U(g, P)$ is exactly the same as the one using $L(f, P) \leq L(g, P)$.)
2. (Chapter 0, Problem 5) Assume $f \in R[a, b]$.
(a) Let $c \in[a, b]$. Suppose g is defined on $[a, b]$ and $g(x)=f(x)$ for all $x \neq c$. Show $g \in R[a, b]$.

Proof. First, we write $g=(g-f)+f$. By Theorem 0.3.1 of Nelson, we only need to show $g-f \in R([a, b])$. Let $\epsilon>0$ be given (and sufficiently small). If $c \in[a, b]$ is an interior point, consider the partition $P:=\{a, c-\epsilon, c+\epsilon, b\}$. Then we have

$$
\begin{aligned}
U(g-f, P) & =0((c-\epsilon)-a)+\max \{g-f, 0\}((c+\epsilon)-(c-\epsilon))+0(b-(c+\epsilon)) \\
& =2 \epsilon \max \{g-f, 0\}
\end{aligned}
$$

and

$$
\begin{aligned}
L(g-f, P) & =0((c-\epsilon)-a)+\min \{g-f, 0\}((c+\epsilon)-(c-\epsilon))+0(b-(c+\epsilon)) \\
& =2 \epsilon \min \{g-f, 0\}
\end{aligned}
$$

which implies the difference

$$
\begin{aligned}
U(g-f, P)-L(g-f, P) & =2 \epsilon \max \{g-f, 0\}-2 \epsilon \min \{g-f, 0\} \\
& =2(\max \{g-f, 0\}-\min \{g-f, 0\}) \epsilon,
\end{aligned}
$$

and so we conclude $g-f \in R([a, b])$.
(b) Suppose g differs from f at a finite number of points. Show $g \in R[a, b]$.

Proof. We will prove this by induction. We have already established the base case in part (a). For the induction step, assume that, if g differs from f at n points $r_{1}, r_{2}, \ldots, r_{n}$, then $g \in R([a, b])$. Consider a new function h on $[a, b]$. So we will show that, if h differs from f at $n+1$ points $r_{1}, r_{2}, \ldots, r_{n+1}$, then $h \in R([a, b])$. From the construction of h, we see that h differs from g at r_{n+1}. Apply the argument of part (a) to h and the point $c=r_{n+1}$ to complete the proof by induction.
(c) Does this extend to the case where g and f differ at a countable number of points? Prove or give a counterexample.

Proof. No. Let $f=0$ and let g be the Dirichlet function

$$
g(x):= \begin{cases}1 & \text { if } x \in \mathbb{Q} \cap[a, b] \\ 0 & \text { if } x \in(\mathbb{R} \backslash \mathbb{Q}) \cap[a, b]\end{cases}
$$

Since \mathbb{Q} is a countable set, it follows that g differs from f at a countable number of points. However, we have $f \in$ $R([a, b])$ and $g \notin R([a, b])$. The proofs of these statements can be found in lecture and in the Nelson textbook, so I will not include their proofs again here.
3. (Chapter 0, Problem 6) Let $\left\{f_{n}\right\}$ be a sequence of functions with $f_{n} \in R[a, b]$ for each n. Suppose the sequence $\left\{f_{n}\right\}$ converges uniformly to f on $[a, b]$. Show that $f \in R[a, b]$.

Proof. Let $\epsilon>0$ be given. Since $\left\{f_{n}\right\}$ converges uniformly to f on $[a, b]$, there exists $N>0$ such that, if $n \geq N$, then $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in[a, b]$, which implies in particular $\left|M_{i}^{f}-M_{i}^{f_{n}}\right| \leq \epsilon$ and $\left|m_{i}^{f}-m_{i}^{f_{n}}\right| \leq \epsilon$, and so we have

$$
\begin{aligned}
\left|U(f, P)-U\left(f_{n}, P\right)\right| & \leq \sum_{i=1}^{k}\left|M_{i}^{f_{n}}-M_{i}^{f}\right|\left(x_{k}-x_{k-1}\right) \\
& \leq \sum_{i=1}^{k} \epsilon\left(x_{k}-x_{k-1}\right) \\
& =\epsilon(b-a)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|L(f, P)-L\left(f_{n}, P\right)\right| & \leq \sum_{i=1}^{k}\left|m_{i}^{f_{n}}-m_{i}^{f}\right|\left(x_{k}-x_{k-1}\right) \\
& \leq \sum_{i=1}^{k} \epsilon\left(x_{k}-x_{k-1}\right) \\
& =\epsilon(b-a)
\end{aligned}
$$

Since we have $f_{n} \in R([a, b])$, there exists a partition P that satisfies $U\left(f_{n}, P\right)-L\left(f_{n}, P\right)<\epsilon$. So we have

$$
\begin{aligned}
U(f, P)-L(f, P) & =U(f, P)-U\left(f_{n}, P\right)+U\left(f_{n}, P\right)-L\left(f_{n}, P\right)+L\left(f_{n}, P\right)-L(f, P) \\
& \leq\left|U(f, P)-U\left(f_{n}, P\right)\right|+U\left(f_{n}, P\right)-L\left(f_{n}, P\right)+\left|L\left(f_{n}, P\right)-L(f, P)\right| \\
& <\epsilon(b-a)+\epsilon+\epsilon(b-a) \\
& =(2(b-a)+1) \epsilon .
\end{aligned}
$$

So, by Theorem 0.2.4 of Nelson, we conclude $f \in R([a, b])$.
4. (Chapter 0, Problem 7) Prove or modify and then prove: Let $f \in B[a, b]$. Define

$$
\begin{aligned}
& f^{+}(x)= \begin{cases}f(x) & \text { if } f(x) \geq 0 \\
0 & \text { otherwise }\end{cases} \\
& f^{-}(x)= \begin{cases}0 & \text { if } f(x) \geq 0 \\
-f(x) & \text { otherwise }\end{cases}
\end{aligned}
$$

Then $f \in R[a, b]$ if and only if both $f^{+} \in R[a, b]$ and $f^{-} \in R[a, b]$.
Proof. Suppose $f^{+}, f^{-} \in R([a, b])$. Observe based on the definitions of f^{+}, f^{-}that, for any $f \in B([a, b])$, we have

$$
f(x)=f^{+}(x)-f^{-}(x)
$$

for all $x \in[a, b]$. By Theorem 0.3.1 of Nelson, we conclude $f=f^{+}-f^{-} \in R([a, b])$.
Conversely, suppose $f \in R([a, b])$. Then for all $\epsilon>0$, there exists a partition P of $[a, b]$ that satisfies $U(f, P)-L(f, P)<\epsilon$. First, we notice

$$
|f(x)|=f^{+}(x)+f^{-}(x)
$$

So we have

$$
\begin{aligned}
f^{+}(x) & =\frac{|f(x)|+f(x)}{2} \\
f^{-}(x) & =\frac{|f(x)|-f(x)}{2}
\end{aligned}
$$

By Theorem 0.3.1 of Nelson, we have $f^{+}, f^{-} \in R([a, b])$, provided that we prove $|f| \in R([a, b])$. (Check the Lebl textbook; maybe there is a proof for $|f| \in R([a, b])$; I am not including that proof here.)
5. (Chapter 0, Problem 11) Let $\left\{r_{1}, r_{2}, \ldots, r_{n}, \ldots\right\}$ be a counting of the rational numbers in the interval $[0,1]$. For each natural number k, define the function f_{k} by

$$
f_{k}(x)= \begin{cases}1 & \text { if } x \in\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find f, the pointwise limit of the sequence $\left\{f_{k}\right\}$.

Proof. The pointwise limit of $\left\{f_{k}\right\}$ is f, given by

$$
f(x):= \begin{cases}1 & \text { if } x \in \mathbb{Q} \cap[0,1] \\ 0 & \text { if } x \in(\mathbb{R} \backslash \mathbb{Q}) \cap[0,1]\end{cases}
$$

which is the Dirichlet function on $[0,1]$.
(b) Show that $f_{k} \in R[0,1]$ for each k.

Proof. Consider g, defined by $g(x):=0$ for all $x \in[0,1]$. Then we have $g \in R([0,1])$ because, for any $\epsilon>0$, we have $U(f, P)-L(f, P)=0-0<\epsilon$. Also, g differs from f at only a finite number of points, namely at $x=r_{1}, r_{2}, \ldots, r_{k}$. By Exercise 2(b) (Chapter 0, Problem 5(b) of Nelson), we conclude $f_{k} \in R([0,1])$ for each k.
(c) In general, if $\left\{f_{n}\right\}$ is a sequence of Riemann integrable functions which converge pointwise to f, is f Riemann integrable?

Proof. No. For instance, if f is the Dirichlet function as mentioned in part (a), then we have $f \notin R([0,1])$. I proved this already in my solution to Exercise 2(c).

