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Homework 2 solutions

1. (Chapter 1, Problem 2) Let A be a countable set of real numbers. Use the definition of outer measure to show m*(A) = 0.

Proof. We can assume that A is countably infinite, because the argument for the case of A being finite is similar. Since
A is countable, there exists a one-to-one correspondence of each element in A with the natural numbers. So we can let
{xx};., be a sequence of points xx € A that enumerate the countable set A. Given € > 0, consider the closed interval
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Iy =[xk — 557, Xk + 55z, and consider the collection of closed intervals S = {Ix }. Then we have
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which implies the upper bound of the Lebesgue outer measure

m*(A) =inf{c(S) : S is a covering of A by closed intervals}
<o(9)

< €.

Finally, since € > 0 is arbitrary, we conclude m*(A) = 0. O

2. (Chapter 1, Problem 3) Let S and T be coverings of a set A by intervals.
(a) Explain why S U T is also a covering of A by intervals.

Proof. Since S, T are coverings of A by intervals, we can write S = {I} and T = {J; }, where we have A C |J; I and
A C Ui Jk- Then we have A € (U 1) U (U Jx) = Ur (Ix U Ji). In other words, if we write S UT = {{Uy (Ix U Jr)},
then S U T is a covering of A by intervals. O

(b) Show that o (SUT) < o (S) + o (T).
Proof. If intervals are closed: We have
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3. (Chapter 1, Problem 4) Show that for ¢ € R and fixed k, the set (known as a hyperplane in R" )
A={x=(x1,x2, ..., Xk,...,Xxn) ER" | xp =}
has Lebesgue outer measure 0.

Proof. Lete > 0be given. Foralll =1,2,3,... and some fixed k = 1, ..., n, consider the closed interval /; € R" defined by
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I ={x=(X1,. ., Xke1, Xkl - s Xn) eR* <x;<Li=1,...,k=1,k+1,...,n}X

and consider the set S = {/;},°,. Then we have
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which implies the upper bound of the Lebesgue outer measure

m*(A) =inf{c(S) : S is a covering of A by closed intervals}
< o(S)

< €.

Finally, since € > 0 is arbitrary, we conclude m*(A) = 0. O

4. (Chapter 1, Problem 5) Suppose A and B are both Lebesgue measurable. Prove that if both A and B have measure zero, then
A U B is Lebesgue measurable and m(A U B) = 0.

(a) Do this directly from the definition.
Proof. We have

0<m*"(AUB)
<m*(A) +m*(B)
=0+0
=0,

which implies m*(A U B) = 0. So A U B is Lebesgue measurable and satisfies m(A U B) = 0.
By subadditivity of the Lebesgue outer measure, we have

0 <m(AUB)
=m*(AUB)
<m*(A) +m*(B)
=m(A) + m(B)
=0+0
=0,

which implies m(A U B) = 0. O

(b) Give a shorter proof by using Theorem 1.2.5.



Proof. By Theorem 1.2.5, A U B we have

0 <m(AUB)
<m(A)+m(B)
=040
=0,

which implies m(A U B) = 0. O
5. (Chapter 1, Problem 6) Suppose A has Lebesgue measure zero and B C A. Prove B is Lebesgue measurable and m(B) = 0.

Proof. Since A has Lebesgue measure zero, there exists an open set G so that A C G and m*(G \ A) < €. So we have
BCACGandG\B=(G\A)U(A\ B) (disjoint union). Using the subadditivity of the Lebesuge outer measure, we obtain

m*(G\B) =m"((G\ A)U (A\ B))
<m*"(G\A)+m"(A\B)
<e+m*(A\B)
< e+m"(A)
=e+m(A)

€e+0

= E,
which means B is Lebesgue measurable. Also, we have

0 <m(B)
=m"(B)
<m*(A)
=m(A)
=0,

which implies m(B) = 0. O

6. (Chapter 1, Problem 11) Let A be a subset of R and ¢ € R. Define A + ¢ to be the set
A+c={x+c|xeA}
(a) Prove m*(A +c¢) = m*(A).

Proof. Let S and S, be respective coverings of A and of A + ¢ by closed intervals. Then we can write S := {I;},
where [ are closed intervals with A C |J; Ix. If we write S, := {I; + c}, then Iy + ¢ are also closed intervals with
A+c C gk +c),and so S, is a covering of A + ¢ by closed intervals. So we have

o(8)= ) vl)

k
= Zv(lk +c)
k

=0(S.).
As a result, we obtain

m*(A) = inf{o(S) : S is a covering of A by closed intervals}
<o(S)
=0 (S,),

from which we can take infimums over S to obtain

m*(A) = inf{m*(A) : S is a covering of A + ¢ by closed intervals}
<inf{o(S;) : S is a covering of A + ¢ by closed intervals}
=m*(A+c).

Likewise, we obtain

m*(A +c¢) =inf{o(S.) : S, is a covering of A + ¢ by closed intervals}
<o (Se)
=o(S),



from which we can take infimums over S, to obtain

m*(A +c) =inf{m"(A +c) : S, is a covering of A + ¢ by closed intervals}
< inf{o(S) : S is a covering of A by closed intervals}
=m*(A).
So we have m*(A) < m*(A + ¢) and m*(A) > m* (A + ¢), which together imply m*(A) = m*(A + ¢). O
(b) Prove that A + ¢ is Lebesgue measurable if and only if A is Lebesgue measurable.

Proof. Suppose that A + ¢ is Lebesgue measurable. Then there exists an open set G € R so that A + ¢ € G and
m*(G \ (A +c)) < €. Define the set G + ¢ := {x + ¢ : x € G}, which is also an open set in R. Then we have

(G-c)\A={x—c:x-ce(G-c)\ A},
={x:xeG\(A+c)}
=G\ (A+c),

which implies, along with part (a),

m* (G -c)\A) =m" (G \ (A+0))

< €.

So A is Lebesgue measurable.

Conversely, suppose that A is Lebesgue measurable. Then there exists an openset G C Rsothat A C G and m*(G\A) <
€. Define the set G + ¢ := {x + ¢ : x € G}, which is also an open set in R. Then we have

(G+co)\(A+c)={x+c:xe(G+c)\(A+0)}
={x:xeG\A}
=G\ A,

which implies, along with part (a),

m* ((G+c)\(A+c))=m"(G\ A

< €.

So A + ¢ is Lebesgue measurable. O



