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Homework 2 solutions

1. (Chapter 1, Problem 2) Let � be a countable set of real numbers. Use the definition of outer measure to show <∗ (�) = 0.

Proof. We can assume that � is countably infinite, because the argument for the case of � being finite is similar. Since
� is countable, there exists a one-to-one correspondence of each element in � with the natural numbers. So we can let
{G: }∞:=1 be a sequence of points G: ∈ � that enumerate the countable set �. Given n > 0, consider the closed interval
�: := [G: − n

2:+2 , G: + n

2:+2 ], and consider the collection of closed intervals ( = {�: }. Then we have
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which implies the upper bound of the Lebesgue outer measure

<∗ (�) = inf{f(() : ( is a covering of � by closed intervals}
≤ f(()
< n.

Finally, since n > 0 is arbitrary, we conclude <∗ (�) = 0. �

2. (Chapter 1, Problem 3) Let ( and ) be coverings of a set � by intervals.

(a) Explain why ( ∪ ) is also a covering of � by intervals.

Proof. Since (, ) are coverings of � by intervals, we can write ( = {�: } and ) = {�: }, where we have � ⊆ ⋃
: �: and

� ⊆ ⋃
: �: . Then we have � ⊆ (⋃: �: ) ∪ (

⋃
: �: ) =

⋃
: (�: ∪ �: ). In other words, if we write ( ∪ ) = {⋃: (�: ∪ �: )},

then ( ∪ ) is a covering of � by intervals. �

(b) Show that f(( ∪ )) ≤ f(() + f()).

Proof. If intervals are closed: We have
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3. (Chapter 1, Problem 4) Show that for 2 ∈ R and fixed : , the set (known as a hyperplane in R= )

� = {G = (G1, G2, . . . , G: , . . . , G=) ∈ R= | G: = 2}

has Lebesgue outer measure 0.

Proof. Let n > 0 be given. For all ; = 1, 2, 3, . . . and some fixed : = 1, . . . , =, consider the closed interval �; ∈ R= defined by

�; := {G = (G1, . . . , G:−1, G:+1, . . . , G=) ∈ R=−1 : −; ≤ G8 ≤ ;, 8 = 1, . . . , :−1, :+1, . . . , =}×
[
2 − n

2;+2 (2;)=−1 , 2 +
n

2;+2 (2;)=−1

]
.

and consider the set ( = {�;}∞;=1. Then we have
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which implies the upper bound of the Lebesgue outer measure

<∗ (�) = inf{f(() : ( is a covering of � by closed intervals}
≤ f(()
< n.

Finally, since n > 0 is arbitrary, we conclude <∗ (�) = 0. �

4. (Chapter 1, Problem 5) Suppose � and � are both Lebesgue measurable. Prove that if both � and � have measure zero, then
� ∪ � is Lebesgue measurable and <(� ∪ �) = 0.

(a) Do this directly from the definition.

Proof. We have

0 ≤ <∗ (� ∪ �)
≤ <∗ (�) + <∗ (�)
= 0 + 0
= 0,

which implies <∗ (� ∪ �) = 0. So � ∪ � is Lebesgue measurable and satisfies <(� ∪ �) = 0.
By subadditivity of the Lebesgue outer measure, we have

0 ≤ <(� ∪ �)
= <∗ (� ∪ �)
≤ <∗ (�) + <∗ (�)
= <(�) + <(�)
= 0 + 0
= 0,

which implies <(� ∪ �) = 0. �

(b) Give a shorter proof by using Theorem 1.2.5.



Proof. By Theorem 1.2.5, � ∪ � we have

0 ≤ <(� ∪ �)
≤ <(�) + <(�)
= 0 + 0
= 0,

which implies <(� ∪ �) = 0. �

5. (Chapter 1, Problem 6) Suppose � has Lebesgue measure zero and � ⊆ �. Prove � is Lebesgue measurable and <(�) = 0.

Proof. Since � has Lebesgue measure zero, there exists an open set � so that � ⊆ � and <∗ (� \ �) < n . So we have
� ⊆ � ⊆ � and � \ � = (� \ �) ∪ (� \ �) (disjoint union). Using the subadditivity of the Lebesuge outer measure, we obtain

<∗ (� \ �) = <∗ ((� \ �) ∪ (� \ �))
≤ <∗ (� \ �) + <∗ (� \ �)
< n + <∗ (� \ �)
≤ n + <∗ (�)
= n + <(�)
= n + 0
= n,

which means � is Lebesgue measurable. Also, we have

0 ≤ <(�)
= <∗ (�)
≤ <∗ (�)
= <(�)
= 0,

which implies <(�) = 0. �

6. (Chapter 1, Problem 11) Let � be a subset of R and 2 ∈ R. Define � + 2 to be the set

� + 2 = {G + 2 | G ∈ �}

(a) Prove <∗ (� + 2) = <∗ (�).

Proof. Let ( and (2 be respective coverings of � and of � + 2 by closed intervals. Then we can write ( := {�: },
where �: are closed intervals with � ⊆ ⋃

: �: . If we write (2 := {�: + 2}, then �: + 2 are also closed intervals with
� + 2 ⊆ ⋃

: (�: + 2), and so (2 is a covering of � + 2 by closed intervals. So we have

f(() =
∑
:

E(�: )

=
∑
:

E(�: + 2)

= f((2).

As a result, we obtain

<∗ (�) = inf{f(() : ( is a covering of � by closed intervals}
≤ f(()
= f((2),

from which we can take infimums over (2 to obtain

<∗ (�) = inf{<∗ (�) : ( is a covering of � + 2 by closed intervals}
≤ inf{f((2) : ( is a covering of � + 2 by closed intervals}
= <∗ (� + 2).

Likewise, we obtain

<∗ (� + 2) = inf{f((2) : (2 is a covering of � + 2 by closed intervals}
≤ f((2)
= f((),



from which we can take infimums over (2 to obtain

<∗ (� + 2) = inf{<∗ (� + 2) : (2 is a covering of � + 2 by closed intervals}
≤ inf{f(() : ( is a covering of � by closed intervals}
= <∗ (�).

So we have <∗ (�) ≤ <∗ (� + 2) and <∗ (�) ≥ <∗ (� + 2), which together imply <∗ (�) = <∗ (� + 2). �

(b) Prove that � + 2 is Lebesgue measurable if and only if � is Lebesgue measurable.

Proof. Suppose that � + 2 is Lebesgue measurable. Then there exists an open set � ⊆ R so that � + 2 ⊆ � and
<∗ (� \ (� + 2)) < n . Define the set � + 2 := {G + 2 : G ∈ �}, which is also an open set in R. Then we have

(� − 2) \ � = {G − 2 : G − 2 ∈ (� − 2) \ �},
= {G : G ∈ � \ (� + 2)}
= � \ (� + 2),

which implies, along with part (a),

<∗ ((� − 2) \ �) = <∗ (� \ (� + 2))
< n.

So � is Lebesgue measurable.
Conversely, suppose that � is Lebesgue measurable. Then there exists an open set� ⊆ R so that � ⊆ � and<∗ (�\�) <
n . Define the set � + 2 := {G + 2 : G ∈ �}, which is also an open set in R. Then we have

(� + 2) \ (� + 2) = {G + 2 : G ∈ (� + 2) \ (� + 2)}
= {G : G ∈ � \ �}
= � \ �,

which implies, along with part (a),

<∗ ((� + 2) \ (� + 2)) = <∗ (� \ �
< n.

So � + 2 is Lebesgue measurable. �


