

MATH 151C - Advanced Calculus

Homework 1

Due date: Thursday, April 29 at 11:59pm

Instructions:

- * You are encourage to work in group but you have to write your individual solution
- * You can use any book, article or web-based mathematical material or computational software
- * You can ask Ryan, or Estela questions
- * Chegg, Math Stack Exchange, or any other source where you can copy solutions is not allowed
- * The problems from the textbook will be indicated by the chapter and corresponding number.
- * The homework needs to be typeset in "LaTeX" .

1. (Chapter 1, Problem 6) Let *E* be a measurable subset of \mathbb{R}^n . Show that given $\varepsilon > 0$ there is a closed set *F* and an open set *G* with $F \subseteq E \subseteq G$ and $m(G \setminus E) < \varepsilon$.

2. (Chapter 1, Problem 24) Let A be a subset of \mathbb{R}^n . Show that there is a set H of type G_{δ} so that

 $A \subseteq H$ and $m^*(A) = m^*(H)$.

3. (Chapter 2, Problem 1) Let $E \subseteq [a,b]$ and let X_E be the characteristic function of E. Prove that $X_E(x)$ is a measurable function if and only if E is a measurable set.

4. (Chapter 2, Problem 3) Let $[c,d] \subseteq [a,b]$. Show that if f is measurable on [a,b], then f is measurable on [c,d].

5. (Chapter 2, Problem 4) Find an example of a pointwise bounded sequence of measurable functions $\{f_n\}$ on [0,1] such that each $f_n(x)$ is a bounded function but $f^*(x) = \limsup_{n \to \infty} f_n(x)$ is not a bounded function. Suppose *A* has Lebesgue measure zero and $B \subseteq A$. Prove *B* is Lebesgue measurable and m(B) = 0.

6. (Chapter 2, Problem 8) Suppose f is measurable on I = [a, b] and $f(x) \ge 0$ a.e. on I. Prove that if the set $\{x \in I \mid f(x) > 0\}$ has positive measure, then for some positive integer n the set

$$E_n = \left\{ x \in I \mid f(x) > \frac{1}{n} \right\}$$

has positive measure.