Homework 3 solutions

1. (Chapter 1, Problem 6) Let E be a measurable subset of \mathbb{R}^{n}. Show that given $\epsilon>0$ there is a closed set F and an open set G with $F \subseteq E \subseteq G$ and $m(G \backslash F)<\epsilon$.

Proof. Let $\epsilon>0$ be given. Since $E \subseteq \mathbb{R}^{n}$ is measurable, there exists an open set G with $E \subseteq G$ and $m(G \backslash E)<\frac{\epsilon}{2}$. Also, by Proposition 1.2.23 of Nelson, there exists a closed set $F \subseteq E$ with $m^{*}(E \backslash F)<\frac{\epsilon}{2}$. Since $F \subseteq E$ is closed, it follows that $E \backslash F \subseteq E$ is open. According to Example 1.2 .23 of Nelson, which states that every open set is measurable; in particular, $E \backslash F$ is measurable. So we have $m(E \backslash F)=m^{*}(E \backslash F)<\frac{\epsilon}{2}$. Finally, when writing $G \backslash F=(G \backslash E) \cup(E \backslash F)$, where the union is disjoint, we have

$$
\begin{aligned}
m(G \backslash F) & =m((G \backslash E) \cup(E \backslash F)) \\
& =m(G \backslash E)+m(E \backslash F) \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon,
\end{aligned}
$$

as desired.
2. (Chapter 1, Problem 24) Let A be a subset of \mathbb{R}^{n}. Show that there is a set H of type G_{δ} so that

$$
A \subseteq H \text { and } m^{*}(A)=m^{*}(H) .
$$

Proof. By Theorem 1.1.13 of Nelson, for every $\epsilon>0$ there exists an open set G such that $A \subseteq G$ and

$$
m^{*}(G)<m^{*}(A)+\epsilon
$$

Now choose in particular $\epsilon:=\frac{1}{n}$ for any positive integer n. Then there exist countably many open sets H_{n} satisfying $A \subseteq H_{n}$ and

$$
m^{*}\left(H_{n}\right)<m^{*}(A)+\frac{1}{n}
$$

Now define $H:=\bigcap_{n=1}^{\infty} H_{n}$. Then H is the intersection of a countable collection of open sets H_{n}, and so according to Definition 1.2.20 of Nelson H is of type G_{δ}. Also, $A \subseteq H_{n}$ for all positive integers n implies $A_{n} \subseteq H$, as desired. Furthermore, $A \subseteq H$ implies $m^{*}(A) \leq m^{*}(H)$ and $H=\bigcap_{n=1}^{\infty} H_{n} \subseteq H_{n}$ implies $m^{*}(H) \leq m^{*}\left(H_{n}\right)$, both of which is justified by Proposition 1.1.8 of Nelson. So we have

$$
\begin{aligned}
m^{*}(A) & \leq m^{*}(H) \\
& \leq m^{*}\left(H_{n}\right) \\
& <m^{*}(A)+\frac{1}{n}
\end{aligned}
$$

which holds for all positive integers n, and so we conclude $m^{*}(A) \leq m^{*}(H) \leq m^{*}(A)$, which implies $m^{*}(A)=m^{*}(H)$, as desired.
3. (Chapter 2, Problem 1) Let $E \subseteq[a, b]$ and let \mathcal{X}_{E} be the characteristic function of E. Prove that $\mathcal{X}_{E}(x)$ is a measurable function if and only if E is a measurable set.

Proof. Suppose χ_{E} is a measurable function. Then, given $s \in \mathbb{R}$, the set $\left\{x \in[a, b]: \chi_{E}(x)>s\right\}$ is measurable. In particular, if we choose any $s \leq 0$, then we would have $\left\{x \in[a, b]: \chi_{E}(x)>s\right\}=E$, and so we conclude that E is measurable.
Conversely, suppose E is a measurable set.
(i) If $s \geq 1$, then $\left\{x \in[a, b]: \chi_{E}(x)>s\right\}=\varnothing$, which is a Lebesgue measurable set.
(ii) If $0 \leq s<1$, then $\left\{x \in[a, b]: \chi_{E}(x)>s\right\}=E$, which is, by our assumption, a Lebesgue measurable set.
(ii) If $s<0$, then $\left\{x \in[a, b]: \chi_{E}(x)>s\right\}=[a, b]$, which is a Lebesgue measurable set.

So χ_{E} is a measurable function.
4. (Chapter 2, Problem 3) Let $[c, d] \subseteq[a, b]$. Show that if f is measurable on $[a, b]$, then f is measurable on $[c, d]$.

Proof. Since f is measurable on $[a, b]$, the set $E_{a, b}=\{x \in[a, b]: f(x)>s\}$ is measurable. Notice that we have

$$
\begin{aligned}
E_{c, d} & =\{x \in[c, d]: f(x)>s\} \\
& =\{x \in[a, b]: f(x)>s\} \cap[c, d] \\
& =E_{a, b} \cap[c, d]
\end{aligned}
$$

Recall that $E_{a, b}$ is measurable by assumption. Also, $[c, d]$ is measurable because the open interval $G:=\left(c-\frac{\epsilon}{4}, d+\frac{\epsilon}{4}\right) \subseteq \mathbb{R}$ is an open set satisfying, for any $\epsilon>0$,

$$
\begin{aligned}
m^{*}(G \backslash[c, d]) & =m^{*}\left(\left(c-\frac{\epsilon}{4}, d+\frac{\epsilon}{4}\right) \backslash[c, d]\right) \\
& =m^{*}\left(\left(c-\frac{\epsilon}{4}, c\right)\right) \cup\left(\left(d, d+\frac{\epsilon}{4}\right)\right) \\
& \leq m^{*}\left(\left(c-\frac{\epsilon}{4}, c\right)\right)+m^{*}\left(\left(d, d+\frac{\epsilon}{4}\right)\right) \\
& =\frac{\epsilon}{4}+\frac{\epsilon}{4} \\
& =\frac{\epsilon}{2} \\
& <\epsilon .
\end{aligned}
$$

By Proposition 1.2.19 of Nelson, which asserts that any intersection of measurable sets is again measurable, we conclude that $E_{c, d}$ is measurable.
5. (Chapter 2, Problem 4) Find an example of a pointwise bounded sequence of measurable functions $\left\{f_{n}\right\}$ on $[0,1]$ such that each $f_{n}(x)$ is a bounded function but $f^{*}(x)=\limsup _{n \rightarrow \infty} f_{n}(x)$ is not a bounded function.

Proof. Define for instance

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<\frac{1}{n} \\ \frac{1}{x} & \text { if } \frac{1}{n} \leq x \leq 1\end{cases}
$$

Then, for any $s \in \mathbb{R}$, the set $\left\{x \in[0,1]: f_{n}(x)>s\right\}$ is one of $[0,1]$, an subinterval of $[0,1]$, or the empty set, all of which are measurable. So f_{n} is a measurable function. It is also bounded because we have $\left|f_{n}(x)\right| \leq n$. But we have

$$
\begin{aligned}
f^{*}(x) & =\limsup _{n \rightarrow \infty} f_{n}(x) \\
& =\lim _{n \rightarrow \infty} n \\
& =\infty,
\end{aligned}
$$

meaning that f^{*} is not a bounded function.
6. (Chapter 2, Problem 8) Suppose f is measurable on $I=[a, b]$ and $f(x) \geq 0$ a.e. on I. Prove that if the set $\{x \in I \mid f(x)>0\}$ has positive measure, then for some positive integer n the set

$$
E_{n}=\left\{x \in I \left\lvert\, f(x)>\frac{1}{n}\right.\right\}
$$

has positive measure.
Proof. Suppose to the contrary that E_{n} does not have positive measure; in other words, suppose $m\left(E_{n}\right)=0$. Since f is measurable, for any $s \in \mathbb{R}$, the set $\{x \in I: f(x)>s\}$ is a measurable set. In particular, $\{x \in I: f(x)>0\}$ and $\left\{x \in I: f(x)>\frac{1}{n}\right\}$ for any positive integer n are measurable sets. Furthermore, notice that we have

$$
\{x \in I: f(x)>0\}=\bigcup_{n=1}^{\infty} E_{n}
$$

So we have

$$
\begin{aligned}
m(\{x \in I: f(x)>0\}) & =m\left(\bigcup_{n=1}^{\infty} E_{n}\right) \\
& \leq \sum_{n=1}^{\infty} m\left(E_{n}\right) \\
& =\sum_{n=1}^{\infty} 0 \\
& =0
\end{aligned}
$$

meaning that the set $\{x \in I: f(x)>0\}$ has nonpositive measure. But this contradicts our assumption that the set $\{x \in I$: $f(x)>0\}$ has positive measure. So we conclude that E_{n} has positive measure.

