MATH 151C - Advanced Calculus

Homework 1

Due date: Thursday, May 6 at 11:59pm

Instructions:

* You are encourage to work in group but you have to write your individual solution
* You can use any book, article or web-based mathematical material or computational software
* You can ask Ryan, or Estela questions
* Chegg, Math Stack Exchange, or any other source where you can copy solutions is not allowed
* The problems from the textbook will be indicated by the chapter and corresponding number.
* The homework needs to be typeset in "LaTeX" .

1. (Chapter 2, Problem 13) Let f and g be bounded, Lebesgue integrable functions on $[a, b]$. Show that $f+g$ is Lebesgue integrable on $[a, b]$ and

$$
\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g
$$

Hint: Exercise 11 might be useful.
2. (Chapter 2, Problem 14) Let h be a bounded function that is zero a.e. in $[a, b]$. Show that h is Lebesgue integrable on $[a, b]$ and

$$
\int_{a}^{b} h=0 .
$$

3. (Chapter 2, Problem 15) Let φ be a simple function defined on $[a, b]$.
a) Show that φ is measurable on $[a, b]$.
b) Show that φ is Lebesgue integrable on $[a, b]$. Use the definition of the Lebesgue integral to compute $\int_{a}^{b} \varphi$.
4. (Chapter 2, Problem 16) Let $f \in \mathcal{L}[a, b]$. Show that if g is a bounded measurable function, then $f g \in \mathcal{L}[a, b]$.
5. (Chapter 2, Problem 17) Prove or give a counterexample: If $f, g \in \mathcal{L}[a, b]$, then $f g \in \mathcal{L}[a, b]$.
6. (Chapter 2, Problem 19) Let $f \in \mathcal{L}[a, b]$ and A and B be measurable subsets of $[a, b]$.
a) If $A \cap B=\emptyset$, show that

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f
$$

b) State and prove a result for the case that $A \cap B \neq \emptyset$.
c) What can you conclude if $A=[a, c]$ and $B=[c, b]$ for some $c \in(a, b)$?

