Homework 4 solutions

1. (Chapter 2, Problem 13) Let f and g be bounded, Lebesgue integrable functions on $[a, b]$. Show that $f+g$ is Lebesgue integrable on $[a, b]$ and

$$
\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g
$$

Hint: Exercise 11 might be useful.

Proof. Let $\epsilon>0$ be given. Since f, g are Lebesgue integrable functions on $[a, b]$, we have

$$
\begin{aligned}
& \overline{\int_{a}^{b}} f=\int_{a}^{b} f=\underline{\int_{a}^{b}} f \\
& \overline{\int_{a}^{b}} g=\int_{a}^{b} g=\underline{\int_{a}^{b} g}
\end{aligned}
$$

and, by Lemma 2.2.11 of Nelson, there exists a measurable partition P of $[a, b]$ that satisfies

$$
\begin{aligned}
& U(f, P)-L(f, P)<\frac{\epsilon}{2} \\
& U(g, P)-L(g, P)<\frac{\epsilon}{2}
\end{aligned}
$$

By Exercise 11 of Nelson, we have

$$
\begin{aligned}
& U(f+g, P) \leq U(f, P)+U(g, P) \\
& L(f+g, P) \geq L(f, P)+L(g, P)
\end{aligned}
$$

So we have

$$
\begin{aligned}
U(f+g, P)-L(f+g, P) & \leq(U(f, P)+U(g, P))-(L(f, P)+L(g, P)) \\
& =(U(f, P)-L(f, P))+(U(g, P)-L(g, P)) \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

and so by Lemma 2.2.11 of Nelson we conclude that $f+g$ is Lebesgue integrable on $[a, b]$. We also have

$$
\begin{aligned}
\overline{\int_{a}^{b}}(f+g) & \leq U(f+g, P) \\
& =U(f, P)+U(g, P)
\end{aligned}
$$

from which we take supremums over P is

$$
\begin{aligned}
\overline{\int_{a}^{b}}(f+g) & \leq \overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g \\
& =\int_{a}^{b} f+\int_{a}^{b} g
\end{aligned}
$$

and

$$
\begin{aligned}
\underline{\int_{a}^{b}}(f+g) & \geq L(f+g, P) \\
& =L(f, P)+L(g, P)
\end{aligned}
$$

We also have

$$
\begin{aligned}
\int_{a}^{b} f+\int_{a}^{b} g & \leq \frac{\underline{\int_{a}^{b}}}{\underline{b}}(f+g) \\
& \leq \frac{\int_{a}^{b}}{}(f+g)
\end{aligned}
$$

from which we take supremums over P is

$$
\begin{aligned}
\underline{\int_{a}^{b}}(f+g) & \leq \underline{\int_{a}^{b}} f+\underline{\int_{a}^{b} g} \\
& =\int_{a}^{b} f+\int_{a}^{b} g
\end{aligned}
$$

Combine the results together to conclude

$$
\begin{aligned}
\int_{a}^{b}(f+g) & =\underline{\int_{a}^{b}}(f+g) \\
& =\overline{\int_{a}^{b}}(f+g) \\
& =\int_{a}^{b} f+\int_{a}^{b} g
\end{aligned}
$$

as desired.
2. (Chapter 2, Problem 14) Let h be a bounded function that is zero a.e. in $[a, b]$. Show that h is Lebesgue integrable on $[a, b]$ and

$$
\int_{a}^{b} h=0
$$

Proof. Since, for any $s \in \mathbb{R}$, we have

$$
\{x \in[a, b]: f(x)>s\}= \begin{cases}{[a, b]} & \text { if } s \geq 0 \\ \varnothing & \text { if } s<0\end{cases}
$$

and $[a, b], \varnothing$ are both Lebesgue measurable sets, it follows that the zero function is a Lebesgue measurable function on $[a, b]$. Now, since we assume $h=0$ a.e. in $[a, b]$, Proposition 2.1.9 of Nelson asserts that h is also Lebesgue measurable on $[a, b]$. Furthermore, by Proposition 2.2.12 of Nelson, h is also Lebesuge integrable on $[a, b]$. Now, $h=0$ a.e. in $[a, b]$ means that the set $Z:=\{x \in[a, b]: h(x) \neq 0\}$ has Lebesgue measure zero; that is, $m(Z)=0$. Therefore, assuming Exercise 19, we have

$$
\begin{aligned}
\int_{a}^{b} h & =\int_{Z} h+\int_{[a, b] \backslash Z} h \\
& =\int_{Z} h+\int_{[a, b] \backslash Z} 0 \\
& =\int_{Z} h
\end{aligned}
$$

which implies

$$
\begin{aligned}
\left|\int_{a}^{b} h\right| & \leq \int_{Z}|h| \\
& \leq \int_{Z} \sup _{Z}|h| \\
& =\sup _{Z}|h| \int_{Z} 1 \\
& =\sup _{Z}|h| m(Z) \\
& =\sup _{Z}|h| \cdot 0 \\
& =0,
\end{aligned}
$$

which implies

$$
\int_{a}^{b} h=0
$$

as desired.
3. (Chapter 2, Problem 15) Let φ be a simple function defined on $[a, b]$.
(a) Show that φ is measurable on $[a, b]$.

Proof. Recall that the simple function is defined

$$
\varphi(x)=\sum_{k=1}^{n} a_{k} \chi_{E_{k}}(x)
$$

for all $x \in[a, b]$, where a_{k} are constants and $E_{k} \subseteq[a, b]$ are pairwise disjoint Lebesgue measurable sets. Note that this means we can write $[a, b]$ as the disjoint union

$$
[a, b]=\bigcup_{k=1}^{n} E_{k},
$$

which in particular implies that, for any $s \in \mathbb{R}$, we have

$$
\begin{aligned}
\{x \in[a, b]: \varphi(x)>s\} & =\bigcup_{k=1}^{n}\left\{x \in E_{k}: \varphi(x)>s\right\} \\
& =\bigcup_{k=1}^{n}\left\{x \in E_{k}: a_{k} \chi_{E_{k}}(x)>s\right\} \\
& =\bigcup_{k=1}^{n}\left\{x \in E_{k}: a_{k}>s\right\}
\end{aligned}
$$

where, depending on the value of s, each $\left\{x \in E_{k}: a_{k}>s\right\}$ is either E_{k} or \varnothing (both of which are of course measurable sets), and that is because a_{k} is constant. In any case, $\bigcup_{k=1}^{n}\left\{x \in E_{k}: a_{k}>s\right\}$ can be one either the entire finite union for $k=1, \ldots, n$, or any subset of this finite union (including the empty set). Any union of measurable sets is measurable, according to some proposition of Nelson. So we conclude that $\{x \in[a, b]: \varphi(x)>s\}$ is a measurable set, and so φ is measurable on $[a, b]$.
(b) Show that φ is Lebesgue integrable on $[a, b]$. Use the definition of the Lebesgue integral to compute $\int_{a}^{b} \varphi$.

Proof. Let $\epsilon>0$ be given, and choose the partition P consisting only of endpoints of E_{k} for $k=1, \ldots, n$. Then we can write

$$
\begin{aligned}
U(\varphi, P)-L(\varphi, P) & =\sum_{k=1}^{n}\left(\sup _{x \in E_{k}} \varphi\right) m\left(E_{k}\right)-\sum_{k=1}^{n}\left(\inf _{x \in E_{k}} \varphi\right) m\left(E_{k}\right) \\
& =\sum_{k=1}^{n} a_{k} m\left(E_{k}\right)-\sum_{k=1}^{n} a_{k} m\left(E_{k}\right) \\
& =0 \\
& <\epsilon
\end{aligned}
$$

and so φ is Lebesgue integrable on $[a, b]$. Furthermore, assuming Exercise 19, we have

$$
\begin{aligned}
\int_{a}^{b} \varphi & =\int_{a}^{b} \sum_{k=1}^{n} a_{k} \chi_{E_{k}} \\
& =\sum_{k=1}^{n} a_{k} \int_{a}^{b} \chi_{E_{k}} \\
& =\sum_{k=1}^{n} a_{k}\left(\int_{E_{k}} \chi_{E_{k}}+\int_{[a, b] \backslash E_{k}} \chi_{E_{k}}\right) \\
& =\sum_{k=1}^{n} a_{k}\left(\int_{E_{k}} 1+\int_{[a, b] \backslash E_{k}} 0\right) \\
& =\sum_{k=1}^{n} a_{k} m\left(E_{k}\right)
\end{aligned}
$$

as desired.
4. (Chapter 2, Problem 16) Let $f \in \mathcal{L}[a, b]$. Show that if g is a bounded measurable function, then $f g \in \mathcal{L}[a, b]$.

Proof. We will assume without proof that $f \in \mathcal{L}([a, b])$ implies $|f| \in \mathcal{L}([a, b])$, which means we have

$$
\int_{a}^{b}|f|<\infty
$$

Since g is bounded, there exists $M>0$ satisfying $|g(x)| \leq M$ for all $x \in[a, b]$. So we have

$$
\begin{aligned}
\left|\int_{a}^{b} f g\right| & \leq \int_{a}^{b}|f||g| \\
& \leq \int_{a}^{b}|f| M \\
& =\int_{a}^{b}|f| \\
& <\infty,
\end{aligned}
$$

meaning that we have $f g \in \mathcal{L}([a, b])$.
5. (Chapter 2, Problem 17) Prove or give a counterexample: If $f, g \in \mathcal{L}[a, b]$, then $f g \in \mathcal{L}[a, b]$.

Proof. We will give a counterexample. Define f, g by $f(x)=g(x)=\frac{1}{\sqrt{x}}$. Then we have $f, g \in \mathcal{L}([a, b])$, according to Example 2.3.3 of Nelson. But we also have $f(x) g(x)=\frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}}=\frac{1}{x}$, which means $f g \notin \mathcal{L}([a, b])$, according to Example 2.3.2 of Nelson.
6. (Chapter 2, Problem 19) Let $f \in \mathcal{L}[a, b]$ and A and B be measurable subsets of $[a, b]$.
(a) If $A \cap B=\varnothing$, show that

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f
$$

Proof. With $A \cap B=\varnothing$, we have $\chi_{A \cup B}=\chi_{A}+\chi_{B}$, which implies

$$
\begin{aligned}
\int_{A \cup B} f & =\int_{A \cup B} f \chi_{A \cup B} \\
& =\int_{A \cup B} f\left(\chi_{A}+\chi_{B}\right) \\
& =\int_{A \cup B}\left(f \chi_{A}+f \chi_{B}\right) \\
& =\int_{A \cup B} f \chi_{A}+\int_{A \cup B} f \chi_{B} \\
& =\int_{A} f \chi_{A}+\int_{B} f \chi_{B} \\
& =\int_{A} f+\int_{B} f
\end{aligned}
$$

as desired.
(b) State and prove a result for the case that $A \cap B \neq \varnothing$.

Proof. Since $A \cap B \neq \varnothing$, we have $\chi_{A \cup B}<\chi_{A}+\chi_{B}$, which implies

$$
\begin{aligned}
\left|\int_{A \cup B} f\right| & \leq \int_{A \cup B}|f| \\
& =\int_{A \cup B}|f| \chi_{A \cup B} \\
& <\int_{A \cup B}|f|\left(\chi_{A}+\chi_{B}\right) \\
& =\int_{A \cup B}\left(|f| \chi_{A}+|f| \chi_{B}\right) \\
& =\int_{A \cup B}|f| \chi_{A}+\int_{A \cup B}|f| \chi_{B} \\
& =\int_{A}|f| \chi_{A}+\int_{B}|f| \chi_{B} \\
& =\int_{A}|f|+\int_{B}|f|,
\end{aligned}
$$

as desired.
(c) What can you conclude if $A=[a, c]$ and $B=[c, b]$ for some $c \in(a, b)$?

Answer. We would have

$$
\begin{aligned}
\int_{a}^{b} f & =\int_{[a, c) \cup\{c\} \cup(c, b]} f \\
& =\int_{[a, c)} f \chi_{[a, b)}+\int_{\{c\}} f \chi_{\{c\}}+\int_{(c, b]} f \chi_{(c, b]} \\
& =\int_{[a, c)} f+0+\int_{(c, b]} f \\
& =\int_{[a, c)} f+\int_{(c, b]} f
\end{aligned}
$$

as desired.

