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Homework 4 solutions

1. (Chapter 2, Problem 13) Let f and g be bounded, Lebesgue integrable functions on [a, b]. Show that f + g is Lebesgue

integrable on [a, b] and
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Proof. Let € > 0 be given. Since f, g are Lebesgue integrable functions on [a, b], we have
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and, by Lemma 2.2.11 of Nelson, there exists a measurable partition P of [a, b] that satisfies

Hint: Exercise 11 might be useful.

U(f,P) - L(f,P) < g

€
U(g,P)-L(g,P) < 3
By Exercise 11 of Nelson, we have

U(f+8.P)<U(f.P)+U(g.P),
L(f+g.P) = L(f,P)+L(g.P)

So we have

U(f+g7P)_L(f+g’P) < (U(f’P)+U(g7P))_(L(f’P)+L(g’P))
=(U(f,P) - L(f,P))+(U(g,P) - L(g, P))
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and so by Lemma 2.2.11 of Nelson we conclude that f + g is Lebesgue integrable on [a, b]. We also have

" ab
/ (f+8) <U(f+5.P)
— U(f.P)+ U(g. P).

from which we take supremums over P is
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= abf+/abg

and

b
/ (f+g) > L(f+8.P)

=L(f,P)+L(g,P).

fabf+/abgs/ab<f+g>

s/ab<f+g),

We also have




from which we take supremums over P is

/ab(f+g)£/abf+/abg
=/ubf+/ubg~

/ab(f+g)=/ab(f+g)

Combine the results together to conclude

as desired. O

2. (Chapter 2, Problem 14) Let & be a bounded function that is zero a.e. in [a, b]. Show that /4 is Lebesgue integrable on [a, b]

and
b
/ h=0.
a

Proof. Since, for any s € R, we have

[a,b] ifs>0,
@ if s <O,

{x €[a,b]: f(x) >s}={

and [a, b], @ are both Lebesgue measurable sets, it follows that the zero function is a Lebesgue measurable function on [a, b].
Now, since we assume 2 = 0 a.e. in [a, b], Proposition 2.1.9 of Nelson asserts that 4 is also Lebesgue measurable on [a, b].
Furthermore, by Proposition 2.2.12 of Nelson, # is also Lebesuge integrable on [a, b]. Now, & = 0 a.e. in [a, b] means that
the set Z := {x € [a, b] : h(x) # 0} has Lebesgue measure zero; that is, m(Z) = 0. Therefore, assuming Exercise 19, we have
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which implies

= sup |h|m(Z)
z
=sup|h|-0
z
=0,
which implies
b
/ h=0,
a
as desired. O

3. (Chapter 2, Problem 15) Let ¢ be a simple function defined on [a, b].

(a) Show that ¢ is measurable on [a, b].



Proof. Recall that the simple function is defined

n

e(0) = ) arye (x)

k=1

for all x € [a, b], where ay, are constants and Ej C [a, b] are pairwise disjoint Lebesgue measurable sets. Note that this
means we can write [a, b] as the disjoint union

[a,b] = 0 Ey,
k=1

which in particular implies that, for any s € R, we have

{x €[a,b]: p(x)>s}= U{x € Ex : ¢(x) > s}
k=1

= U{x € Er : arxg, (x) > s}

n
ZU{XEEkZak>S},

where, depending on the value of s, each {x € Ey : ax > s} is either E; or @ (both of which are of course measurable
sets), and that is because ay is constant. In any case, J;_,{x € Ei : ax > s} can be one either the entire finite union for

k =1,...,n, or any subset of this finite union (including the empty set). Any union of measurable sets is measurable,
according to some proposition of Nelson. So we conclude that {x € [a, b] : ¢(x) > s} is a measurable set, and so ¢ is
measurable on [a, b]. O

b
(b) Show that ¢ is Lebesgue integrable on [a, b]. Use the definition of the Lebesgue integral to compute / ©.
a

Proof. Let € > 0 be given, and choose the partition P consisting only of endpoints of E for k = 1,...,n. Then we can
write
n n
U(g,P) = L(¢,P) = ) (sup @)m(Ex) = > (inf @)m(Ex)
k=1 *<Ex =1 <eEk
= Z agm(Ex) - Z agm(Ej)
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and so ¢ is Lebesgue integrable on [a, b]. Furthermore, assuming Exercise 19, we have

b b n
/ (12 =/ ZakXEk
a a k=1
n b
= Zak/ XEx
k=1 a
:Zak(/ XEk+/ XEk)
k=1 Ex [a,b]\Ex
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as desired. O

4. (Chapter 2, Problem 16) Let f € L][a, b]. Show that if g is a bounded measurable function, then fg € L[a, b].

Proof. We will assume without proof that f € L([a, b]) implies |f| € L([a, b]), which means we have

/ablf|<°°-



Since g is bounded, there exists M > 0 satisfying |g(x)| < M for all x € [a, b]. So we have

meaning that we have fg € L([a, b]).
5. (Chapter 2, Problem 17) Prove or give a counterexample: If f, g € L[a, b], then fg € L[a, b].

Proof. We will give a counterexample. Define f,g by f(x) =
Example 2.3.3 of Nelson. But we also have f(x)g(x) = —\LF =

2.3.2 of Nelson.

6. (Chapter 2, Problem 19) Let f € L[a, b] and A and B be measurable subsets of [a, b].

(a) If AN B = @, show that

" e S/ablfllgl
s/ame
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8(x) = 5.
L
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Proof. With AN B = @, we have yaup = xa + x5, which implies

as desired.
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(b) State and prove a result for the case that AN B # 2.

Proof. Since AN B # @, we have yaup < xa + xB, which implies

as desired.

(c) What can you conclude if A =

Ju?
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[a,c] and B = [c, b] for some ¢ € (a, b) ?

Then we have f,g € L([a,b]), according to
which means fg ¢ L([a, b]), according to Example

O



Answer. We would have

as desired.
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