MATH 165B discussion Ryan Ta
University of California, Riverside Spring 2022

Solutions to suggested homework problems from
Complex Variables and Applications, Ninth Edition by James Brown and Ruel Churchill
Homework 2: Section 77, Exercises 1(a)(b)(c), 2(a)(b)(c)(d), 3, 4(a)(b)(c), 6

77.1. Find the residue at the singularity z = O of the function
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The residue at the singularity z = O is the coeflicient of —, which is . O
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The residue at the singularity z = 0 is the coeflicient of % which is @ O

77.2. Use Cauchy’s residue theorem (Section 76) to evaluate the integral of each of these func-
tions around the circle |z| = 3 in the positive sense:
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The residue at the singularity z = O is the coeflicient of —, which is
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The residue at the singularity z = O is the coefficient of —, which is
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By Cauchy’s residue theorem, we conclude
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Solution. We can split the integrand into partial fractions:
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By the linearity of the contour integral, we have
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Now, by Cauchy’s residue theorem, we obtain
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77.3. In the example in Section 76, two residues were used to evaluate the integral
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where C is the positively oriented circle |z| = 2. Evaluate this integral once again by
using the theorem in Section 77 and finding only one residue.
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Solution. By setting f(z) = , we have
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The residue at the singularity z = 0 is the coeflicient of —, which is
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By the theorem in Section 77, we obtain
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77.4. Use the theorem in Section 77, involving a single residue, to evaluate the integral of each
of these functions around the circle |z| = 2 in the positive sense:
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The residue at the singularity z = 0 is the coeflicient of —, which is
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By the theorem in Section 77, we obtain
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Solution. By setting f(z) = we have
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The residue at the singularity z = O is the coeflicient of —, which is
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By the theorem in Section 77, we obtain
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and so we have
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The residue at the singularity z = O is the coeflicient of —, which is
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77.6. Suppose that a function f is analytic throughout the finite plane except for a finite number
of singular points z1, z2, . . . , 2. Show that
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Cauchy’s residue theorem from Section 76 states:
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