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Solutions to suggested homework problems from
Complex Variables and Applications, Ninth Edition by James Brown and Ruel Churchill

Homework 2: Section 77, Exercises 1(a)(b)(c), 2(a)(b)(c)(d), 3, 4(a)(b)(c), 6

77.1. Find the residue at the singularity 𝑧 = 0 of the function

(a)
1

𝑧 + 𝑧2 .

Solution. We have
1

𝑧 + 𝑧2 =
1

𝑧(1 + 𝑧)

=
1
𝑧

1
1 − (−𝑧)

=
1
𝑧

∞∑︁
𝑛=0

(−𝑧)𝑛

= 𝑧−1
∞∑︁
𝑛=0

(−1)𝑛𝑧𝑛

=

∞∑︁
𝑛=0

(−1)𝑛𝑧𝑛−1

= (−1)0𝑧0−1 +
∞∑︁
𝑛=1

(−1)𝑛𝑧𝑛−1

=
1
𝑧
+

∞∑︁
𝑛=1

(−1)𝑛𝑧𝑛−1.

The residue at the singularity 𝑧 = 0 is the coefficient of
1
𝑧

, which is 1 . □

(b) 𝑧 cos
(
1
𝑧

)
.

Solution. We have

𝑧 cos
(
1
𝑧

)
= 𝑧

∞∑︁
𝑛=0

(−1)𝑛
( 1
𝑧
)2𝑛

(2𝑛)!

= 𝑧

∞∑︁
𝑛=0

(−1)𝑛
(2𝑛)! 𝑧

−2𝑛

=

∞∑︁
𝑛=0

(−1)𝑛
(2𝑛)! 𝑧

1−2𝑛

=
(−1)0

(2(0))! 𝑧
1−2(0) + (−1)1

(2(1))! 𝑧
1−2(1) +

∞∑︁
𝑛=2

(−1)𝑛
(2𝑛)! 𝑧

1−2𝑛

= 𝑧 − 1
2𝑧

+
∞∑︁
𝑛=2

(−1)𝑛
(2𝑛)! 𝑧

1−2𝑛.



The residue at the singularity 𝑧 = 0 is the coefficient of
1
𝑧

, which is −1
2

. □

(c)
𝑧 − sin(𝑧)

𝑧
.

Solution. We have

𝑧 − sin(𝑧)
𝑧

=
𝑧 − ∑∞

𝑛=0(−1)𝑛 𝑧2𝑛+1

(2𝑛+1)!
𝑧

=
𝑧(1 − ∑∞

𝑛=0(−1)𝑛 𝑧2𝑛

(2𝑛+1)! )
𝑧

= 1 −
∞∑︁
𝑛=0

(−1)𝑛 𝑧2𝑛

(2𝑛 + 1)!

= 1 −
(
(−1)0 𝑧2(0)

(2(0))! +
∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

(2𝑛 + 1)!

)
= 1 −

(
1
2
+

∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

(2𝑛 + 1)!

)
=

1
2
−

∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

(2𝑛 + 1)!

=
0
𝑧
+ 1

2
−

∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

(2𝑛 + 1)! .

The residue at the singularity 𝑧 = 0 is the coefficient of
1
𝑧

, which is 0 . □

77.2. Use Cauchy’s residue theorem (Section 76) to evaluate the integral of each of these func-
tions around the circle |𝑧 | = 3 in the positive sense:

(a)
exp(−𝑧)

𝑧2 .

Solution. We have

exp(−𝑧)
𝑧2 =

1
𝑧2

∞∑︁
𝑛=0

(−𝑧)𝑛
𝑛!

= 𝑧−2
∞∑︁
𝑛=0

(−1)𝑛
𝑛!

𝑧𝑛

=

∞∑︁
𝑛=0

(−1)𝑛
𝑛!

𝑧𝑛−2

=
(−1)0

0!
𝑧0−2 + (−1)1

1!
𝑧1−2 +

∞∑︁
𝑛=0

(−1)𝑛
𝑛!

𝑧𝑛−2

=
1
𝑧2 − 1

𝑧
+

∞∑︁
𝑛=0

(−1)𝑛
𝑛!

𝑧𝑛−2.



The residue at the singularity 𝑧 = 0 is the coefficient of
1
𝑧

, which is

Res
𝑧=0

exp(−𝑧)
𝑧2 = −1.

By Cauchy’s residue theorem, we conclude∫
|𝑧 |=3

exp(−𝑧)
𝑧2 𝑑𝑧 = 2𝜋𝑖Res

𝑧=0

exp(−𝑧)
𝑧2

= 2𝜋𝑖(−1)
= −2𝜋𝑖 .

□

(b)
exp(−𝑧)
(𝑧 − 1)2 .

Solution. We have

exp(−𝑧)
(𝑧 − 1)2 =

exp(−1 − 𝑧 + 1)
(𝑧 − 1)2

=
exp(−1 − (𝑧 − 1))

(𝑧 − 1)2

=
exp(−1) exp(−(𝑧 − 1))

(𝑧 − 1)2

=
𝑒−1

(𝑧 − 1)2

∞∑︁
𝑛=0

(−(𝑧 − 1))𝑛
𝑛!

=
1
𝑒
(𝑧 − 1)−2

∞∑︁
𝑛=0

(−1)𝑛
𝑛!

(𝑧 − 1)𝑛

=
1
𝑒

∞∑︁
𝑛=0

(−1)𝑛
𝑛!

(𝑧 − 1)𝑛−2

=
1
𝑒

(
(−1)0

0!
(𝑧 − 1)0−2 + (−1)1

1!
(𝑧 − 1)1−2 +

∞∑︁
𝑛=2

(−1)𝑛
𝑛!

(𝑧 − 1)𝑛−2

)
=

1
𝑒

(
1

(𝑧 − 1)2 − 1
𝑧 − 1

+
∞∑︁
𝑛=2

(−1)𝑛
𝑛!

(𝑧 − 1)𝑛−2

)
=

1
𝑒(𝑧 − 1)2 − 1

𝑒(𝑧 − 1) +
∞∑︁
𝑛=2

(−1)𝑛
𝑒𝑛!

(𝑧 − 1)𝑛−2.

The residue at the singularity 𝑧 = 0 is the coefficient of
1
𝑧

, which is

Res
𝑧=0

exp(−𝑧)
(𝑧 − 1)2 = −1

𝑒
.



By Cauchy’s residue theorem, we conclude∫
|𝑧 |=3

𝑧2 exp
(
1
𝑧

)
𝑑𝑧 = 2𝜋𝑖Res

𝑧=0
𝑧2 exp

(
1
𝑧

)
= 2𝜋𝑖

(
−1
𝑒

)
= −2𝜋𝑖

𝑒
.

□

(c) 𝑧2 exp
(
1
𝑧

)
.

Solution. We have

𝑧2 exp
(
1
𝑧

)
= 𝑧2

∞∑︁
𝑛=0

( 1
𝑧
)𝑛

𝑛!

= 𝑧2
∞∑︁
𝑛=0

1
𝑛
𝑧−𝑛

=

∞∑︁
𝑛=0

1
𝑛
𝑧2−𝑛

=
1
0!
𝑧2−0 + 1

1!
𝑧2−1 + 1

2!
𝑧2−2 + 1

3!
𝑧2−3 +

∞∑︁
𝑛=4

1
𝑛
𝑧2−𝑛

= 𝑧2 + 𝑧 + 1
2
+ 1

6𝑧
+

∞∑︁
𝑛=4

1
𝑛
𝑧2−𝑛.

The residue at the singularity 𝑧 = 1 is the coefficient of
1

𝑧 − 1
, which is

Res
𝑧=0

exp(−𝑧)
(𝑧 − 1)2 =

1
6
.

By Cauchy’s residue theorem, we conclude∫
|𝑧 |=3

exp(−𝑧)
(𝑧 − 1)2 𝑑𝑧 = 2𝜋𝑖Res

𝑧=1

exp(−𝑧)
(𝑧 − 1)2

= 2𝜋𝑖
(
1
6

)
=

𝜋𝑖

3
.

□

(d)
𝑧 + 1
𝑧2 − 2𝑧

.



Solution. We can split the integrand into partial fractions:

𝑧 + 1
𝑧2 − 2𝑧

=
3

2(𝑧 − 2) −
1
2𝑧

.

By the linearity of the contour integral, we have∫
|𝑧 |=3

𝑧 + 1
𝑧2 − 2𝑧

𝑑𝑧 =

∫
|𝑧 |=3

3
2(𝑧 − 2) −

1
2𝑧

𝑑𝑧

=
3
2

∫
|𝑧 |=3

1
𝑧 − 2

𝑑𝑧 − 1
2

∫
|𝑧 |=3

1
𝑧
𝑑𝑧.

Now, by Cauchy’s residue theorem, we obtain∫
|𝑧 |=3

1
𝑧 − 2

𝑑𝑧 = 2𝜋𝑖Res
𝑧=2

1
𝑧 − 2

= 2𝜋𝑖(1)
= 2𝜋𝑖

and ∫
|𝑧 |=3

1
𝑧
𝑑𝑧 = 2𝜋𝑖Res

𝑧=0

1
𝑧

= 2𝜋𝑖(1)
= 2𝜋𝑖.

Therefore, we obtain∫
|𝑧 |=3

𝑧 + 1
𝑧2 − 2𝑧

𝑑𝑧 =
3
2

∫
|𝑧 |=3

1
𝑧 − 2

𝑑𝑧 − 1
2

∫
|𝑧 |=3

1
𝑧
𝑑𝑧

=
3
2
(2𝜋𝑖) − 1

2
(2𝜋𝑖)

= 3𝜋𝑖 − 𝜋𝑖

= 2𝜋𝑖 .

□

77.3. In the example in Section 76, two residues were used to evaluate the integral∫
𝐶

4𝑧 − 5
𝑧(𝑧 − 1) 𝑑𝑧,

where 𝐶 is the positively oriented circle |𝑧 | = 2. Evaluate this integral once again by
using the theorem in Section 77 and finding only one residue.



Solution. By setting 𝑓 (𝑧) = 4𝑧 − 5
𝑧(𝑧 − 1) , we have

𝑓

(
1
𝑧

)
=

4( 1
𝑧
) − 5

1
𝑧
( 1
𝑧
− 1)

=
4( 1

𝑧
) − 5

1
𝑧
( 1
𝑧
− 1)

𝑧2

𝑧2

=
4𝑧 − 5𝑧2

1 − 𝑧

=
𝑧(4 − 5𝑧)

1 − 𝑧
,

and so we have

1
𝑧2 𝑓

(
1
𝑧

)
=

1
𝑧2

𝑧(4 − 5𝑧)
1 − 𝑧

=
4 − 5𝑧

𝑧

1
1 − 𝑧

=
4 − 5𝑧

𝑧

∞∑︁
𝑛=0

𝑧𝑛

= (4 − 5𝑧)𝑧−1
∞∑︁
𝑛=0

𝑧𝑛

= (4 − 5𝑧)
∞∑︁
𝑛=0

𝑧𝑛−1

= (4 − 5𝑧)
(
𝑧0−1 +

∞∑︁
𝑛=1

𝑧𝑛−1

)
= (4 − 5𝑧)

(
1
𝑧
+

∞∑︁
𝑛=1

𝑧𝑛−1

)
= (4 − 5𝑧) 1

𝑧
+ (4 − 5𝑧)

∞∑︁
𝑛=1

𝑧𝑛−1

=
4
𝑧
− 5 +

∞∑︁
𝑛=1

(4 − 5𝑧)𝑧𝑛−1

=
4
𝑧
− 5 +

∞∑︁
𝑛=1

(4𝑧𝑛−1 − 5𝑧𝑛).

The residue at the singularity 𝑧 = 0 is the coefficient of
1
𝑧

, which is

Res
𝑧=0

[
1
𝑧2 𝑓

(
1
𝑧

)]
= 4.



By the theorem in Section 77, we obtain∫
|𝑧 |=2

4𝑧 − 5
𝑧(𝑧 − 1) 𝑑𝑧 = 2𝜋𝑖Res

𝑧=0

[
1
𝑧2 𝑓

(
1
𝑧

)]
= 2𝜋𝑖(4)
= 8𝜋𝑖 .

□

77.4. Use the theorem in Section 77, involving a single residue, to evaluate the integral of each
of these functions around the circle |𝑧 | = 2 in the positive sense:

(a)
𝑧5

1 − 𝑧3 .

Solution. By setting 𝑓 (𝑧) = 𝑧5

1 − 𝑧3 , we have

𝑓

(
1
𝑧

)
=

( 1
𝑧
)5

1 − ( 1
𝑧
)3

=

1
𝑧5

1 − 1
𝑧3

=

1
𝑧5

1 − 1
𝑧3

𝑧3

𝑧3

=

1
𝑧2

𝑧3 − 1

=
1

𝑧2(𝑧3 − 1)
,



and so we have

1
𝑧2 𝑓

(
1
𝑧

)
=

1
𝑧2

1
𝑧2(𝑧3 − 1)

=
1

𝑧4(𝑧3 − 1)

= − 1
𝑧4

1
1 − 𝑧3

= − 1
𝑧4

∞∑︁
𝑛=0

(𝑧3)𝑛

= −𝑧−4
∞∑︁
𝑛=0

𝑧3𝑛

= −
∞∑︁
𝑛=0

𝑧3𝑛−4

= −
(
𝑧3(0)−4 + 𝑧3(1)−4 +

∞∑︁
𝑛=2

𝑧3𝑛−4

)
= −

(
1
𝑧4 + 1

𝑧
+

∞∑︁
𝑛=2

𝑧3𝑛−4

)
= − 1

𝑧4 − 1
𝑧
−

∞∑︁
𝑛=2

𝑧3𝑛−4.

The residue at the singularity 𝑧 = 0 is the coefficient of
1
𝑧

, which is

Res
𝑧=0

[
1
𝑧2 𝑓

(
1
𝑧

)]
= −1.

By the theorem in Section 77, we obtain∫
|𝑧 |=2

𝑧5

1 − 𝑧3 𝑑𝑧 = 2𝜋𝑖Res
𝑧=0

[
1
𝑧2 𝑓

(
1
𝑧

)]
= 2𝜋𝑖(−1)
= −2𝜋𝑖 .

□

(b)
1

1 + 𝑧2 .



Solution. By setting 𝑓 (𝑧) = 1
1 + 𝑧2 , we have

𝑓

(
1
𝑧

)
=

1
1 + ( 1

𝑧
)2

=
1

1 + 1
𝑧2

=
1

1 + 1
𝑧2

𝑧2

𝑧2

=
𝑧2

𝑧2 + 1

=
𝑧2

1 + 𝑧2 ,

and so we have
1
𝑧2 𝑓

(
1
𝑧

)
=

1
𝑧2

𝑧2

1 + 𝑧2

=
1

1 + 𝑧2

=
1

1 − (−𝑧2)

=

∞∑︁
𝑛=0

(−𝑧2)𝑛

=
0
𝑧
+

∞∑︁
𝑛=0

(−1)𝑛𝑧2𝑛

The residue at the singularity 𝑧 = 0 is the coefficient of
1
𝑧

, which is

Res
𝑧=0

[
1
𝑧2 𝑓

(
1
𝑧

)]
= 0.

By the theorem in Section 77, we obtain∫
|𝑧 |=2

𝑧5

1 − 𝑧3 𝑑𝑧 = 2𝜋𝑖Res
𝑧=0

[
1
𝑧2 𝑓

(
1
𝑧

)]
= 2𝜋𝑖(0)
= 0 .

□

(c)
1
𝑧

.

Solution. By setting 𝑓 (𝑧) = 1
𝑧

, we have

𝑓

(
1
𝑧

)
=

1
1
𝑧

= 𝑧,



and so we have
1
𝑧2 𝑓

(
1
𝑧

)
=

1
𝑧2 𝑧

=
1
𝑧
.

The residue at the singularity 𝑧 = 0 is the coefficient of
1
𝑧

, which is

Res
𝑧=0

[
1
𝑧2 𝑓

(
1
𝑧

)]
= 1.

By the theorem in Section 77, we obtain∫
|𝑧 |=2

𝑧5

1 − 𝑧3 𝑑𝑧 = 2𝜋𝑖Res
𝑧=0

[
1
𝑧2 𝑓

(
1
𝑧

)]
= 2𝜋𝑖(1)
= 2𝜋𝑖 .

□

77.6. Suppose that a function 𝑓 is analytic throughout the finite plane except for a finite number
of singular points 𝑧1, 𝑧2, . . . , 𝑧𝑛. Show that

Res
𝑧=𝑧1

𝑓 (𝑧) + Res
𝑧=𝑧2

𝑓 (𝑧) + · · · + Res
𝑧=𝑧𝑛

𝑓 (𝑧) + Res
𝑧=∞

𝑓 (𝑧) = 0.

Proof. First, let us write

Res
𝑧=𝑧1

𝑓 (𝑧) + Res
𝑧=𝑧2

𝑓 (𝑧) + · · · + Res
𝑧=𝑧𝑛

𝑓 (𝑧) + Res
𝑧=∞

𝑓 (𝑧) = 0.

as its more condensed version:
𝑛∑︁

𝑘=1

Res
𝑧=𝑧𝑘

𝑓 (𝑧) + Res
𝑧=∞

𝑓 (𝑧) = 0.

Cauchy’s residue theorem from Section 76 states:∫
𝐶

𝑓 (𝑧) 𝑑𝑧 = 2𝜋𝑖
𝑛∑︁

𝑘=1

Res
𝑧=𝑧𝑘

𝑓 (𝑧).

Equation (2) of Section 77 states:∫
𝐶

𝑓 (𝑧) 𝑑𝑧 = −2𝜋𝑖Res
𝑧=∞

𝑓 (𝑧).

Therefore, we have
𝑛∑︁

𝑘=1

Res
𝑧=𝑧𝑘

𝑓 (𝑧) + Res
𝑧=∞

𝑓 (𝑧) = 1
2𝜋𝑖

(
2𝜋𝑖

𝑛∑︁
𝑘=1

Res
𝑧=𝑧𝑘

𝑓 (𝑧) − −2𝜋𝑖Res
𝑧=∞

𝑓 (𝑧)
)

=
1

2𝜋𝑖

(∫
𝐶

𝑓 (𝑧) 𝑑𝑧 −
∫
𝐶

𝑓 (𝑧) 𝑑𝑧
)

=
1

2𝜋𝑖
0

= 0,

as desired. □


