Solutions to suggested homework problems from
Complex Variables and Applications, Ninth Edition by James Brown and Ruel Churchill Homework 2: Section 77, Exercises 1(a)(b)(c), 2(a)(b)(c)(d), 3, 4(a)(b)(c), 6
77.1. Find the residue at the singularity $z=0$ of the function
(a) $\frac{1}{z+z^{2}}$.

Solution. We have

$$
\begin{aligned}
\frac{1}{z+z^{2}} & =\frac{1}{z(1+z)} \\
& =\frac{1}{z} \frac{1}{1-(-z)} \\
& =\frac{1}{z} \sum_{n=0}^{\infty}(-z)^{n} \\
& =z^{-1} \sum_{n=0}^{\infty}(-1)^{n} z^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} z^{n-1} \\
& =(-1)^{0} z^{0-1}+\sum_{n=1}^{\infty}(-1)^{n} z^{n-1} \\
& =\frac{1}{z}+\sum_{n=1}^{\infty}(-1)^{n} z^{n-1} .
\end{aligned}
$$

The residue at the singularity $z=0$ is the coefficient of $\frac{1}{z}$, which is 1 .
(b) $z \cos \left(\frac{1}{z}\right)$.

Solution. We have

$$
\begin{aligned}
z \cos \left(\frac{1}{z}\right) & =z \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{z}\right)^{2 n}}{(2 n)!} \\
& =z \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{-2 n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{1-2 n} \\
& =\frac{(-1)^{0}}{(2(0))!} z^{1-2(0)}+\frac{(-1)^{1}}{(2(1))!} z^{1-2(1)}+\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{1-2 n} \\
& =z-\frac{1}{2 z}+\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{1-2 n}
\end{aligned}
$$

The residue at the singularity $z=0$ is the coefficient of $\frac{1}{z}$, which is $-\frac{1}{2}$.
(c) $\frac{z-\sin (z)}{z}$.

Solution. We have

$$
\begin{aligned}
\frac{z-\sin (z)}{z} & =\frac{z-\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}}{z} \\
& =\frac{z\left(1-\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!}\right)}{z} \\
& =1-\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!} \\
& =1-\left((-1)^{0} \frac{z^{2(0)}}{(2(0))!}+\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!}\right) \\
& =1-\left(\frac{1}{2}+\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!}\right) \\
& =\frac{1}{2}-\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!} \\
& =\frac{0}{z}+\frac{1}{2}-\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!}
\end{aligned}
$$

The residue at the singularity $z=0$ is the coefficient of $\frac{1}{z}$, which is 0 .
77.2. Use Cauchy's residue theorem (Section 76) to evaluate the integral of each of these functions around the circle $|z|=3$ in the positive sense:
(a) $\frac{\exp (-z)}{z^{2}}$.

Solution. We have

$$
\begin{aligned}
\frac{\exp (-z)}{z^{2}} & =\frac{1}{z^{2}} \sum_{n=0}^{\infty} \frac{(-z)^{n}}{n!} \\
& =z^{-2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} z^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} z^{n-2} \\
& =\frac{(-1)^{0}}{0!} z^{0-2}+\frac{(-1)^{1}}{1!} z^{1-2}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} z^{n-2} \\
& =\frac{1}{z^{2}}-\frac{1}{z}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} z^{n-2} .
\end{aligned}
$$

The residue at the singularity $z=0$ is the coefficient of $\frac{1}{z}$, which is

$$
\operatorname{Res}_{z=0} \frac{\exp (-z)}{z^{2}}=-1
$$

By Cauchy's residue theorem, we conclude

$$
\begin{aligned}
\int_{|z|=3} \frac{\exp (-z)}{z^{2}} d z & =2 \pi i \operatorname{Res} \frac{\exp (-z)}{z^{2}} \\
& =2 \pi i(-1) \\
& =-2 \pi i
\end{aligned}
$$

(b) $\frac{\exp (-z)}{(z-1)^{2}}$.

Solution. We have

$$
\begin{aligned}
\frac{\exp (-z)}{(z-1)^{2}} & =\frac{\exp (-1-z+1)}{(z-1)^{2}} \\
& =\frac{\exp (-1-(z-1))}{(z-1)^{2}} \\
& =\frac{\exp (-1) \exp (-(z-1))}{(z-1)^{2}} \\
& =\frac{e^{-1}}{(z-1)^{2}} \sum_{n=0}^{\infty} \frac{(-(z-1))^{n}}{n!} \\
& =\frac{1}{e}(z-1)^{-2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}(z-1)^{n} \\
& =\frac{1}{e} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}(z-1)^{n-2} \\
& =\frac{1}{e}\left(\frac{(-1)^{0}}{0!}(z-1)^{0-2}+\frac{(-1)^{1}}{1!}(z-1)^{1-2}+\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n!}(z-1)^{n-2}\right) \\
& =\frac{1}{e}\left(\frac{1}{(z-1)^{2}}-\frac{1}{z-1}+\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n!}(z-1)^{n-2}\right) \\
& =\frac{1}{e(z-1)^{2}}-\frac{1}{e(z-1)}+\sum_{n=2}^{\infty} \frac{(-1)^{n}}{e n!}(z-1)^{n-2} .
\end{aligned}
$$

The residue at the singularity $z=0$ is the coefficient of $\frac{1}{z}$, which is

$$
\operatorname{Res}_{z=0} \frac{\exp (-z)}{(z-1)^{2}}=-\frac{1}{e}
$$

By Cauchy's residue theorem, we conclude

$$
\begin{aligned}
\int_{|z|=3} z^{2} \exp \left(\frac{1}{z}\right) d z & =2 \pi i \operatorname{Res}_{z=0} z^{2} \exp \left(\frac{1}{z}\right) \\
& =2 \pi i\left(-\frac{1}{e}\right) \\
& =-\frac{2 \pi i}{e} .
\end{aligned}
$$

(c) $z^{2} \exp \left(\frac{1}{z}\right)$.

Solution. We have

$$
\begin{aligned}
z^{2} \exp \left(\frac{1}{z}\right) & =z^{2} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{z}\right)^{n}}{n!} \\
& =z^{2} \sum_{n=0}^{\infty} \frac{1}{n} z^{-n} \\
& =\sum_{n=0}^{\infty} \frac{1}{n} z^{2-n} \\
& =\frac{1}{0!} z^{2-0}+\frac{1}{1!} z^{2-1}+\frac{1}{2!} z^{2-2}+\frac{1}{3!} z^{2-3}+\sum_{n=4}^{\infty} \frac{1}{n} z^{2-n} \\
& =z^{2}+z+\frac{1}{2}+\frac{1}{6 z}+\sum_{n=4}^{\infty} \frac{1}{n} z^{2-n} .
\end{aligned}
$$

The residue at the singularity $z=1$ is the coefficient of $\frac{1}{z-1}$, which is

$$
\operatorname{Res}_{z=0} \frac{\exp (-z)}{(z-1)^{2}}=\frac{1}{6}
$$

By Cauchy's residue theorem, we conclude

$$
\begin{aligned}
\int_{|z|=3} \frac{\exp (-z)}{(z-1)^{2}} d z & =2 \pi i \operatorname{Res} \frac{\exp (-z)}{(z-1)^{2}} \\
& =2 \pi i\left(\frac{1}{6}\right) \\
& =\frac{\pi i}{3}
\end{aligned}
$$

(d) $\frac{z+1}{z^{2}-2 z}$.

Solution. We can split the integrand into partial fractions:

$$
\frac{z+1}{z^{2}-2 z}=\frac{3}{2(z-2)}-\frac{1}{2 z} .
$$

By the linearity of the contour integral, we have

$$
\begin{aligned}
\int_{|z|=3} \frac{z+1}{z^{2}-2 z} d z & =\int_{|z|=3} \frac{3}{2(z-2)}-\frac{1}{2 z} d z \\
& =\frac{3}{2} \int_{|z|=3} \frac{1}{z-2} d z-\frac{1}{2} \int_{|z|=3} \frac{1}{z} d z .
\end{aligned}
$$

Now, by Cauchy's residue theorem, we obtain

$$
\begin{aligned}
\int_{|z|=3} \frac{1}{z-2} d z & =2 \pi i \operatorname{Res} \frac{1}{z=2} \frac{z-2}{z} \\
& =2 \pi i(1) \\
& =2 \pi i
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{|z|=3} \frac{1}{z} d z & =2 \pi i \operatorname{Res} \frac{1}{z=0} \frac{1}{z} \\
& =2 \pi i(1) \\
& =2 \pi i .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
\int_{|z|=3} \frac{z+1}{z^{2}-2 z} d z & =\frac{3}{2} \int_{|z|=3} \frac{1}{z-2} d z-\frac{1}{2} \int_{|z|=3} \frac{1}{z} d z \\
& =\frac{3}{2}(2 \pi i)-\frac{1}{2}(2 \pi i) \\
& =3 \pi i-\pi i \\
& =2 \pi i .
\end{aligned}
$$

77.3. In the example in Section 76, two residues were used to evaluate the integral

$$
\int_{C} \frac{4 z-5}{z(z-1)} d z
$$

where C is the positively oriented circle $|z|=2$. Evaluate this integral once again by using the theorem in Section 77 and finding only one residue.

Solution. By setting $f(z)=\frac{4 z-5}{z(z-1)}$, we have

$$
\begin{aligned}
f\left(\frac{1}{z}\right) & =\frac{4\left(\frac{1}{z}\right)-5}{\frac{1}{z}\left(\frac{1}{z}-1\right)} \\
& =\frac{4\left(\frac{1}{z}\right)-5}{\frac{1}{z}\left(\frac{1}{z}-1\right)} \frac{z^{2}}{z^{2}} \\
& =\frac{4 z-5 z^{2}}{1-z} \\
& =\frac{z(4-5 z)}{1-z}
\end{aligned}
$$

and so we have

$$
\begin{aligned}
\frac{1}{z^{2}} f\left(\frac{1}{z}\right) & =\frac{1}{z^{2}} \frac{z(4-5 z)}{1-z} \\
& =\frac{4-5 z}{z} \frac{1}{1-z} \\
& =\frac{4-5 z}{z} \sum_{n=0}^{\infty} z^{n} \\
& =(4-5 z) z^{-1} \sum_{n=0}^{\infty} z^{n} \\
& =(4-5 z) \sum_{n=0}^{\infty} z^{n-1} \\
& =(4-5 z)\left(z^{0-1}+\sum_{n=1}^{\infty} z^{n-1}\right) \\
& =(4-5 z)\left(\frac{1}{z}+\sum_{n=1}^{\infty} z^{n-1}\right) \\
& =(4-5 z) \frac{1}{z}+(4-5 z) \sum_{n=1}^{\infty} z^{n-1} \\
& =\frac{4}{z}-5+\sum_{n=1}^{\infty}(4-5 z) z^{n-1} \\
& =\frac{4}{z}-5+\sum_{n=1}^{\infty}\left(4 z^{n-1}-5 z^{n}\right) .
\end{aligned}
$$

The residue at the singularity $z=0$ is the coefficient of $\frac{1}{z}$, which is

$$
\operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right]=4 .
$$

By the theorem in Section 77, we obtain

$$
\begin{aligned}
\int_{|z|=2} \frac{4 z-5}{z(z-1)} d z & =2 \pi i \operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right] \\
& =2 \pi i(4) \\
& =8 \pi i
\end{aligned}
$$

77.4. Use the theorem in Section 77, involving a single residue, to evaluate the integral of each of these functions around the circle $|z|=2$ in the positive sense:
(a) $\frac{z^{5}}{1-z^{3}}$.

Solution. By setting $f(z)=\frac{z^{5}}{1-z^{3}}$, we have

$$
\begin{aligned}
f\left(\frac{1}{z}\right) & =\frac{\left(\frac{1}{z}\right)^{5}}{1-\left(\frac{1}{z}\right)^{3}} \\
& =\frac{\frac{1}{z^{5}}}{1-\frac{1}{z^{3}}} \\
& =\frac{\frac{1}{z^{5}}}{1-\frac{1}{z^{3}}} \frac{z^{3}}{z^{3}} \\
& =\frac{\frac{1}{z^{2}}}{z^{3}-1} \\
& =\frac{1}{z^{2}\left(z^{3}-1\right)},
\end{aligned}
$$

and so we have

$$
\begin{aligned}
\frac{1}{z^{2}} f\left(\frac{1}{z}\right) & =\frac{1}{z^{2}} \frac{1}{z^{2}\left(z^{3}-1\right)} \\
& =\frac{1}{z^{4}\left(z^{3}-1\right)} \\
& =-\frac{1}{z^{4}} \frac{1}{1-z^{3}} \\
& =-\frac{1}{z^{4}} \sum_{n=0}^{\infty}\left(z^{3}\right)^{n} \\
& =-z^{-4} \sum_{n=0}^{\infty} z^{3 n} \\
& =-\sum_{n=0}^{\infty} z^{3 n-4} \\
& =-\left(z^{3(0)-4}+z^{3(1)-4}+\sum_{n=2}^{\infty} z^{3 n-4}\right) \\
& =-\left(\frac{1}{z^{4}}+\frac{1}{z}+\sum_{n=2}^{\infty} z^{3 n-4}\right) \\
& =-\frac{1}{z^{4}}-\frac{1}{z}-\sum_{n=2}^{\infty} z^{3 n-4} .
\end{aligned}
$$

The residue at the singularity $z=0$ is the coefficient of $\frac{1}{z}$, which is

$$
\operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right]=-1
$$

By the theorem in Section 77, we obtain

$$
\begin{aligned}
\int_{|z|=2} \frac{z^{5}}{1-z^{3}} d z & =2 \pi i \operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right] \\
& =2 \pi i(-1) \\
& =-2 \pi i .
\end{aligned}
$$

(b) $\frac{1}{1+z^{2}}$.

Solution. By setting $f(z)=\frac{1}{1+z^{2}}$, we have

$$
\begin{aligned}
f\left(\frac{1}{z}\right) & =\frac{1}{1+\left(\frac{1}{z}\right)^{2}} \\
& =\frac{1}{1+\frac{1}{z^{2}}} \\
& =\frac{1}{1+\frac{1}{z^{2}}} \frac{z^{2}}{z^{2}} \\
& =\frac{z^{2}}{z^{2}+1} \\
& =\frac{z^{2}}{1+z^{2}},
\end{aligned}
$$

and so we have

$$
\begin{aligned}
\frac{1}{z^{2}} f\left(\frac{1}{z}\right) & =\frac{1}{z^{2}} \frac{z^{2}}{1+z^{2}} \\
& =\frac{1}{1+z^{2}} \\
& =\frac{1}{1-\left(-z^{2}\right)} \\
& =\sum_{n=0}^{\infty}\left(-z^{2}\right)^{n} \\
& =\frac{0}{z}+\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}
\end{aligned}
$$

The residue at the singularity $z=0$ is the coefficient of $\frac{1}{z}$, which is

$$
\operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right]=0 .
$$

By the theorem in Section 77, we obtain

$$
\begin{aligned}
\int_{|z|=2} \frac{z^{5}}{1-z^{3}} d z & =2 \pi i \operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right] \\
& =2 \pi i(0) \\
& =0 .
\end{aligned}
$$

(c) $\frac{1}{z}$.

Solution. By setting $f(z)=\frac{1}{z}$, we have

$$
\begin{aligned}
f\left(\frac{1}{z}\right) & =\frac{1}{\frac{1}{z}} \\
& =z
\end{aligned}
$$

and so we have

$$
\begin{aligned}
\frac{1}{z^{2}} f\left(\frac{1}{z}\right) & =\frac{1}{z^{2}} z \\
& =\frac{1}{z}
\end{aligned}
$$

The residue at the singularity $z=0$ is the coefficient of $\frac{1}{z}$, which is

$$
\operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right]=1 .
$$

By the theorem in Section 77, we obtain

$$
\begin{aligned}
\int_{|z|=2} \frac{z^{5}}{1-z^{3}} d z & =2 \pi i \operatorname{Res}\left[\frac{1}{z=0}\left[\left(\frac{1}{z}\right)\right]\right. \\
& =2 \pi i(1) \\
& =2 \pi i .
\end{aligned}
$$

77.6. Suppose that a function f is analytic throughout the finite plane except for a finite number of singular points $z_{1}, z_{2}, \ldots, z_{n}$. Show that

$$
\operatorname{Res}_{z=z_{1}}^{\operatorname{Res}} f(z)+\operatorname{Res}_{z=z_{2}} f(z)+\cdots+\operatorname{Res}_{z=z_{n}} f(z)+\operatorname{Res}_{z=\infty} f(z)=0 .
$$

Proof. First, let us write

$$
\operatorname{Res}_{z=z_{1}} f(z)+\operatorname{Res}_{z=z_{2}} f(z)+\cdots+\operatorname{Res}_{z=z_{n}} f(z)+\operatorname{Res}_{z=\infty} f(z)=0 .
$$

as its more condensed version:

$$
\sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)+\operatorname{Res}_{z=\infty} f(z)=0 .
$$

Cauchy's residue theorem from Section 76 states:

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z) .
$$

Equation (2) of Section 77 states:

$$
\int_{C} f(z) d z=-2 \pi i \operatorname{Res}_{z=\infty} f(z) .
$$

Therefore, we have

$$
\begin{aligned}
\sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}}^{\operatorname{Res}} f(z)+\underset{z=\infty}{\operatorname{Res}} f(z) & =\frac{1}{2 \pi i}\left(2 \pi i \sum_{k=1}^{n} \underset{z=z_{k}}{\operatorname{Res}} f(z)--2 \pi i \operatorname{Res}_{z=\infty} f(z)\right) \\
& =\frac{1}{2 \pi i}\left(\int_{C} f(z) d z-\int_{C} f(z) d z\right) \\
& =\frac{1}{2 \pi i} 0 \\
& =0
\end{aligned}
$$

as desired.

