MATH 165B discussion Ryan Ta
University of California, Riverside Spring 2022

Solutions to suggested homework problems from
Complex Variables and Applications, Ninth Edition by James Brown and Ruel Churchill
Homework 3: Section 79, Exercises 1(a)(b)(c)(d)(e), 2(b)(c), 3 and Section 81, Exercises
L(@)(b)(c)(d), 2(a)(b), 3(b), 4, 5, 7(a)

79.1. In each case, write the principal part of the function at its isolated singular point and
determine whether that point is a removable singular point, an essential singular point, or
a pole:
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Solution. The singular point of zexp (—) occurs at z = 0. The Laurent series ex-
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n=1

that the point z = 0 is an essential singular point. O
2
z
(b) T
+2Z
2
Solution. The singular point of T occurs at z = —1. The Laurent series expan-
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Since the principal part T consists of only one term, we determine that the point

z =—11s apole of order m = 1. 0

: . . sin z . :
Solution. The singular point of —— occurs at z = 0. The Laurent series expansion
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Since every term of the principal part of this series is zero, we determine that the
point z = 0 is a removable singular point. O
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Solution. The singular point of —— occurs at z = 0. The Laurent series expansion
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Since the principal part — consists of only one term, we determine that the point

z =01is a pole of order m = 1. O

79.2. Show that the singular point of each of the following functions is a pole. Determine the
order m of that pole and the corresponding residue B.
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Solution. The singular point of ————— occurs at z = 0. The Laurent series
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Since the principal part —— — — — ey consists of only a finite number of terms, we
° Z Z

determine that the point z = 0 is a pole of order m = 3. Furthermore, the residue at

the singular point z = 0 is the coefficient of —, which is
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Solution. The singular point of ( exp( )2 occurs at z = 0. The Laurent series expan-
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Since the principal part N consists of only a finite number of terms,
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we determine that the point z = 1 is a pole of order m = 2. Furthermore, the residue
at the singular point z = 1 is the coefficient of , which is
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79.3. Suppose that a function f is analytic at zo, and write g(z) = . Show that

(a) if f(zo) # 0, then z( is a simple pole of g, with residue f(zp);
(b) if f(zop) = 0, then z¢ is a removable singular point of g.

Suggestion: As pointed out in Section 62, there is a Taylor series for f(z) about zq since
f is analytic there. Start each part of this exercise by writing out a few terms of that
series.

Proof. By the theorem in Section 62, since f is analytic at zp, we can write
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which shows that zg is a simple pole of g. Furthermore, the residue at the singular

point z = zg is the coefficient of , which is
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If f(zo) =0, then we have
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which shows that z( is a removable singular point of g. O

81.1. In each case, show that any singular point of the function is a pole. Determine the order
m of each pole, and find the corresponding residue B.

z+1
a
@ 22+9
+1
Solution. The singularities of Z2 29 are z = +3i, both of which are poles of order
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Solution. The only singular point of I is z = 1, which is a pole of order 1. We
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Solution. The only singular point of (2 Z+ 1) isz = —5 which is a pole of order
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Solution. The singularities of ——
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1. For the pole z = ni of order m = 1, we can write
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81.2. Show that
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Solution. For the pole z =i of order m = 2, we can write
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81.3 In each case, find the order m of the pole and the corresponding residue B at the singular
point z = 0:
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(b) -1

Solution. For all z satisfying |e?| < 1, which means for all z = x + iy satisfying



x = Re(z) < 0, we have
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which allows us to write
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The final expression is a Laurent series expansion of ————— that holds for all z

z(et = 1)

satisfying Re(z) < 0. Since the Laurent series is unique, it also holds on the closure
(interior and boundary) of the domain Re(z) < 0, and this closure includes the point
z = 0. Consequently, we see from our series expansion that z = 0 is a pole of order

2. Also, the residue at z = 0 is the coefficient of — in our series expansion, which is
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81.4 Find the value of the integral
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@ |z-2|=2

Solution. The only singular point of the integrand inside the circle |z — 2| = 2 is
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Solution. The singularities of the integrand inside the circle |z| = 3 are z = 1 and
z = +3i, which are all poles of order 1. We already know
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By the theorem in Section 77, we obtain
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81.5 Find the value of the integral
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Solution. The only singular point of the integrand inside the circle |z| = 21is z = 0,

which is a pole of order 3. We can write as a Laurent series about z = 0;
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The residue at the singular point z = 0 is the coeflicient of —, which is
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(b) |z+2|=3

Solution. The singularities of the integrand inside the circle |z +2| =3 are z =0 (a
pole of order 3) and z = —4 (a pole of order 1). We already know
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from part (a). For z = —4, we can write
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81.7 Use the theorem in Section 77, involving a single residue, to evaluate the integral of f(z)
around the positively oriented circle |z| = 3 when
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where a, forn =1,2,3, ... are suitable complex coefficients for the Laurent series
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