Solutions to suggested homework problems from
Complex Variables and Applications, Ninth Edition by James Brown and Ruel Churchill Homework 4: Section 83, Exercises 1, 2, 4(a), 5(a), 8, 9(a)(b)
83.1. Show that the point $z=0$ is a simple pole of the function

$$
f(z)=\csc z=\frac{1}{\sin z}
$$

and that the residue there is unity by appealing to Theorem 2 in Section 83. (Compare with Exercise 3, Section 73, where this result is evident from a Laurent series.)

Solution. We can write

$$
\begin{aligned}
f(z) & =\csc z \\
& =\frac{1}{\sin z} \\
& =\frac{p(z)}{q(z)},
\end{aligned}
$$

where we define

$$
\begin{aligned}
p(z) & =1 \\
q(z) & =\sin z
\end{aligned}
$$

both of which are analytic at $z_{0}=0$. Also, the first derivative of q is

$$
\begin{aligned}
q^{\prime}(z) & =\frac{d}{d z}(\sin z) \\
& =\cos z
\end{aligned}
$$

At the point $z_{0}=0$, we have

$$
\begin{aligned}
p\left(z_{0}\right) & =p(0) \\
& =1 \\
& \neq 0
\end{aligned}
$$

and

$$
\begin{aligned}
q\left(z_{0}\right) & =q(0) \\
& =\sin 0 \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
q^{\prime}\left(z_{0}\right) & =q^{\prime}(0) \\
& =\cos 0 \\
& =1 \\
& \neq 0 .
\end{aligned}
$$

By Theorem 2 of Section $83, z_{0}=0$ is a simple pole with residue

$$
\begin{aligned}
\operatorname{Res}_{z=0} \frac{p(z)}{q(z)} & =\frac{p(0)}{q^{\prime}(0)} \\
& =\frac{1}{1} \\
& =1,
\end{aligned}
$$

which is unity.
83.2. Use conditions (1) in Section 82 to show that the function

$$
q(z)=1-\cos z
$$

has a zero of order $m=2$ at the point $z_{0}=0$.

Solution. Recall the Maclaurin series of $\cos z$, which is

$$
\cos z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}
$$

We have

$$
\begin{aligned}
q(z) & =1-\cos z \\
& =1-\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} \\
& =1-\left((-1)^{0} \frac{z^{2(0)}}{(2(0))!}+\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}\right) \\
& =1-\left(1+\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}\right) \\
& =1-1-\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} \\
& =-\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} \\
& =-\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2} z^{2 n-2}}{(2 n)!} \\
& =-(z-0)^{2} \sum_{n=1}^{\infty}(-1)^{n} \frac{z^{2(n-1)}}{(2 n)!},
\end{aligned}
$$

and so $q(z)$ has a zero of order $m=2$ at the point $z_{0}=0$.

83.4. Show that

(a) $\operatorname{Res}_{z=z_{n}}(z \sec z)=(-1)^{n+1} z_{n}$, where $z_{n}=\frac{\pi}{2}+n \pi$ for $n=0, \pm 1, \pm 2, \ldots$.

Proof. We can write

$$
\begin{aligned}
z \sec z & =\frac{z}{\cos z} \\
& =\frac{p(z)}{q(z)},
\end{aligned}
$$

where we define

$$
\begin{aligned}
p(z) & =z \\
q(z) & =\cos z
\end{aligned}
$$

both of which are analytic at $z_{0}=0$. Also, the first derivative of q is

$$
\begin{aligned}
q^{\prime}(z) & =\frac{d}{d z}(\cos z) \\
& =-\sin z .
\end{aligned}
$$

At the points $z_{n}=\frac{\pi}{2}+n \pi$ for $n=0, \pm 1, \pm 2, \ldots$, we have

$$
\begin{aligned}
p\left(z_{n}\right) & =z_{n} \\
& =\frac{\pi}{2}+n \pi \\
& \neq 0
\end{aligned}
$$

and

$$
\begin{aligned}
q\left(z_{n}\right) & =\cos \left(z_{n}\right) \\
& =\cos \left(\frac{\pi}{2}+n \pi\right) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
q^{\prime}\left(z_{n}\right) & =-\sin \left(z_{n}\right) \\
& =-\sin \left(\frac{\pi}{2}+n \pi\right) \\
& =-(-1)^{n} \\
& =(-1)^{n+1} \\
& \neq 0 .
\end{aligned}
$$

By Theorem 2 of Section 83, we conclude

$$
\begin{aligned}
\underset{z=z_{n}}{\operatorname{Res}(z \sec z)} & =\underset{z=z_{n}}{\operatorname{Res}} \frac{p(z)}{q(z)} \\
& =\frac{p\left(z_{n}\right)}{q^{\prime}\left(z_{n}\right)} \\
& =\frac{z_{n}}{(-1)^{n+1}} \\
& =(-1)^{-(n+1)} z_{n} \\
& =(-1)^{n+1} z_{n},
\end{aligned}
$$

as desired.
83.5. Let C denote the positively oriented circle $|z|=2$ and evaluate the integral
(a) $\int_{C} \tan z d z$.

Solution. We can write

$$
\begin{aligned}
\tan z & =\frac{\sin z}{\cos z} \\
& =\frac{p(z)}{q(z)}
\end{aligned}
$$

where we define

$$
\begin{aligned}
p(z) & =\sin z \\
q(z) & =\cos z
\end{aligned}
$$

both of which are analytic at $z_{0}=0$. Also, the first derivative of q is

$$
\begin{aligned}
q^{\prime}(z) & =\frac{d}{d z}(\cos z) \\
& =-\sin z
\end{aligned}
$$

At the points $z_{n}=\frac{\pi}{2}+n \pi$ for $n=0, \pm 1, \pm 2, \ldots$, which are the singularities of $\tan z$, we have

$$
\begin{aligned}
p\left(z_{n}\right) & =\sin \left(z_{n}\right) \\
& =\sin \left(\frac{\pi}{2}+n \pi\right) \\
& =(-1)^{n} \\
& \neq 0
\end{aligned}
$$

and

$$
\begin{aligned}
q\left(z_{n}\right) & =\cos \left(z_{n}\right) \\
& =\cos \left(\frac{\pi}{2}+n \pi\right) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
q^{\prime}\left(z_{n}\right) & =-\sin \left(z_{n}\right) \\
& =-\sin \left(\frac{\pi}{2}+n \pi\right) \\
& =-(-1)^{n} \\
& =(-1)^{n+1} \\
& \neq 0 .
\end{aligned}
$$

By Theorem 2 of Section 83, we conclude

$$
\begin{aligned}
\underset{z=z_{n}}{\operatorname{Res}(\tan z)} & =\underset{z=z_{n}}{\operatorname{Res}} \frac{p(z)}{q(z)} \\
& =\frac{p\left(z_{n}\right)}{q^{\prime}\left(z_{n}\right)} \\
& =\frac{(-1)^{n}}{(-1)^{n+1}} \\
& =(-1)^{n-(n+1)} \\
& =(-1)^{-1} \\
& =-1 .
\end{aligned}
$$

But since the only two singularities of $\tan z$ inside the circle $|z|=2$ are $z_{0}=\frac{\pi}{2}$ and $z_{-1}=-\frac{\pi}{2}$, we have in particular

$$
\begin{aligned}
& \underset{z=\frac{\pi}{2}}{\operatorname{Res}}(\tan z)=-1, \\
& \underset{z=-\frac{\pi}{2}}{\operatorname{Res}}(\tan z)=-1 .
\end{aligned}
$$

By the theorem in Section 77 (residue theorem), we obtain

$$
\begin{aligned}
\int_{|z|=2} \tan z d z & =2 \pi i\left(\operatorname{Res}_{z=\frac{\pi}{2}}(\tan z)+\operatorname{Res}_{z=-\frac{\pi}{2}}(\tan z)\right) \\
& =2 \pi i((-1)+(-1)) \\
& =2 \pi i(-2) \\
& =-4 \pi i .
\end{aligned}
$$

83.8. Consider the function

$$
f(z)=\frac{1}{[q(z)]^{2}}
$$

where q is analytic at $z_{0}, q\left(z_{0}\right)=0$, and $q^{\prime}\left(z_{0}\right) \neq 0$. Show that z_{0} is a pole of order $m=2$ of the function f, with residue

$$
B_{0}=-\frac{q^{\prime \prime}\left(z_{0}\right)}{\left[q^{\prime}\left(z_{0}\right)\right]^{3}} .
$$

Suggestion: Note that z_{0} is a zero of order $m=1$ of the function q, so that

$$
q(z)=\left(z-z_{0}\right) g(z),
$$

where $g(z)$ is analytic and nonzero at z_{0}. Then write

$$
f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{2}},
$$

where $\phi(z)=\frac{1}{[g(z)]^{2}}$. The desired form of the residue $B_{0}=\phi^{\prime}\left(z_{0}\right)$ can be obtained by showing that

$$
q^{\prime}\left(z_{0}\right)=g\left(z_{0}\right)
$$

and

$$
q^{\prime \prime}\left(z_{0}\right)=2 g^{\prime}\left(z_{0}\right) .
$$

Solution. Following the given suggestion, note that z_{0} is a zero of order $m=1$ of the function q, so that we have

$$
q(z)=\left(z-z_{0}\right) g(z),
$$

where g is analytic and nonzero at z_{0}. Then we have

$$
\begin{aligned}
f(z) & =\frac{1}{[q(z)]^{2}} \\
& =\frac{1}{\left[\left(z-z_{0}\right) g(z)\right]^{2}} \\
& =\frac{1}{\left(z-z_{0}\right)^{2}[g(z)]^{2}} \\
& =\frac{\phi(z)}{\left(z-z_{0}\right)^{2}},
\end{aligned}
$$

where we define $\phi(z)=\frac{1}{[g(z)]^{2}}$. Since g is analytic and nonzero, it follows that ϕ is analytic and nonzero as well, which implies that $z=z_{0}$ is a pole of order $m=2$ for f. The first derivative of ϕ is

$$
\begin{aligned}
\phi^{\prime}(z) & =\frac{d}{d z}\left(\frac{1}{[g(z)]^{2}}\right) \\
& =\frac{d}{d z}[g(z)]^{-2} \\
& =-2[g(z)]^{-3} g^{\prime}(z) \\
& =-\frac{2 g^{\prime}(z)}{[g(z)]^{3}} .
\end{aligned}
$$

Since we have established that $z=z_{0}$ is a pole of order $m=2$, the theorem in Section 80 asserts that the residue at $z=z_{0}$ is

$$
\begin{aligned}
\operatorname{Res}_{z=z_{0}} f(z) & =\frac{\phi^{(2-1)}\left(z_{0}\right)}{(2-1)!} \\
& =\frac{\phi^{(1)}\left(z_{0}\right)}{1!} \\
& =\phi^{\prime}\left(z_{0}\right) \\
& =-\frac{2 g^{\prime}\left(z_{0}\right)}{\left[g\left(z_{0}\right)\right]^{3}} .
\end{aligned}
$$

Furthermore, the first derivative of q is

$$
\begin{aligned}
q^{\prime}(z) & =\frac{d}{d z}(q(z)) \\
& =\frac{d}{d z}\left(\left(z-z_{0}\right) g(z)\right) \\
& =\frac{d}{d z}\left(z-z_{0}\right) g(z)+\left(z-z_{0}\right) \frac{d}{d z}(g(z)) \\
& =1 g(z)+\left(z-z_{0}\right) g^{\prime}(z) \\
& =g(z)+\left(z-z_{0}\right) g^{\prime}(z),
\end{aligned}
$$

and the second derivative of q is

$$
\begin{aligned}
q^{\prime \prime}(z) & =\frac{d}{d z}\left(q^{\prime}(z)\right) \\
& =\frac{d}{d z}\left(g^{\prime}(z)+\left(z-z_{0}\right) g^{\prime}(z)\right) \\
& =\frac{d}{d z}\left(g^{\prime}(z)\right)+\frac{d}{d z}\left(\left(z-z_{0}\right) g^{\prime}(z)\right) \\
& =g^{\prime}(z)+\left(\frac{d}{d z}\left(z-z_{0}\right) g^{\prime}(z)+\left(z-z_{0}\right) \frac{d}{d z}\left(g^{\prime}(z)\right)\right) \\
& =g^{\prime}(z)+\left(1 g^{\prime}(z)+\left(z-z_{0}\right) g^{\prime \prime}(z)\right) \\
& =2 g^{\prime}(z)+\left(z-z_{0}\right) g^{\prime \prime}(z) .
\end{aligned}
$$

At the point $z=z_{0}$, we have

$$
\begin{aligned}
q^{\prime}\left(z_{0}\right) & =g\left(z_{0}\right)+\left(z_{0}-z_{0}\right) g^{\prime \prime}\left(z_{0}\right) \\
& =g\left(z_{0}\right)+0 g^{\prime \prime}\left(z_{0}\right) \\
& =g\left(z_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
q^{\prime \prime}\left(z_{0}\right) & =2 g^{\prime}\left(z_{0}\right)+\left(z_{0}-z_{0}\right) g^{\prime \prime}\left(z_{0}\right) \\
& =2 g^{\prime}\left(z_{0}\right)+0 g^{\prime \prime}\left(z_{0}\right) \\
& =2 g^{\prime}\left(z_{0}\right) .
\end{aligned}
$$

Finally, we conclude

$$
\begin{aligned}
\operatorname{Res}_{z=z_{0}} f(z) & =-\frac{2 g^{\prime}\left(z_{0}\right)}{\left[g\left(z_{0}\right)\right]^{3}} \\
& =-\frac{q^{\prime \prime}\left(z_{0}\right)}{\left[q^{\prime}\left(z_{0}\right)\right]^{3}},
\end{aligned}
$$

as desired.
83.9. Use the result in Exercise $\mathbf{8}$ to find the residue at $z=0$ of the function
(a) $f(z)=\csc ^{2} z$.

Solution. We can write

$$
\begin{aligned}
\csc ^{2} z & =\frac{1}{\sin ^{2} z} \\
& =\frac{1}{[q(z)]^{2}},
\end{aligned}
$$

where we define

$$
q(z)=\sin z,
$$

which is analytic at $z=0$.

$$
\begin{aligned}
q^{\prime}(z) & =\frac{d}{d z}(\cos z) \\
& =-\sin z,
\end{aligned}
$$

and the second derivative of q is

$$
\begin{aligned}
q^{\prime \prime}(z) & =\frac{d}{d z}(-\sin z) \\
& =-\cos z .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
q(0) & =\sin 0 \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
q^{\prime}(0) & =\cos 0 \\
& =1 \\
& \neq 0 .
\end{aligned}
$$

By Exercise 8, the residue at $z=0$ of $\csc ^{2} z$ is

$$
\begin{aligned}
\underset{z=0}{\operatorname{Res}\left(\csc ^{2} z\right)} & =-\frac{q^{\prime \prime}(0)}{\left[q^{\prime}(0)\right]^{3}} \\
& =-\frac{-\sin 0}{(\cos 0)^{3}} \\
& =-\frac{-0}{1^{3}} \\
& =0 .
\end{aligned}
$$

(b) $f(z)=\frac{1}{\left(z+z^{2}\right)^{2}}$.

Solution. We can write

$$
\frac{1}{\left(z+z^{2}\right)^{2}}=\frac{1}{[q(z)]^{2}},
$$

where we define

$$
q(z)=z+z^{2},
$$

which is analytic at $z=0$. The first derivative of q is

$$
\begin{aligned}
q^{\prime}(z) & =\frac{d}{d z}\left(z+z^{2}\right) \\
& =1+2 z,
\end{aligned}
$$

and the second derivative of q is

$$
\begin{aligned}
q^{\prime \prime}(z) & =\frac{d}{d z}(1+2 z) \\
& =2 .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
q(0) & =0+0^{2} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
q^{\prime}(0) & =1+2(0) \\
& =1 \\
& \neq 0 .
\end{aligned}
$$

By Exercise 8 , the residue at $z=0$ of $\frac{1}{\left(z+z^{2}\right)^{2}}$ is

$$
\begin{aligned}
\operatorname{Res}_{z=0} \frac{1}{\left(z+z^{2}\right)^{2}} & =-\frac{q^{\prime \prime}(0)}{\left[q^{\prime}(0)\right]^{3}} \\
& =-\frac{2}{(1+2(0))^{3}} \\
& =-\frac{2}{1^{3}} \\
& =-2 .
\end{aligned}
$$

