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Homework 4: Section 83, Exercises 1, 2, 4(a), 5(a), 8, 9(a)(b)

83.1. Show that the point 𝑧 = 0 is a simple pole of the function

𝑓 (𝑧) = csc 𝑧 =
1

sin 𝑧

and that the residue there is unity by appealing to Theorem 2 in Section 83. (Compare
with Exercise 3, Section 73, where this result is evident from a Laurent series.)

Solution. We can write

𝑓 (𝑧) = csc 𝑧

=
1

sin 𝑧

=
𝑝(𝑧)
𝑞(𝑧) ,

where we define

𝑝(𝑧) = 1,
𝑞(𝑧) = sin 𝑧,

both of which are analytic at 𝑧0 = 0. Also, the first derivative of 𝑞 is

𝑞′(𝑧) = 𝑑

𝑑𝑧
(sin 𝑧)

= cos 𝑧.

At the point 𝑧0 = 0, we have

𝑝(𝑧0) = 𝑝(0)
= 1
≠ 0

and

𝑞(𝑧0) = 𝑞(0)
= sin 0
= 0

and

𝑞′(𝑧0) = 𝑞′(0)
= cos 0
= 1
≠ 0.



By Theorem 2 of Section 83, 𝑧0 = 0 is a simple pole with residue

Res
𝑧=0

𝑝(𝑧)
𝑞(𝑧) =

𝑝(0)
𝑞′(0)

=
1
1

= 1 ,

which is unity. □

83.2. Use conditions (1) in Section 82 to show that the function

𝑞(𝑧) = 1 − cos 𝑧

has a zero of order 𝑚 = 2 at the point 𝑧0 = 0.

Solution. Recall the Maclaurin series of cos 𝑧, which is

cos 𝑧 =
∞∑︁
𝑛=0

(−1)𝑛 𝑧2𝑛

(2𝑛)! .

We have

𝑞(𝑧) = 1 − cos 𝑧

= 1 −
∞∑︁
𝑛=0

(−1)𝑛 𝑧2𝑛

(2𝑛)!

= 1 −
(
(−1)0 𝑧2(0)

(2(0))! +
∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

(2𝑛)!

)
= 1 −

(
1 +

∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

(2𝑛)!

)
= 1 − 1 −

∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

(2𝑛)!

= −
∞∑︁
𝑛=1

(−1)𝑛 𝑧2𝑛

(2𝑛)!

= −
∞∑︁
𝑛=1

(−1)𝑛 𝑧
2𝑧2𝑛−2

(2𝑛)!

= −(𝑧 − 0)2
∞∑︁
𝑛=1

(−1)𝑛 𝑧
2(𝑛−1)

(2𝑛)! ,

and so 𝑞(𝑧) has a zero of order 𝑚 = 2 at the point 𝑧0 = 0. □

83.4. Show that

(a) Res
𝑧=𝑧𝑛

(𝑧 sec 𝑧) = (−1)𝑛+1𝑧𝑛, where 𝑧𝑛 =
𝜋

2
+ 𝑛𝜋 for 𝑛 = 0,±1,±2, . . ..



Proof. We can write

𝑧 sec 𝑧 =
𝑧

cos 𝑧

=
𝑝(𝑧)
𝑞(𝑧) ,

where we define

𝑝(𝑧) = 𝑧,

𝑞(𝑧) = cos 𝑧,

both of which are analytic at 𝑧0 = 0. Also, the first derivative of 𝑞 is

𝑞′(𝑧) = 𝑑

𝑑𝑧
(cos 𝑧)

= − sin 𝑧.

At the points 𝑧𝑛 =
𝜋

2
+ 𝑛𝜋 for 𝑛 = 0,±1,±2, . . ., we have

𝑝(𝑧𝑛) = 𝑧𝑛

=
𝜋

2
+ 𝑛𝜋

≠ 0

and

𝑞(𝑧𝑛) = cos(𝑧𝑛)

= cos
(𝜋

2
+ 𝑛𝜋

)
= 0

and

𝑞′(𝑧𝑛) = − sin(𝑧𝑛)

= − sin
(𝜋

2
+ 𝑛𝜋

)
= −(−1)𝑛

= (−1)𝑛+1

≠ 0.

By Theorem 2 of Section 83, we conclude

Res
𝑧=𝑧𝑛

(𝑧 sec 𝑧) = Res
𝑧=𝑧𝑛

𝑝(𝑧)
𝑞(𝑧)

=
𝑝(𝑧𝑛)
𝑞′(𝑧𝑛)

=
𝑧𝑛

(−1)𝑛+1

= (−1)−(𝑛+1)𝑧𝑛

= (−1)𝑛+1𝑧𝑛,

as desired. □



83.5. Let C denote the positively oriented circle |𝑧 | = 2 and evaluate the integral

(a)
∫
𝐶

tan 𝑧 𝑑𝑧.

Solution. We can write

tan 𝑧 =
sin 𝑧

cos 𝑧

=
𝑝(𝑧)
𝑞(𝑧) ,

where we define

𝑝(𝑧) = sin 𝑧,

𝑞(𝑧) = cos 𝑧,

both of which are analytic at 𝑧0 = 0. Also, the first derivative of 𝑞 is

𝑞′(𝑧) = 𝑑

𝑑𝑧
(cos 𝑧)

= − sin 𝑧.

At the points 𝑧𝑛 =
𝜋

2
+ 𝑛𝜋 for 𝑛 = 0,±1,±2, . . ., which are the singularities of tan 𝑧,

we have

𝑝(𝑧𝑛) = sin(𝑧𝑛)

= sin
(𝜋

2
+ 𝑛𝜋

)
= (−1)𝑛

≠ 0

and

𝑞(𝑧𝑛) = cos(𝑧𝑛)

= cos
(𝜋

2
+ 𝑛𝜋

)
= 0

and

𝑞′(𝑧𝑛) = − sin(𝑧𝑛)

= − sin
(𝜋

2
+ 𝑛𝜋

)
= −(−1)𝑛

= (−1)𝑛+1

≠ 0.



By Theorem 2 of Section 83, we conclude

Res
𝑧=𝑧𝑛

(tan 𝑧) = Res
𝑧=𝑧𝑛

𝑝(𝑧)
𝑞(𝑧)

=
𝑝(𝑧𝑛)
𝑞′(𝑧𝑛)

=
(−1)𝑛
(−1)𝑛+1

= (−1)𝑛−(𝑛+1)

= (−1)−1

= −1.

But since the only two singularities of tan 𝑧 inside the circle |𝑧 | = 2 are 𝑧0 =
𝜋

2
and

𝑧−1 = −𝜋

2
, we have in particular

Res
𝑧= 𝜋

2

(tan 𝑧) = −1,

Res
𝑧=− 𝜋

2

(tan 𝑧) = −1.

By the theorem in Section 77 (residue theorem), we obtain∫
|𝑧 |=2

tan 𝑧 𝑑𝑧 = 2𝜋𝑖
(
Res
𝑧= 𝜋

2

(tan 𝑧) + Res
𝑧=− 𝜋

2

(tan 𝑧)
)

= 2𝜋𝑖((−1) + (−1))
= 2𝜋𝑖(−2)
= −4𝜋𝑖 .

□

83.8. Consider the function
𝑓 (𝑧) = 1

[𝑞(𝑧)]2 ,

where 𝑞 is analytic at 𝑧0, 𝑞(𝑧0) = 0, and 𝑞′(𝑧0) ≠ 0. Show that 𝑧0 is a pole of order 𝑚 = 2
of the function 𝑓 , with residue

𝐵0 = − 𝑞′′(𝑧0)
[𝑞′(𝑧0)]3 .

Suggestion: Note that 𝑧0 is a zero of order 𝑚 = 1 of the function 𝑞, so that

𝑞(𝑧) = (𝑧 − 𝑧0)𝑔(𝑧),

where 𝑔(𝑧) is analytic and nonzero at 𝑧0. Then write

𝑓 (𝑧) = 𝜙(𝑧)
(𝑧 − 𝑧0)2 ,

where 𝜙(𝑧) = 1
[𝑔(𝑧)]2 . The desired form of the residue 𝐵0 = 𝜙′(𝑧0) can be obtained by

showing that
𝑞′(𝑧0) = 𝑔(𝑧0)



and
𝑞′′(𝑧0) = 2𝑔′(𝑧0).

Solution. Following the given suggestion, note that 𝑧0 is a zero of order 𝑚 = 1 of the
function 𝑞, so that we have

𝑞(𝑧) = (𝑧 − 𝑧0)𝑔(𝑧),
where 𝑔 is analytic and nonzero at 𝑧0. Then we have

𝑓 (𝑧) = 1
[𝑞(𝑧)]2

=
1

[(𝑧 − 𝑧0)𝑔(𝑧)]2

=
1

(𝑧 − 𝑧0)2 [𝑔(𝑧)]2

=
𝜙(𝑧)

(𝑧 − 𝑧0)2 ,

where we define 𝜙(𝑧) =
1

[𝑔(𝑧)]2 . Since 𝑔 is analytic and nonzero, it follows that 𝜙 is

analytic and nonzero as well, which implies that 𝑧 = 𝑧0 is a pole of order 𝑚 = 2 for 𝑓 .
The first derivative of 𝜙 is

𝜙′(𝑧) = 𝑑

𝑑𝑧

(
1

[𝑔(𝑧)]2

)
=

𝑑

𝑑𝑧
[𝑔(𝑧)]−2

= −2[𝑔(𝑧)]−3𝑔′(𝑧)

= − 2𝑔′(𝑧)
[𝑔(𝑧)]3 .

Since we have established that 𝑧 = 𝑧0 is a pole of order 𝑚 = 2, the theorem in Section 80
asserts that the residue at 𝑧 = 𝑧0 is

Res
𝑧=𝑧0

𝑓 (𝑧) = 𝜙(2−1) (𝑧0)
(2 − 1)!

=
𝜙(1) (𝑧0)

1!
= 𝜙′(𝑧0)

= − 2𝑔′(𝑧0)
[𝑔(𝑧0)]3 .

Furthermore, the first derivative of 𝑞 is

𝑞′(𝑧) = 𝑑

𝑑𝑧
(𝑞(𝑧))

=
𝑑

𝑑𝑧
((𝑧 − 𝑧0)𝑔(𝑧))

=
𝑑

𝑑𝑧
(𝑧 − 𝑧0)𝑔(𝑧) + (𝑧 − 𝑧0)

𝑑

𝑑𝑧
(𝑔(𝑧))

= 1𝑔(𝑧) + (𝑧 − 𝑧0)𝑔′(𝑧)
= 𝑔(𝑧) + (𝑧 − 𝑧0)𝑔′(𝑧),



and the second derivative of 𝑞 is

𝑞′′(𝑧) = 𝑑

𝑑𝑧
(𝑞′(𝑧))

=
𝑑

𝑑𝑧
(𝑔′(𝑧) + (𝑧 − 𝑧0)𝑔′(𝑧))

=
𝑑

𝑑𝑧
(𝑔′(𝑧)) + 𝑑

𝑑𝑧
((𝑧 − 𝑧0)𝑔′(𝑧))

= 𝑔′(𝑧) + ( 𝑑
𝑑𝑧

(𝑧 − 𝑧0)𝑔′(𝑧) + (𝑧 − 𝑧0)
𝑑

𝑑𝑧
(𝑔′(𝑧)))

= 𝑔′(𝑧) + (1𝑔′(𝑧) + (𝑧 − 𝑧0)𝑔′′(𝑧))
= 2𝑔′(𝑧) + (𝑧 − 𝑧0)𝑔′′(𝑧).

At the point 𝑧 = 𝑧0, we have

𝑞′(𝑧0) = 𝑔(𝑧0) + (𝑧0 − 𝑧0)𝑔′′(𝑧0)
= 𝑔(𝑧0) + 0𝑔′′(𝑧0)
= 𝑔(𝑧0)

and

𝑞′′(𝑧0) = 2𝑔′(𝑧0) + (𝑧0 − 𝑧0)𝑔′′(𝑧0)
= 2𝑔′(𝑧0) + 0𝑔′′(𝑧0)
= 2𝑔′(𝑧0).

Finally, we conclude

Res
𝑧=𝑧0

𝑓 (𝑧) = − 2𝑔′(𝑧0)
[𝑔(𝑧0)]3

= − 𝑞′′(𝑧0)
[𝑞′(𝑧0)]3 ,

as desired. □

83.9. Use the result in Exercise 8 to find the residue at 𝑧 = 0 of the function

(a) 𝑓 (𝑧) = csc2 𝑧.

Solution. We can write

csc2 𝑧 =
1

sin2 𝑧

=
1

[𝑞(𝑧)]2 ,

where we define
𝑞(𝑧) = sin 𝑧,

which is analytic at 𝑧 = 0.

𝑞′(𝑧) = 𝑑

𝑑𝑧
(cos 𝑧)

= − sin 𝑧,



and the second derivative of 𝑞 is

𝑞′′(𝑧) = 𝑑

𝑑𝑧
(− sin 𝑧)

= − cos 𝑧.

Also, we have

𝑞(0) = sin 0
= 0

and

𝑞′(0) = cos 0
= 1
≠ 0.

By Exercise 8, the residue at 𝑧 = 0 of csc2 𝑧 is

Res
𝑧=0

(csc2 𝑧) = − 𝑞′′(0)
[𝑞′(0)]3

= − − sin 0
(cos 0)3

= −−0
13

= 0 .

□

(b) 𝑓 (𝑧) = 1
(𝑧 + 𝑧2)2 .

Solution. We can write

1
(𝑧 + 𝑧2)2 =

1
[𝑞(𝑧)]2 ,

where we define
𝑞(𝑧) = 𝑧 + 𝑧2,

which is analytic at 𝑧 = 0. The first derivative of 𝑞 is

𝑞′(𝑧) = 𝑑

𝑑𝑧
(𝑧 + 𝑧2)

= 1 + 2𝑧,

and the second derivative of 𝑞 is

𝑞′′(𝑧) = 𝑑

𝑑𝑧
(1 + 2𝑧)

= 2.



Also, we have

𝑞(0) = 0 + 02

= 0

and

𝑞′(0) = 1 + 2(0)
= 1
≠ 0.

By Exercise 8, the residue at 𝑧 = 0 of
1

(𝑧 + 𝑧2)2 is

Res
𝑧=0

1
(𝑧 + 𝑧2)2 = − 𝑞′′(0)

[𝑞′(0)]3

= − 2
(1 + 2(0))3

= − 2
13

= −2 .

□


