MATH 165B discussion Ryan Ta
University of California, Riverside Spring 2022

Solutions to suggested homework problems from
Complex Variables and Applications, Ninth Edition by James Brown and Ruel Churchill
Homework 5: Section 86, Exercises 1, 2, 3,4, 5,7, 8

Use residues to derive the integration formulas in Exercises 1 through 5.
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Next, if we substitute 7 = Re'? and dz = iRe'? d6 for all 0 < 6 < 7, we obtain
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is an even function, we conclude
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Next, if we substitute 7 = Re'? and dz = iRe'? d6 for all 0 < 6 < 7, we obtain
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By the residue theorem from Section 77 applied to the region bounded by [-R, R| and
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Next, if we substitute 7 = Re'? and dz = iRe'? d6 for all 0 < 6 < 7, we obtain
/ dz /” iRe'? do
Cr Z4 +1 0 (Reig)4 +1
_ /” iRe" df
- o R4 41
T |l-Rei9|
< —— df
/0 |R*e%0 + 1|
< /” liRe™| 20
~ Jo |IR*e¥E| —[1]]
T
R
[k
o IR*-1]

R /e
== /ldO
R*—1Jo

R T
=R 100

R0
TR

R4 -1’

which implies

d
0< lim/ =
R—o0 Cr Z +1
. / dz
= lim 2
R—co Cr Z +1
. R
< lim
R—)ooR4—1
1
- i R
Rl_rgoR‘*_l%
= lim
R—>00R3_%
B b4
_oo(oo—O)

from which we conclude
. dz
lim 2 =
R—oo cr T+ 1




Finally, since is an even function, we conclude

/°° dx _1‘/00 dx
o x*+1 2 . xt+1
1 . /R dx
= — lim
2 R—oo _Rx4+1

1 . ( n / dz )
== lim |—=- [ —
R—co \/§ Cr Z4+1

x4+ 1

2

1/ .. T . dz
=—|lim — — lim

2 \R—o 2 R—oo Cr Z4+1
1

2\\2
o

2V2

® x2dx o«
86.4. = —,
/0 x0+1 6

Solution. Although one can compute this exercise by applying the residue theorem di-
rectly, as we have done in the previous exercises, it is possible to use only methods from
first-year calculus where applicable while directly invoking Exercise 86.1. With that in
mind, if we substitute u = x3 and du = 3x? dx, we obtain
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Solution. Although one can compute this exercise by applying the residue theorem di-
rectly, as we have done in the previous exercises, it is possible to use only methods from
first-year calculus where applicable while directly invoking Exercise 86.1. With that in



mind, if we employ the method of decomposition by partial fractions, we can write our
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Furthermore, by substituting u = 5 and du = % dx, the second term of our latest expres-
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Use residues to find the Cauchy principal values of the integrals in Exercises 7 and 8.
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By the residue theorem from Section 77 applied to the region bounded by [-R, R| and
Cg, we have
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Solution. Although one can compute this exercise by applying the residue theorem di-
rectly, as we have done in the previous exercises, it is possible to use only methods
from first-year calculus where applicable while directly invoking Exercises 86.1 and 86.7.
With that in mind, if we employ the method of decomposition by partial fractions, we
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Likewise, by substituting u = x> + 2x + 2 and du = 2x + 2 dx, the third term of our latest
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Finally, by invoking Exercise 86.1 and Exercise 86.7, we obtain
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