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94.1. Let 𝐶 denote the unit circle |𝑧 | = 1, described in the positive sense. Use the theorem in
Section 93 to determine the value of Δ𝐶 arg 𝑓 (𝑧) when

(a) 𝑓 (𝑧) = 𝑧2

Solution. The function 𝑓 (𝑧) = 𝑧2 only contains a zero of order 2 at 𝑧 = 0 in the
domain interior to the unit circle |𝑧 | = 1, and so 𝑓 (𝑧) = 𝑧2 is analytic in the domain.
Furthermore, all analytic functions in a domain are also meromorphic functions
in the same domain, which means 𝑓 (𝑧) = 𝑧2 is also meromorphic in the domain.
Furthermore, on the circle |𝑧 | = 1, which implies 𝑧 = 𝑒𝑖\ , we have

𝑓 (𝑧) = 𝑧2

= (𝑒𝑖\)2

= 𝑒𝑖(2\)

= 1
≠ 0.

By the theorem in Section 93, the winding number is

1
2𝜋

Δ𝐶 arg 𝑓 (𝑧) = 𝑍 − 𝑃

= 2 − 0
= 2,

where 𝑍 and 𝑃 denote the number of zeros and poles inside 𝐶, respectively, both
counting multiplicities. So we conclude

Δ𝐶 arg 𝑓 (𝑧) = 2𝜋
1

2𝜋
Δ𝐶 arg 𝑓 (𝑧)

= 2𝜋(2)
= 4𝜋 .

□

(b) 𝑓 (𝑧) = 1
𝑧2

Solution. The function 𝑓 (𝑧) = 1
𝑧2 only contains a pole of order 2 at 𝑧 = 0 in the unit

circle |𝑧 | = 1, and so 𝑓 (𝑧) = 1
𝑧2 is meromorphic in the domain interior to the unit



circle |𝑧 | = 1. Furthermore, on the circle |𝑧 | = 1, which implies 𝑧 = 𝑒𝑖\ , we have

𝑓 (𝑧) = 1
𝑧2

=
1

(𝑒𝑖\)2

=
1

𝑒𝑖(2\)

= 𝑒𝑖(−2\)

≠ 0.

By the theorem in Section 93, the winding number is

1
2𝜋

Δ𝐶 arg 𝑓 (𝑧) = 𝑍 − 𝑃

= 0 − 2
= −2,

where 𝑍 and 𝑃 denote the number of zeros and poles inside 𝐶, respectively, both
counting multiplicities. So we conclude

Δ𝐶 arg 𝑓 (𝑧) = 2𝜋
1

2𝜋
Δ𝐶 arg 𝑓 (𝑧)

= 2𝜋(−2)
= −4𝜋 .

□

(c) 𝑓 (𝑧) = (2𝑧 − 1)7

𝑧3

Solution. The function 𝑓 (𝑧) = (2𝑧−1)7

𝑧3 contains a zero of order 7 at 𝑧 = 1
2 and a pole

of order 3 at 𝑧 = 0 in the unit circle |𝑧 | = 1, and so 𝑓 (𝑧) = 1
𝑧2 is meromorphic in the

domain interior to the unit circle |𝑧 | = 1. Furthermore, on the circle |𝑧 | = 1, which
implies 𝑧 = 𝑒𝑖\ , we have

𝑓 (𝑧) = (2𝑧 − 1)7

𝑧3

=
(2𝑒𝑖\ − 1)7

(𝑒𝑖\)2

=
(2𝑒𝑖\ − 1)7

𝑒𝑖(2\)

≠ 0.

By the theorem in Section 93, the winding number is

1
2𝜋

Δ𝐶 arg 𝑓 (𝑧) = 𝑍 − 𝑃

= 7 − 3
= 4,



where 𝑍 and 𝑃 denote the number of zeros and poles inside 𝐶, respectively, both
counting multiplicities. So we conclude

Δ𝐶 arg 𝑓 (𝑧) = 2𝜋
1

2𝜋
Δ𝐶 arg 𝑓 (𝑧)

= 2𝜋(4)
= 8𝜋 .

□

94.2. Let 𝑓 be a function which is analytic inside and on a positively oriented simple closed
contour 𝐶, and suppose that 𝑓 (𝑧) is never zero on 𝐶. Let the image of 𝐶 under the
transformation 𝑤 = 𝑓 (𝑧) be the closed contour Γ shown in Figure 114. Determine the
value of Δ𝐶 arg 𝑓 (𝑧) from that figure; and, with the aid of the theorem in Section 93,
determine the number of zeros, counting multiplicities, of 𝑓 interior to 𝐶.

FIGURE 114

Proof. Fix any point 𝑤0 on Γ. The net rotation of Γ about 𝑤 = 0 as one travels along Γ

from 𝑤0 in the counterclockwise sense all the way back to 𝑤0, we see that the net rotation
about 𝑤 = 0 is 3 revolutions; in other words, the winding number is 3. Furthermore, since
𝑓 is assumed to be analytic inside 𝐶, there are no poles (namely, 𝑃 = 0). So the theorem
from Section 93 applies here, which allows us to conclude

𝑍 = 𝑍 − 0
= 𝑍 − 𝑃

=
1

2𝜋
Δ𝐶 arg 𝑓 (𝑧)

= 3 .

In other words, 𝑓 has three zeros, counting multiplicities, interior to 𝐶. □

94.5. Suppose that a function 𝑓 is analytic inside and on a positively oriented simple closed
contour 𝐶 and that it has no zeros on 𝐶. Show that if 𝑓 has 𝑛 zeros 𝑧𝑘 (𝑘 = 1, 2, . . . , 𝑛)
inside 𝐶, where each 𝑧𝑘 is of multiplicity 𝑚𝑘 , then∫

𝐶

𝑧 𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 = 2𝜋𝑖

𝑛∑︁
𝑘=1

𝑚𝑘 𝑧𝑘 .



Solution. Since 𝑓 is analytic and has 𝑛 zeros 𝑧𝑘 inside𝐶, where each 𝑧𝑘 is of multiplicity
𝑚𝑘 , Theorem 1 of Section 82 asserts that there exists a function 𝑔, which is analytic and
nonzero at each point 𝑧𝑘 , that satisfies

𝑓 (𝑧) = (𝑧 − 𝑧𝑘 )𝑚𝑘𝑔(𝑧),
which also implies that first derivative of 𝑓 can be written

𝑓 ′(𝑧) = 𝑑

𝑑𝑧
( 𝑓 (𝑧))

=
𝑑

𝑑𝑧
((𝑧 − 𝑧𝑘 )𝑚𝑘𝑔(𝑧))

=
𝑑

𝑑𝑧
((𝑧 − 𝑧𝑘 )𝑚𝑘 ) (𝑔(𝑧)) + ((𝑧 − 𝑧𝑘 )𝑚𝑘 ) 𝑑

𝑑𝑧
(𝑔(𝑧))

= 𝑚𝑘 (𝑧 − 𝑧𝑘 )𝑚𝑘−1𝑔(𝑧) + (𝑧 − 𝑧𝑘 )𝑚𝑘𝑔′(𝑧)
= (𝑧 − 𝑧𝑘 )𝑚𝑘−1(𝑚𝑘𝑔(𝑧) + (𝑧 − 𝑧𝑘 )𝑔′(𝑧)).

So we can write
𝑧 𝑓 ′(𝑧)
𝑓 (𝑧) =

𝑧(𝑧 − 𝑧𝑘 )𝑚𝑘−1(𝑚𝑘𝑔(𝑧) + (𝑧 − 𝑧𝑘 )𝑔′(𝑧))
(𝑧 − 𝑧𝑘 )𝑚𝑘𝑔(𝑧)

=
𝑧(𝑚𝑘𝑔(𝑧) + (𝑧 − 𝑧𝑘 )𝑔′(𝑧))

(𝑧 − 𝑧𝑘 )𝑔(𝑧)

=
𝑧𝑚𝑘𝑔(𝑧) + 𝑧(𝑧 − 𝑧𝑘 )𝑔′(𝑧)

(𝑧 − 𝑧𝑘 )𝑔(𝑧)

=
𝑧𝑚𝑘𝑔(𝑧)

(𝑧 − 𝑧𝑘 )𝑔(𝑧)
+ 𝑧(𝑧 − 𝑧𝑘 )𝑔′(𝑧)

(𝑧 − 𝑧𝑘 )𝑔(𝑧)

=
𝑧𝑚𝑘

𝑧 − 𝑧𝑘
+ 𝑧𝑔′(𝑧)

𝑔(𝑧)

=
(𝑧 − 𝑧𝑘 + 𝑧𝑘 )𝑚𝑘

𝑧 − 𝑧𝑘
+ 𝑧𝑔′(𝑧)

𝑔(𝑧)

=
(𝑧 − 𝑧𝑘 )𝑚𝑘 + 𝑧𝑘𝑚𝑘

𝑧 − 𝑧𝑘
+ 𝑧𝑔′(𝑧)

𝑔(𝑧)

=
(𝑧 − 𝑧𝑘 )𝑚𝑘

𝑧 − 𝑧𝑘
+ 𝑧𝑘𝑚𝑘

𝑧 − 𝑧𝑘
+ 𝑧𝑔′(𝑧)

𝑔(𝑧)

= 𝑚𝑘 +
𝑚𝑘 𝑧𝑘

𝑧 − 𝑧𝑘
+ 𝑧𝑔′(𝑧)

𝑔(𝑧) ,

which implies that
𝑧 𝑓 ′(𝑧)
𝑓 (𝑧) is meromorphic inside 𝐶 with simple poles at each 𝑧 = 𝑧𝑘 for

𝑘 = 1, 2, . . . , 𝑛, whose corresponding residues are

Res
𝑧=𝑧𝑘

𝑧 𝑓 ′(𝑧)
𝑓 (𝑧) = 𝑚𝑘 𝑧𝑘

for 𝑘 = 1, 2, . . . , 𝑛. Finally, by the residue theorem from Section 76, we conclude∫
𝐶

𝑧 𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 = 2𝜋𝑖

𝑛∑︁
𝑘=1

Res
𝑧=𝑧𝑘

𝑧 𝑓 ′(𝑧)
𝑓 (𝑧)

= 2𝜋𝑖
𝑛∑︁

𝑘=1

𝑚𝑘 𝑧𝑘 ,



which is the desired result. □


