Ryan Ta Spring 2022

Solutions to suggested homework problems from

Complex Variables and Applications, Ninth Edition by James Brown and Ruel Churchill Homework 8: Section 94, Exercises 1(a)(b)(c), 2, 5

- 94.1. Let *C* denote the unit circle |z| = 1, described in the positive sense. Use the theorem in Section 93 to determine the value of $\Delta_C \arg f(z)$ when
 - (a) $f(z) = z^2$

Solution. The function $f(z) = z^2$ only contains a zero of order 2 at z = 0 in the domain interior to the unit circle |z| = 1, and so $f(z) = z^2$ is analytic in the domain. Furthermore, all analytic functions in a domain are also meromorphic functions in the same domain, which means $f(z) = z^2$ is also meromorphic in the domain. Furthermore, on the circle |z| = 1, which implies $z = e^{i\theta}$, we have

$$f(z) = z^{2}$$
$$= (e^{i\theta})^{2}$$
$$= e^{i(2\theta)}$$
$$= 1$$
$$\neq 0.$$

By the theorem in Section 93, the winding number is

$$\frac{1}{2\pi}\Delta_C \arg f(z) = Z - P$$
$$= 2 - 0$$
$$= 2,$$

where Z and P denote the number of zeros and poles inside C, respectively, both counting multiplicities. So we conclude

$$\Delta_C \arg f(z) = 2\pi \frac{1}{2\pi} \Delta_C \arg f(z)$$
$$= 2\pi (2)$$
$$= 4\pi.$$

(b) $f(z) = \frac{1}{z^2}$

Solution. The function $f(z) = \frac{1}{z^2}$ only contains a pole of order 2 at z = 0 in the unit circle |z| = 1, and so $f(z) = \frac{1}{z^2}$ is meromorphic in the domain interior to the unit

circle |z| = 1. Furthermore, on the circle |z| = 1, which implies $z = e^{i\theta}$, we have

$$f(z) = \frac{1}{z^2}$$
$$= \frac{1}{(e^{i\theta})^2}$$
$$= \frac{1}{e^{i(2\theta)}}$$
$$= e^{i(-2\theta)}$$
$$\neq 0.$$

By the theorem in Section 93, the winding number is

$$\frac{1}{2\pi}\Delta_C \arg f(z) = Z - P$$
$$= 0 - 2$$
$$= -2,$$

where Z and P denote the number of zeros and poles inside C, respectively, both counting multiplicities. So we conclude

$$\Delta_C \arg f(z) = 2\pi \frac{1}{2\pi} \Delta_C \arg f(z)$$
$$= 2\pi (-2)$$
$$= -4\pi.$$

(c)
$$f(z) = \frac{(2z-1)^7}{z^3}$$

Solution. The function $f(z) = \frac{(2z-1)^7}{z^3}$ contains a zero of order 7 at $z = \frac{1}{2}$ and a pole of order 3 at z = 0 in the unit circle |z| = 1, and so $f(z) = \frac{1}{z^2}$ is meromorphic in the domain interior to the unit circle |z| = 1. Furthermore, on the circle |z| = 1, which implies $z = e^{i\theta}$, we have

$$f(z) = \frac{(2z-1)^7}{z^3} \\ = \frac{(2e^{i\theta}-1)^7}{(e^{i\theta})^2} \\ = \frac{(2e^{i\theta}-1)^7}{e^{i(2\theta)}} \\ \neq 0.$$

By the theorem in Section 93, the winding number is

$$\frac{1}{2\pi}\Delta_C \arg f(z) = Z - P$$
$$= 7 - 3$$
$$= 4.$$

where Z and P denote the number of zeros and poles inside C, respectively, both counting multiplicities. So we conclude

$$\Delta_C \arg f(z) = 2\pi \frac{1}{2\pi} \Delta_C \arg f(z)$$
$$= 2\pi (4)$$
$$= 8\pi.$$

94.2. Let f be a function which is analytic inside and on a positively oriented simple closed contour C, and suppose that f(z) is never zero on C. Let the image of C under the transformation w = f(z) be the closed contour Γ shown in Figure 114. Determine the value of $\Delta_C \arg f(z)$ from that figure; and, with the aid of the theorem in Section 93, determine the number of zeros, counting multiplicities, of f interior to C.

FIGURE 114

Proof. Fix any point w_0 on Γ . The net rotation of Γ about w = 0 as one travels along Γ from w_0 in the counterclockwise sense all the way back to w_0 , we see that the net rotation about w = 0 is 3 revolutions; in other words, the winding number is 3. Furthermore, since f is assumed to be analytic inside C, there are no poles (namely, P = 0). So the theorem from Section 93 applies here, which allows us to conclude

$$Z = Z - 0$$

= Z - P
= $\frac{1}{2\pi}\Delta_C \arg f(z)$
= 3.

In other words, f has three zeros, counting multiplicities, interior to C.

94.5. Suppose that a function f is analytic inside and on a positively oriented simple closed contour C and that it has no zeros on C. Show that if f has n zeros z_k (k = 1, 2, ..., n) inside C, where each z_k is of multiplicity m_k , then

$$\int_C \frac{zf'(z)}{f(z)} dz = 2\pi i \sum_{k=1}^n m_k z_k$$

Solution. Since f is analytic and has n zeros z_k inside C, where each z_k is of multiplicity m_k , Theorem 1 of Section 82 asserts that there exists a function g, which is analytic and nonzero at each point z_k , that satisfies

$$f(z) = (z - z_k)^{m_k} g(z),$$

which also implies that first derivative of f can be written

$$f'(z) = \frac{d}{dz}(f(z))$$

= $\frac{d}{dz}((z - z_k)^{m_k}g(z))$
= $\frac{d}{dz}((z - z_k)^{m_k})(g(z)) + ((z - z_k)^{m_k})\frac{d}{dz}(g(z))$
= $m_k(z - z_k)^{m_k-1}g(z) + (z - z_k)^{m_k}g'(z)$
= $(z - z_k)^{m_k-1}(m_kg(z) + (z - z_k)g'(z)).$

So we can write

$$\frac{zf'(z)}{f(z)} = \frac{z(z-z_k)^{m_k-1}(m_kg(z) + (z-z_k)g'(z))}{(z-z_k)g(z)}$$

$$= \frac{z(m_kg(z) + (z-z_k)g'(z))}{(z-z_k)g(z)}$$

$$= \frac{zm_kg(z) + z(z-z_k)g'(z)}{(z-z_k)g(z)}$$

$$= \frac{zm_kg(z)}{(z-z_k)g(z)} + \frac{z(z-z_k)g'(z)}{(z-z_k)g(z)}$$

$$= \frac{zm_k}{z-z_k} + \frac{zg'(z)}{g(z)}$$

$$= \frac{(z-z_k+z_k)m_k}{z-z_k} + \frac{zg'(z)}{g(z)}$$

$$= \frac{(z-z_k)m_k + z_km_k}{z-z_k} + \frac{zg'(z)}{g(z)}$$

$$= \frac{(z-z_k)m_k}{z-z_k} + \frac{z_km_k}{z-z_k} + \frac{zg'(z)}{g(z)}$$

which implies that $\frac{zf'(z)}{f(z)}$ is meromorphic inside *C* with simple poles at each $z = z_k$ for k = 1, 2, ..., n, whose corresponding residues are

$$\operatorname{Res}_{z=z_k} \frac{zf'(z)}{f(z)} = m_k z_k$$

for k = 1, 2, ..., n. Finally, by the residue theorem from Section 76, we conclude

$$\int_C \frac{zf'(z)}{f(z)} dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} \frac{zf'(z)}{f(z)}$$
$$= 2\pi i \sum_{k=1}^n m_k z_k,$$

which is the desired result.