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Solutions to suggested homework problems from
Complex Variables and Applications, Ninth Edition by James Brown and Ruel Churchill
Homework 8: Section 94, Exercises 1(a)(b)(c), 2, 5

94.1. Let C denote the unit circle |z| = 1, described in the positive sense. Use the theorem in
Section 93 to determine the value of Ac arg f(z) when

(@) f(z) =2*

Solution. The function f(z) = z> only contains a zero of order 2 at z = 0 in the
domain interior to the unit circle |z| = 1, and so f(z) = z? is analytic in the domain.
Furthermore, all analytic functions in a domain are also meromorphic functions
in the same domain, which means f(z) = z> is also meromorphic in the domain.
Furthermore, on the circle |z| = 1, which implies z = ¢?, we have
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By the theorem in Section 93, the winding number is
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where Z and P denote the number of zeros and poles inside C, respectively, both
counting multiplicities. So we conclude
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Solution. The function f(z) = Zl—z only contains a pole of order 2 at z = 0 in the unit
circle |z| = 1, and so f(z) = Ziz is meromorphic in the domain interior to the unit



circle |z| = 1. Furthermore, on the circle |z| = 1, which implies z = ¢'?, we have
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By the theorem in Section 93, the winding number is
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where Z and P denote the number of zeros and poles inside C, respectively, both
counting multiplicities. So we conclude

Acarg f(2) = 2 -Ac arg f(2)
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Solution. The function f(z) = (22 D’

of order 3 at z = 0 in the unit 01rcle |z =1, and so f(z) = 22 is meromorphic in the
domain interior to the unit circle |z| = 1. Furthermore, on the circle |z| = 1, which
implies z = e’ we have

contains a zero of order Tatz =5 L and a pole
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By the theorem in Section 93, the winding number is
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where Z and P denote the number of zeros and poles inside C, respectively, both
counting multiplicities. So we conclude

Acarg £(2) = o Ac arg f(2)
=2n(4)
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94.2. Let f be a function which is analytic inside and on a positively oriented simple closed

94.5.

contour C, and suppose that f(z) is never zero on C. Let the image of C under the
transformation w = f(z) be the closed contour I" shown in Figure 114. Determine the
value of Ac arg f(z) from that figure; and, with the aid of the theorem in Section 93,
determine the number of zeros, counting multiplicities, of f interior to C.
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FIGURE 114

Proof. Fix any point wy on I'. The net rotation of I" about w = 0 as one travels along I"
from wy in the counterclockwise sense all the way back to w(, we see that the net rotation
about w = 0 1is 3 revolutions; in other words, the winding number is 3. Furthermore, since
f 1s assumed to be analytic inside C, there are no poles (namely, P = 0). So the theorem
from Section 93 applies here, which allows us to conclude
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In other words, f has three zeros, counting multiplicities, interior to C. O

Suppose that a function f is analytic inside and on a positively oriented simple closed
contour C and that it has no zeros on C. Show that if f has n zeros z; (k = 1,2,...,n)
inside C, where each z; is of multiplicity my, then
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Solution. Since f is analytic and has n zeros zj inside C, where each z; is of multiplicity
my, Theorem 1 of Section 82 asserts that there exists a function g, which is analytic and
nonzero at each point zi, that satisfies

f(2) = (z—z)"g(2),

which also implies that first derivative of f can be written
, d
f'() = ()
Z
d -
= (- 20™g(2)
Z

= (= ™)) + (- 2™ 2 (8()
4 dz

=m(z—20)™ ' g(2) + (2 - 20)™ g’ (2)
= (z- 2™ (mg(2) + (2 — 20) 8’ (2).
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k=1,2,...,n, whose corresponding residues are
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for k = 1,2,...,n. Finally, by the residue theorem from Section 76, we conclude

z2f'(2) dz = i Z Res z2f'(z)
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which implies that 1s meromorphic inside C with simple poles at each z = z; for
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which is the desired result.



