Solutions to suggested homework problems from
Complex Variables and Applications, Ninth Edition by James Brown and Ruel Churchill Homework 8: Section 94, Exercises 1(a)(b)(c), 2, 5
94.1. Let C denote the unit circle $|z|=1$, described in the positive sense. Use the theorem in Section 93 to determine the value of $\Delta_{C} \arg f(z)$ when
(a) $f(z)=z^{2}$

Solution. The function $f(z)=z^{2}$ only contains a zero of order 2 at $z=0$ in the domain interior to the unit circle $|z|=1$, and so $f(z)=z^{2}$ is analytic in the domain. Furthermore, all analytic functions in a domain are also meromorphic functions in the same domain, which means $f(z)=z^{2}$ is also meromorphic in the domain. Furthermore, on the circle $|z|=1$, which implies $z=e^{i \theta}$, we have

$$
\begin{aligned}
f(z) & =z^{2} \\
& =\left(e^{i \theta}\right)^{2} \\
& =e^{i(2 \theta)} \\
& =1 \\
& \neq 0 .
\end{aligned}
$$

By the theorem in Section 93, the winding number is

$$
\begin{aligned}
\frac{1}{2 \pi} \Delta_{C} \arg f(z) & =Z-P \\
& =2-0 \\
& =2
\end{aligned}
$$

where Z and P denote the number of zeros and poles inside C, respectively, both counting multiplicities. So we conclude

$$
\begin{aligned}
\Delta_{C} \arg f(z) & =2 \pi \frac{1}{2 \pi} \Delta_{C} \arg f(z) \\
& =2 \pi(2) \\
& =4 \pi .
\end{aligned}
$$

(b) $f(z)=\frac{1}{z^{2}}$

Solution. The function $f(z)=\frac{1}{z^{2}}$ only contains a pole of order 2 at $z=0$ in the unit circle $|z|=1$, and so $f(z)=\frac{1}{z^{2}}$ is meromorphic in the domain interior to the unit
circle $|z|=1$. Furthermore, on the circle $|z|=1$, which implies $z=e^{i \theta}$, we have

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}} \\
& =\frac{1}{\left(e^{i \theta}\right)^{2}} \\
& =\frac{1}{e^{i(2 \theta)}} \\
& =e^{i(-2 \theta)} \\
& \neq 0 .
\end{aligned}
$$

By the theorem in Section 93, the winding number is

$$
\begin{aligned}
\frac{1}{2 \pi} \Delta_{C} \arg f(z) & =Z-P \\
& =0-2 \\
& =-2
\end{aligned}
$$

where Z and P denote the number of zeros and poles inside C, respectively, both counting multiplicities. So we conclude

$$
\begin{aligned}
\Delta_{C} \arg f(z) & =2 \pi \frac{1}{2 \pi} \Delta_{C} \arg f(z) \\
& =2 \pi(-2) \\
& =-4 \pi .
\end{aligned}
$$

(c) $f(z)=\frac{(2 z-1)^{7}}{z^{3}}$

Solution. The function $f(z)=\frac{(2 z-1)^{7}}{z^{3}}$ contains a zero of order 7 at $z=\frac{1}{2}$ and a pole of order 3 at $z=0$ in the unit circle $|z|=1$, and so $f(z)=\frac{1}{z^{2}}$ is meromorphic in the domain interior to the unit circle $|z|=1$. Furthermore, on the circle $|z|=1$, which implies $z=e^{i \theta}$, we have

$$
\begin{aligned}
f(z) & =\frac{(2 z-1)^{7}}{z^{3}} \\
& =\frac{\left(2 e^{i \theta}-1\right)^{7}}{\left(e^{i \theta}\right)^{2}} \\
& =\frac{\left(2 e^{i \theta}-1\right)^{7}}{e^{i(2 \theta)}} \\
& \neq 0 .
\end{aligned}
$$

By the theorem in Section 93, the winding number is

$$
\begin{aligned}
\frac{1}{2 \pi} \Delta_{C} \arg f(z) & =Z-P \\
& =7-3 \\
& =4
\end{aligned}
$$

where Z and P denote the number of zeros and poles inside C, respectively, both counting multiplicities. So we conclude

$$
\begin{aligned}
\Delta_{C} \arg f(z) & =2 \pi \frac{1}{2 \pi} \Delta_{C} \arg f(z) \\
& =2 \pi(4) \\
& =8 \pi .
\end{aligned}
$$

94.2. Let f be a function which is analytic inside and on a positively oriented simple closed contour C, and suppose that $f(z)$ is never zero on C. Let the image of C under the transformation $w=f(z)$ be the closed contour Γ shown in Figure 114. Determine the value of $\Delta_{C} \arg f(z)$ from that figure; and, with the aid of the theorem in Section 93, determine the number of zeros, counting multiplicities, of f interior to C.

FIGURE 114

Proof. Fix any point w_{0} on Γ. The net rotation of Γ about $w=0$ as one travels along Γ from w_{0} in the counterclockwise sense all the way back to w_{0}, we see that the net rotation about $w=0$ is 3 revolutions; in other words, the winding number is 3 . Furthermore, since f is assumed to be analytic inside C, there are no poles (namely, $P=0$). So the theorem from Section 93 applies here, which allows us to conclude

$$
\begin{aligned}
Z & =Z-0 \\
& =Z-P \\
& =\frac{1}{2 \pi} \Delta_{C} \arg f(z) \\
& =3 .
\end{aligned}
$$

In other words, f has three zeros, counting multiplicities, interior to C.
94.5. Suppose that a function f is analytic inside and on a positively oriented simple closed contour C and that it has no zeros on C. Show that if f has n zeros $z_{k}(k=1,2, \ldots, n)$ inside C, where each z_{k} is of multiplicity m_{k}, then

$$
\int_{C} \frac{z f^{\prime}(z)}{f(z)} d z=2 \pi i \sum_{k=1}^{n} m_{k} z_{k}
$$

Solution. Since f is analytic and has n zeros z_{k} inside C, where each z_{k} is of multiplicity m_{k}, Theorem 1 of Section 82 asserts that there exists a function g, which is analytic and nonzero at each point z_{k}, that satisfies

$$
f(z)=\left(z-z_{k}\right)^{m_{k}} g(z),
$$

which also implies that first derivative of f can be written

$$
\begin{aligned}
f^{\prime}(z) & =\frac{d}{d z}(f(z)) \\
& =\frac{d}{d z}\left(\left(z-z_{k}\right)^{m_{k}} g(z)\right) \\
& =\frac{d}{d z}\left(\left(z-z_{k}\right)^{m_{k}}\right)(g(z))+\left(\left(z-z_{k}\right)^{m_{k}}\right) \frac{d}{d z}(g(z)) \\
& =m_{k}\left(z-z_{k}\right)^{m_{k}-1} g(z)+\left(z-z_{k}\right)^{m_{k}} g^{\prime}(z) \\
& =\left(z-z_{k}\right)^{m_{k}-1}\left(m_{k} g(z)+\left(z-z_{k}\right) g^{\prime}(z)\right) .
\end{aligned}
$$

So we can write

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{f(z)} & =\frac{z\left(z-z_{k}\right)^{m_{k}-1}\left(m_{k} g(z)+\left(z-z_{k}\right) g^{\prime}(z)\right)}{\left(z-z_{k}\right)^{m_{k}} g(z)} \\
& =\frac{z\left(m_{k} g(z)+\left(z-z_{k}\right) g^{\prime}(z)\right)}{\left(z-z_{k}\right) g(z)} \\
& =\frac{z m_{k} g(z)+z\left(z-z_{k}\right) g^{\prime}(z)}{\left(z-z_{k}\right) g(z)} \\
& =\frac{z m_{k} g(z)}{\left(z-z_{k}\right) g(z)}+\frac{z\left(z-z_{k}\right) g^{\prime}(z)}{\left(z-z_{k}\right) g(z)} \\
& =\frac{z m_{k}}{z-z_{k}}+\frac{z g^{\prime}(z)}{g(z)} \\
& =\frac{\left(z-z_{k}+z_{k}\right) m_{k}}{z-z_{k}}+\frac{z g^{\prime}(z)}{g(z)} \\
& =\frac{\left(z-z_{k}\right) m_{k}+z_{k} m_{k}}{z-z_{k}}+\frac{z g^{\prime}(z)}{g(z)} \\
& =\frac{\left(z-z_{k}\right) m_{k}}{z-z_{k}}+\frac{z_{k} m_{k}}{z-z_{k}}+\frac{z g^{\prime}(z)}{g(z)} \\
& =m_{k}+\frac{m_{k} z_{k}}{z-z_{k}}+\frac{z g^{\prime}(z)}{g(z)},
\end{aligned}
$$

which implies that $\frac{z f^{\prime}(z)}{f(z)}$ is meromorphic inside C with simple poles at each $z=z_{k}$ for $k=1,2, \ldots, n$, whose corresponding residues are

$$
\operatorname{Res}_{z=z_{k}} \frac{z f^{\prime}(z)}{f(z)}=m_{k} z_{k}
$$

for $k=1,2, \ldots, n$. Finally, by the residue theorem from Section 76, we conclude

$$
\begin{aligned}
\int_{C} \frac{z f^{\prime}(z)}{f(z)} d z & =2 \pi i \sum_{k=1}^{n} \operatorname{Res} \frac{z f^{\prime}(z)}{f(z)} \\
& =2 \pi i \sum_{k=1}^{n} m_{k} z_{k},
\end{aligned}
$$

which is the desired result.

