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Lecture 1. January 7, 2008

Theorem 0.1. Given Ω ⊂ C open and S ⊂ Ω discrete (so S has no limit point in Ω). If
f : S - C is an arbitrary function, then ∃f̃ : Ω - C holomorphic such that f̃ = f .

Remark 0.2. This theorem fails for some open subsets of Cn and holds for others. In one
variable and for non-compact Riemann surfaces, this theorem holds. During this class we
will answer the question: Exactly when does it hold?

An R-differentiable function is one which is R-linearly approximated. So it is helpful to
know R-linear algebra.
A holomorphic functions corresponds to C-differentiable functions, which can be C-linearly
approximated. So it is helpful to know C-linear algebra.
How do these relate?

Let V be a C-vector space. One can view V as an R-vector space with extra structure:
V

J- V is given by z 7→ iz, where J is R-linear and J2 = −I.
Conversely, any R-vector space with such a map J becomes a C-vector space: (a + bi)z ≡
az + Jbz

T : V - W is C-linear ⇔ T is R-linear and TJ = JT ⇔ T is R-linear and T = −JTJ
Definition 0.3. A map T : V - W is conjugate linear (or anti-linear) if T is R-linear
and T (λz) = λTz. Equivalently, T is R-linear and TJ = −JT
Proposition 0.4. If T is R-linear, then T admits a unique decomposition T = T (1,0) +
T (0,1), where T (1,0) is C-linear and T (0,1) is conjugate linear.

Proof. Uniqueness:
T = T (1,0) + T (0,1)

JTJ = −T (1,0) + T (0,1)

T (1,0) =
T − JTJ

2
and T (0,1) =

T + JTJ

2
Existence: Check that these work. �

Exercise 0.5. Let V and W be C-vector spaces. Given an R-linear map T : V - W , T
is a C-linear map ⇔ the graph of T is a C-subspace of V ×W .

Let V be a C-vector space and W ⊂ V an R-linear subspace. Then W is a C-linear subspace
⇔W = JW . It is easy to check that W ∩ JW is the maximal C-linear subspace of W .
Assume that V is finite dimensional:
2 dimC(W ∩ JW ) = dimR(W ∩ JW ) = dimR(W ) + dimR(JW ) − dimR span(W ∪ JW ) ≥
2 dimR(W )− dimR(V ):

Proposition 0.6. 1
2 dimR W ≥ dimC(W ∩ JW ) ≥ dimR(W )− dimC(V )

Let n = dimC V . Then:

dimR W dimCW ∩ JW
0 0
1 0
...

...
n 0, . . . , [n2 ] = greatest integer ≤ n

2
...

...
2n− 2 n− 2, n− 1
2n− 1 n− 1
2n n



Sara W. Lapan 3

Exercise 0.7.
(1) Show that everything in the left column is possible. Hint: Consider W = Ck×Rl×
{0}2n−2k−l.

(2) Every W is isomorphic to that given in the hint. (so after a change in coordinates,
every W can be characterized as given by the hint)

Definition 0.8. W is totally real if W ∩ JW = {0}.
Corollary 0.9. If W is totally real, then dimR W = 2 dimC W ≤ dimC V .

Definition 0.10. W is maximally totally real if W is totally real and dimR W = dimC V .

Warning: The term “generic” has two non-equivalent definitions. For this class the correct
definition is:

Definition 0.11. W is generic if dimC W ∩ JW = max{dimR W − dimC V, 0}.
The other common definition for generic (which is equivalent for large dimensions of W ) is:
W is generic if dimC W ∩ JW = dimRW − dimC V .

Lecture 2. January 9, 2009

Let V be a C-vector space, W ⊂ V an R-subspace and W ∩ JW a maximal C-subspace of
W .
Let T : W - C. Does T extend to a C-linear map T̃ : V - C? We would need T to
be R-linear and T to be C-linear on W ∩ JW . If so, define T̂ : spanRW ∪ JW - C by
v1 + iv2 7→ Tv1 + iTv2.

Exercise 0.12. Show that T̂ is well-defined and C-linear.

Extend T̂ to T̃ as usual. So T̃ exists ⇔ T is R-linear and T is C-linear on W ∩ JW .
T̃ is unique ⇔ spanRW ∪ JW = V

The Fundamental Theorem of Linear Algebra⇔ dimC W ∩ JW = dimR W − dimC V

⇔W is generic (by the second definition).

Exercise 0.13. Let V and W both be C-vector spaces. Which R-linear maps V - W
send C-subspaces to C-subspaces? Some maps that satisfy this are: C-linear maps, conjugate-
linear maps, surjective maps C - C, composition of the above. In fact, every such map
can be created by combinations, in some way, of those maps.

Let V be a C-vector space and Q : V × V - R be a bilinear, symmetric map.

Definition 0.14. Q is R-Hermitian if Q(Jv1, Jv2) = Q(v1, v2).

Definition 0.15. Q is R-anti-Hermitian if Q(Jv1, Jv2) = −Q(v1, v2). Equivalently,
Q(v1, Jv2) = −Q(Jv1, v2).

Proposition 0.16. Q decomposes uniquely as Q = QHerm. +Qanti-Herm..

Proof. QHerm.(v1, v2) = Q(v1,v2)+Q(Jv1,Jv2)
2 and Qanti-Herm.(v1, v2) = Q(v1,v2)−Q(Jv1,Jv2)

2
�

Exercise 0.17. Q((z1, . . . , zn)t, (w1, . . . , wn)t) = Re(
∑
ajkzjwk) + Re(

∑
bjkzjwk) (where

the first term is Hermitian and the second is anti-Hermitian, ajk = akj , and bjk = bkj).

If Q is a real, symmetric, bilinear form on V , the signature of Q is the triple (n+, n−, n0)
where:

n+ = max{dimE | Q > 0 on E}
n− = max{dimE | Q < 0 on E}
n0 = dim{v ∈ V | Q(v, w) = 0∀w ∈ V }.
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Theorem 0.18. We can choose an R-basis such that Q can be replaced by:

In+ 0 0
0 0n0 0
0 0 −In−

.

Also, n+ + n0 = max{dimE | Q ≥ 0 on E} and n− + n0 = max{dimE | Q ≤ 0 on E}.
This is also true if Q is C-Hermitian.

If V is a C-vector space, how does the real signature of Q compare to the complex signature
of QHerm.?
The sign (i.e. >,< . ≥,≤) of the signature of Q on W , a subspace of V , gives the same sign
for the complex signature of QHerm. on W ∩ JW .
Conclude: nC

+(QHerm.) ≥ nR
+(Q)−dimC V and nC

−(QHerm.) ≥ nR
−(Q)−dimC V . The same

inequalities hold if we add n0 to the left-hand side of both inequalities.

Corollary 0.19. QHerm. ≥ 0⇒ nR
−(Q) ≤ dimC V

Corollary 0.20. nC
+(QHerm.) ≤ nR

+(Q)

Proof.

nC
+(QHerm.) = dimC V − nC

0 (QHerm.)− nC
−(QHerm.)

≤ dimC V − (nR
0 (Q) + nR

−(Q)− dimC V )

= dimR V − nR
0V − nR

−(Q)

= nR+(Q)

�

Given an R-Hermitian form Q on V , let QC(v1, v2) = Q(v1, v2) + iQ(v1, Jv2).
Then QC(Jv1, v2) = Q(v1, Jv2)− iQ(v1, v2) = −iQC(v1, v2).
So QC is C-linear in v1 and conjugate-linear in v2 ⇒ QC is C−Hermitian.

Exercise 0.21. The real part of a C-Hermitian form is R-Hermitian.

Some people prefer to use R-Hermitian and others prefer C-Hermitian, so the above defini-
tion gives an easy way to go back and forth between the two terms.

Definition 0.22. Let U ⊂ Cn be open. Then f : U - Ck is C-differentiable at z0 ∈ U
if ∃T : Cn - Ck that is C-linear such that limz→z0

||f(z)−f(z0)−T (z−z0)||
||z−z0|| = 0.

Equivalently, f is R-differentiable at z0 and T = f ′(z0) : Cn - Ck is C-linear.
Equivalently, if f = (f1, . . . , fk), then each fi is C-differentiable at z0. So we can focus on
the case when k = 1.

Lecture 3. January 12, 2009
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Let z = x+ iy, w = u+ iv, and f = (f1, . . . , fk)⇒ uj = wj+wj
2 and vj = wj−wj

2i . Then:

f ′(z0)

w1

...
wn

 = f ′(z0)


u1

v1

...
un
vn


=

∂f

∂x1
(z0)u1 +

∂f

∂y1
(z0)v1 + . . .

=
∂f
∂x1

(z0)− i ∂f∂y1 (z0)

2
w1 + . . . (C− linear)

+
∂f
∂x1

(z0) + i ∂f∂y1 (z0)

2
w1 + . . . (C− conj.-linear)

Note that:

∂f

∂z1
(z0) =

∂f
∂x1

(z0)− i ∂f∂y1 (z0)

2
and

∂f

∂z1
(z0) =

∂f
∂x1

(z0) + i ∂f∂y1 (z0)

2

df =
∂f

∂z1
dz1 + . . .+

∂f

∂z1
dz1 + . . . = ∂f + ∂f

∂f

∂z1
dz1 =

∂f

∂x1
dx1 +

∂f

∂y1
dy1

So f is C-differentiable at z0 ⇔ f is R-differentiable at z0 and ∂f
∂zj

= 0∀j ⇔ f is R-

differentiable at z0 and ∂f = 0.

Definition 0.23. Let U ⊂ Cn be open. The following are equivalent:

(1) f is holomorphic on U
(2) f is continuously C-differentiable on U
(3) f is C1

R on U and f ′(z0)J = Jf ′(z0) ∀z0 ∈ U
(4) f is C1

R on U and ∂f
∂zj

= 0 ∀j
(5) f is C1

R on U and holomorphic in each variable separately

Proposition 0.24. Holomorphic functions are closed under composition.

Proof. Key linear algebra fact to use: C linear maps are closed under composition. �

Proposition 0.25. Holomorphic functions are closed under addition.

Proof. Key linear algebra fact to use: C linear maps are closed under addition. �

Proposition 0.26. Scalar-valued holomorphic functions are closed under multiplication.

Examples of holomorphic functions:

• Finite polynomials in z1, . . . , zn (denoted by the vector z) with powers α1, . . . , αn ∈
Z (denoted by the vector α). To simplify notation we use:∑

cα1,...,αnz
α1
1 . . . zαnn =

∑
cαz

α and α ≥ 0⇒ αj ≥ 0∀j

• Power series f(z) =
∑
α≥0 cαz

α that coverges on {z | |zj | ≤ rj} ⇒ f is holomorphic
on {z | |zj | < rj}.
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Proof. On {z | |zj | < rj}, |cα|rα ≤M for some M .
|zj | ≤ λjrj , λj < 1⇒

∑
|cαzα| ≤M

∑
λα = M

∏n
j=1

1
1−λj <∞. So f converges absolutely

on {z | |zj | ≤ rj}.
Now show holomorphic: Define: ∂

∂z

β
= ( ∂

∂z1
)β1 . . . ( ∂

∂zn
)βn∑

α |(
∂
∂z )βcαzα| =

∑
γα,β |cαzα−β |, where γα,β =

∏ (αj)!
(αj−βj)! or 0. Then∑

α

|( ∂
∂z

)βcαzα| ≤
∑

γα,β |cα|rα−βλα−β

≤ M

rβ

∑
γα,βλ

α−β

=
M

rβ

∑
(
∂

∂λ
)βλα

= M̃

n∏
j=1

1
1− λj

1+βj

So ∂(
∑
cαz

α) =
∑
∂(cαzα) = 0 and all derivatives converge uniformly on compact subsets

of {z | |zj | < rj}. �

Remark 0.27. This result generalizes for
∑
bα(z − c)α on {z | |zj − cj | < rj}.

Lecture 4. January 14, 2009

Suppose that f is holomorphic on a neighborhood of {z | |z − cj | ≤ rj}. Then

f(z) =
1

2πi

∫
|ϕ1−c1|=r1

f(ϕ1, z2, . . . , zn)
ϕ1 − z1

dϕ1

= (
1

2πi
)2

∫
|ϕ2−c2|=r2

∫
|ϕ1−c1|=r1

f(ϕ1, ϕ2, z3, . . . , zn)
(ϕ1 − z1)(ϕ2 − z2)

dϕ1 ∧ dϕ2

= . . . (n− times)

= (
1

2πi
)n
∫
|ϕ1−c1|<r1

. . .

∫
|ϕn−cn|<rn

f(ϕ1, . . . ϕn)
(ϕ1 − z1) . . . (ϕn − zn)

dϕ1 ∧ · · · ∧ dϕn

Note that: ϕj = cj + rje
iθj . Then dϕ1 ∧ · · · ∧ dϕn = inr1 . . . rne

i(θ1...θn)dθ1 ∧ · · · ∧ θn.

1
ϕj − zj

=
1

ϕj − cj
1

1− zj−cj
ϕj−cj

=
∑
α≥0

(zj − cj)αj
(ϕj − cj)αj+1

Using this in the above formula for f :

f(z) =
∑
α≥0

(
1

(2πi)n

∫
. . .

∫
f(ϕ)dϕ1 ∧ · · · ∧ dϕn

(ϕ1 − c1)α1+1 . . . (ϕn − cn)αn+1(z − c)α

)
So f is holomorphic ⇔ f is locally defined by power series. In C1, the set of convergences
for
∑
bnz

n is a disk (together with some boundary points) or C or {0}.

Exercise 0.28. The interior for {z |
∑
bαz

α converges } is a union of open polydisks
centered at 0. More to be said later.

Remark 0.29. The above computations work for a functions that is continous and holomor-
phic in each variable zj . Therefore such functions are guaranteed to be holomorphic.
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Goursat’s Theorem in one variable says that as long as f is C-differentiable at each point
(we do not need to assume that f ′ is continous), then f is holomorphic. Therefore by this
result and the one above we conclude that if f is C-differentiable at each point (for multiple
variables), then f is holomorphic.

Theorem 0.30 (Hartog’s). If f is holomorphic in each zj, then f is holomorphic.

Hard: Omit for now. �

This clearly does not hold in real calculus.
Suppose f(z) =

∑
bα(z− c)α. We are working on a polydisk and we want a formula for the

center of the disk:
∂αf
∂zα (c) = α1! . . . αn!bα ≡ α!bα.

Corollary 0.31. Suppose that f is holomorphic on Ω, a connected open set, and ∂αf
∂zα (c) =

0∀α, then f ≡ 0 on Ω.

Corollary 0.32. Suppose that f : Ω - C is holomorphic and Ω is a connected, open set.
Also, suppose that |f | has an interior maximum, then f is constant on Ω.

Proof. Use slices to break f down into one variable and then use the one-dimensional result.
�

Corollary 0.33. Suppose that f : Ω - C is holomorphic and Ω is a connected, open set,
then f(Ω) is either one point or open.

Proof. Use slices to break f down into one variable and use the open mapping theorem from
one dimension. �

Example 0.34. Let f : C2 - C2 be given by (z, w) 7→ (z, 0). Then f(C2) = C× {0}.

From this result you might want to ammend the above corollary to say that when mapping
into Cn, the image is small. But this does not work:

Example 0.35. Let f : C2 - C2 be given by (z, w) 7→ (zw,w). Then f(C2) = {(z, w) | w 6=
0} ∪ {(0, 0)}.

Lecture 5. January 16, 2009

If f is holomorphic in a neighborhoood of {z | |zj − cj | ≤ cj}, then f(z) =
∑
α>0 bα(z− c)α

where

bα =
∂αf
∂zα (c)
α!

= (
1

2πi
)n
∫
. . .

∫
f(ϕ1, . . . , ϕn)dϕ1 ∧ · · · ∧ dϕn

(ϕ− c)α+1

= (
1

2π
)n
∫ 2π

0

. . .

∫ 2π

0

f(c+ reiθ)
rαeiαθ

dθ1 ∧ · · · ∧ dθn

Note that:reiθ = (r1e
iθ1 , . . . , rne

iθn)

Corollary 0.36 (Cauchy Estimates). If f is holomorphic on Ω and |f | ≤ M on Ω and
{z||zj − cj | ≤ r} ⊆ Ω, then |∂

αf
∂zα (c)| ≤ Mα!

r|α|
, where |α| = α1 + · · ·+ αn.

Corollary 0.37 (Weierstrass Convergence Theorem). fj - f almost uniformly (so uni-
formly on each compact subset of Ω) on Ω where fj are holomorphic, then f is holomorphic
on Ω.
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Proof. The convergence of the derviatives are also almost unform so that ∂fj
∂zk

- ∂f
∂zk

=
0 �

Definition 0.38. A set of functions {fj} is equibounded if for any compact subset K ⊂
Ω,∃Mk such that |fj | ≤Mk on K∀j.

Corollary 0.39 (Montel’s Theorem). If {fj} are holomorphic on Ω and equibounded oneach
compact subset, then there exists a subsequence that converges almost uniformly on Ω.

Proof. This follows as in the one-dmensional case from Cauchy estimates and Arzela-Ascoli
theorem. �

Remark 0.40. So far all of the results and methods of proof have been like those in the one
variable case, but the next result is a very surprising change.

H1 = {(z, w) ∈ C2 | 1− ε < |z| < 1, |w| < 1}

H2 = {(z, w) ∈ C2 | |z| < 1, |w| < ε}

Let H = H1 ∪H2. This space has many names including: tomato can, cake pan, top hat,
Hartegs configuration.
Suppose that f is holomorphic on H. On H2 we have:

f(z, w) =
1

2πi

∫
|ϕ|=r

f(ϕ,w)
ϕ− z

dϕ, where |z| < r < 1

Define f̃(z, w) on ∆×∆, where ∆ is the unit disk, by:

f̃(z, w) =
1

2πi

∫
|ϕ|=r

f(ϕ,w)
ϕ− z

dϕ, where max{1− ε, |z|} < r < 1, then

• f̃ is well-defined on ∆×∆
• f̃ is holomorphic on ∆×∆ (since we can switch the derivative and integral and we

know that the functions being integrated is holomorhic)

f̃ = f on H2, then f̃ = f on H (unique continuation principle). Therefore f extends to a
holomorphic function on ∆×∆.

Remark 0.41. There is no similar result to this in C. For instance, the functions f(z) = 1
z−z0

is holomorphic on an open set not containing z0 but not in a larger open set that does contain
z0.

Recall the theory of isolated singularieties in C:

• Removable singularities
• Poles
• Essential singularities

Isolated singularities in C2 are all removable - “We generalize one variable theory with an
ax.”

Proof. Let f be holomorphic on Ω \ {z0}. After rescaling and translating, we can get a
Hartog’s configuration around z0 (but not containing). Let P be a polydisk and H be the
Hartog’s configuration. Get f̃ holomorphic on P with f̃ = f on H. Extend f to Ω. �

Lecture 6. January 21, 2009
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∆ ≡ {z ∈ C | |z| < 1}
Consider ζ : ∆ - Cn−1 continuous and let 0 < ε < 1

H1 = {(z, w1, . . . , wn−1) ∈ Cn | 1− ε < |z| < 1, ||w|| < 1}

Hζ
2 = {(z, w1, . . . , wn−1)Cn | |z| < 1, ||ζ(z)− w|| < ε‖

Hζ = H1 ∪Hζ
2

Theorem 0.42 (Hartogs:1906). ζ ≡ 0, f holomorphic on H ⇒ f extends to holomorphic
functions on ∆n.

This roughly looks like a goal post or an H.

Remark 0.43. There is no automatic extension from ∆n to fixed larger open sets.

Theorem 0.44 (Chirka: 1990s). When n = 2, ζ(∆ ⊂ ∆, f holomorhpic on Hζ ⇒ f extends
to holomorphic functions on ∆2 ∪Hζ .

Remark 0.45 (Rosay: 1998). This does not work when n > 1.

Theorem 0.46 (B.-Bharali: 2004). When n = 2, suppose that ζ has this form: ζ(reiθ) =∑
n≥0 ζn(r)einθ, where ζn are functions in one variable, and the sum is finite or uniformly

convergent and continuous (so ζn(0) = 0∀n > 0) ⇒ ∃f̃ holomorphic on ∆2 such that
f̃ = fon H1.

Theorem 0.47 (B.-Bhardi: 2004). If n = 2, ζ(reiθ) =
∑
n∈Z,finite ζn(r)einθ such that∑ |ζn(r)|

rn < 1,∃f̃ holomorphic on ∆2 such that f̃ = fon H1.

Ω ⊂ C is a bounded open set. bΩ is C1 (the boundary of Ω) and f ∈ C1(Ω)
By Stoke’s/Green’s Theorem:∫

bΩ

f(ζ)dζ
ζ − z

−
∫
|ζ−z|=ε

f(ζ)dζ
ζ − z

=
∫
ζ∈Ω,|ζ−z|>ε

dζ

(
f(ζ)
ζ − z

dζ

)

=
∫
d

(
f(ζ)
ζ − z

∧ dζ

=
∫ (

∂

∂ζ
(
f(ζ)
ζ − z

dζ +
∂

∂ζ
(
f(ζ)
ζ − z

dζ

)
∧ dζ

=
∫

1
ζ − z

∂

∂ζ
f(ζ)dζ ∧ dζ

=
∫
∂f ∧ dζ
ζ − z

= 2i
∫
ζ∈Ω,|ζ−z|>ε

∂f

∂ζ

ζ − z
dAζ

Side work:

dζ ∧ dζ = (dx− idy) ∧ (dx+ idy)
= 2idx ∧ dy

Let ε→ 0, note that: ∫
f(ζ)dζ
ζ − z

=
∫ 2π

0

f(z + εeiθdθ
ε→0- 2πif(z)
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In the end, we get the Cauchy-Green Theorem:

∫
ζ∈bΩ

f(ζ)dζ
ζ − z

= 2πif(z) + 2i
∫

Ω

∂f

∂ζ

ζ − z
dAζ

Given Ω as above and g continuous on Ω. We want to solve ∂f
∂z = g on Ω. Suppose we can

solve with f ≡ 0 on bΩ. Then:

f(z) = − 1
π

∫
ζ∈Ω

g(ζ)
ζ − z

dA

This is called the Cauchy Transform of g: CΩ(g). Check that this integral is defined in
the Lebesgue sense.

Remark 0.48. It turns out that this assumption is too optimistic so that it is not always
possible to find a solution on the boundary with f ≡ 0, but it turns out that the formula
we get from thinking about it is helpful.

Lecture 7. January 23, 2009

Theorem 0.49. g ∈ C(Ω) ∩ Ck(Ω)⇒ CΩ(g) ∈ Ck(Ω) and ∂
∂z (CΩg) = g.

Proof. Fix z0 ∈ Ω and pick χ ∈ C∞0 (Ω) (so χ has compact support in Ω, i.e. X ≡ 0 outside
some compact subset of Ω) such that χ ≡ 1 near z0.

CΩg(z) = CΩ(χg)(z) + C((1− χ)g)(z)

=
−1
π

∫
Ω−z

(χg)(ζ + z)
ζ

dAζ −
1
π

∫
Ω

((1− χ)(ζ)
ζ − z

dAζ

“extended by zero” and “ζ − z is our new ζ”

Claim: We can differentiate under the integrals k-times.
Exercise: Check this carefully for (atleast) k = 1. Use the Lebesgue dominated convergence
theorem.
In particular,

∂

∂z
(CΩg)(z) = − 1

π

∫ ∂(chig)

∂ζ
(ζ + z)

ζ
dAζ(1)

= − 1
π

∫
Ω

∂(χg

∂ζ
(ζ)

ζ − z
dAζ(2)

= (χg)(z)(3)

= g(z)(4)

Where between steps 2 and 3 we use the Cauchy-Green equation and in the last step we are
looking at z near z0. �

Again, Ω ⊂ C is a bounded open subset and bΩC1.
Question: Can we solve: ∂f

∂z = g on Ω and f ≡ 0 on bΩ?
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If so, we get:

0 =
∫
bΩ

fdz

=
∫

Ω

d(fdz)

=
∫

(∂f + ∂f) ∧ dz

=
∫

Ω

(
∂f

∂z
dz +

∂f

∂z
dz) ∧ dz

=
∫

Ω

∂f

∂z
dz ∧ dz

= 2i
∫

Ω

∂f

∂z
dA

= 2i
∫

Ω

gdA

So most of the time we cannot solve the question. Note: we also need
∫

Ω
fhdA = 0 for h

holomorphic near Ω.
Suppose g ∈ C1

0 (C). Cr∆g independent of r for r large, and we get CCg on C. ∂
∂z (CCg) = g.

If CCg has compact suppose then we could repeat the above argument to rpove that
∫

C gdA =
0.
We now want to move to Cn:
Cauchy Riemann equations are: ∂f = 0 where ∂f =

∑ ∂f
∂zj

dzj . Equivalently, ∂f
∂zj

= 0∀j.

Inhomogenous Cauchy-Riemann equations are: ∂f = g =
∑
gj(z)dzj . Equivalently,

∂f
∂zj

= gj∀j. This expression is called a (0,1)-form.

In the one variable setting we can always solve this, but not in the several variable setting.
For there to be a solution, we need:

∂gj
∂zk

=
∂gk
∂zj

Differential Forms Explanation:
Using the Inhomogenous equation: g =

∑
gj(z)dzj ,

dg =
∑

dgj ∧ dzj(5)

=
∑

∂gj ∧ dzj +
∑

∂gj ∧ dzj(6)

= ∂g + ∂g(7)

= (1, 1)− form + (0, 2)− form(8)

∂g =
∑ ∂gj

∂zk
dzk ∧ dzj(9)

∂g =
∑ ∂gj

∂zk
dzk ∧ dzj(10)

Step 1 to 2, we used the fact that dgj = ∂dj + ∂dj .
If h is a (1,0)-form, then dh = ∂h+ ∂h is the sum of a (2,0)-form add a (1,1)-form.
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From exterior algebra, we know that d2f = 0.

0 = d2f

= d(∂ + ∂)f

= (∂ + ∂)(∂ + ∂)f

= ∂2f + ∂∂f + ∂∂f + ∂
2
f

= (2,0)-form, two (1,1)-forms, and a (0,2)-form

So, ∂2f = 0, ∂
2
f = 0, ∂∂f = −∂∂f .

Thus to solve ∂f = g, we need:

∂g = 0⇔ ∂gj
∂zk

=
∂gk
∂zj

Lecture 8. January 26, 2009

Definition 0.50. The support of f is the closure of the non-zero set of f in the domain
of f (i.e. {z|f(z) 6= 0}).

We are given g =
∑
gj(z)dzj on Cn, ∂g = 0 (i.e. ∂gj

∂zj
= ∂gk

∂zj
) and g has compact suppport.

To solve ∂f = g (i.e. ∂f
∂zj

= gj).

Let Cg(z) = − 1
π

∫
C
g1(ζ,z2,...,zn

ζ−z1 dAζ .
Last time we showed that: ∂

∂z1
Cg = g1.

This tells us that all we need to know is g1, we do not even need the other gk’s.
Claim:∂Cg = g (i.e. ∂

∂zk
Cg = gk).

Proof. ∂
∂zk
Cg(z) = − 1

π

∫
C

∂g1
∂zk

(ζ,z2,...,zn

ζ−z1 dAζ = gk(z) by the Cauchy-Green equation. �

Claim:Cg has compact support, when n ≥ 2 (recall that this is false when n = 1).

Proof. Outside of some large ball (say of raduis R), g is zero and so ∂Cg is as well. Therefore
Cg is holomorphic on {z | ||z|| > R} and Cg ≡ 0 on {z | ||(z2, . . . , zn)|| > R} (by using the
formula above for Cg(z)). By the uniqueness continuation theorem, Cg ≡ 0 on {z | ||z|| >
R}. �

Exercise 0.51. Given g =
∑
gj(x)dxj on Rn, where n > 1, such that dg = 0 (i.e. ∂gj

∂xk
=

∂gk
∂xj

) and g has compact support, then solve df = g where f has compact support. Note: the
assumption that n > 1 is necessary for topological reasons that should become apparent.

Corollary 0.52 (Hartog’s: 1906). If Ω ⊂ Cn open and n ≥ 2, k ⊂ Ω compact, Ω \ k
connected and f holomorphic on Ω \ k, then f extends to f̃ holomorphic on Ω.

Ehrenpreis: 1961. Pick ψ ∈ C∞0 (Ω) so that ψ ≡ 1 on a neighborhood containing k (we can
do this thanks to partitions of unity - see handout). Since ψ has compact support, it must
be zero near the boundary of Ω. Let

g =

{
(1− ψ)f on Ω \ k
0 on k
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g satisfies most of the properties we want for f̃ , however it is not holomorphic, so we need
to adjust it slightly. Let f̃ = g + u. We need

0 = ∂f̃ = ∂g + ∂u = ∂u+

{
−f∂ψ on Ω \ k
0 on k

Solving for ∂u we get:

∂u =

{
f∂ψ on Ω \ k
0 on k ∪ Cn \ Ω

We can solve this such that u has compact support. By unique continuation, u ≡ 0 on the
unbounded component of Cn \ supp∂ψ, which includes a non-empty subset of Ω \ k. So
f̃ = f on a non-empty subset of Ω \ k. Since Ω \ k is connected, f̃ = f on Ω \ k �

When n > 1:
So if f is holomorphic on r1 < ||z|| < r2, then f extends to a holomorphic function on
||z|| < r2.
A real analogue is: If f is locally constant on r1 < ||z|| < r2, then f extends to a constant
function on ||z|| < r2.
Both of these fail when n = 1.

Definition 0.53. A map f is biholomorphic if f is holomorphic and it has a holomorphic
inverse.

Suppose we have a biholomorphic map between a bi-disk with a Hartog’s figure and a bi-disk
in Ω with a Hartog’s figure, where n > 1. The biholomorphic map distorts the Hartog’s
figure.
This was proven successful by Merker and Porten in 2007 (and proved unsuccessfully many
times).

Lecture 9. January

Corollary 0.54. Let Ω ⊂ Cn (n ≥ 2) be a connected open set and f holomorphic on Ω.
Then:

(1) Ω \ f−1(0) is connected
(2) f−1(0) is non-compact or empty.

Proof. (1) (outline) Given z, w ∈ Ω \ f−1(0) we can join these points by polygonal in
Ω. Since f−1(0) has no interior, we can preturb the vertices so that all vertices
lie outside of f−1(0). Each segment ha a parameter [0, 1] - Ω given by t 7→
zj + t(zj+1− zj). Complexify t, get f(zj + t(z− j + 1− zj) with isolated zeros. This
comes from the one variable result where the zeroset is isolated.

(2) Let h = 1
f on Ω \ f−1(0) connected. If f−1(0) is compact, then h extends to h̃

holomorphic on Ω by the Hartog’s Extension Theorem. Then h̃f = 1 on Ω\f−1(0).so
that h̃f = 1 on Ω, so f−1(0) =.

�

Corollary 0.55. If Ω ⊂ Cn is a bounded open set, n ≥ 0, and f : Ω - C is continuous
on Ω and holomorphic on Ω, then f(Ω) = f(bΩ).

Remark 0.56. This is stronger than the maxmimum modulus principle from one-variable,
which states that: maxΩ|f | = maxbΩ|f |. The open mapping theorem on one variable tells
us that bf(Ω) ⊂ f(bΩ).
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Proof. Pick z0 ∈ Ω. We need to find a point in z ∈ bΩ such that f(z) = f(z0). The set
{z ∈ Ω | f(z)− f(z0) = 0} is non-compact by the previous corollary (and a connectedness
argument since we did not assume this set was connected) so it must hit the boundary of
Ω. �

Let Ω ⊂ C open.
bΩCk ⇔def bΩ is Ck 1-dimensional submanifold of C = R2 ⇔ ∀z0 ∈ bΩ∃Ck parameter
z : (t0 − ε, t0 + ε) - bΩ such that z(t0) = z0 and z′(t0) 6= 0 ⇔ bΩ is locally a Ck graph
(y = ψ(x) or (x = ϕ(y)).
We use the inverse function theorem to prove the right direction and set the graph as the
parameter for the left direction.
It is also equivalent that Ω is locally diffeomorphic to half-space - we can see this by sending
(x, y) 7→ (x, y − ψ(x)).
Also equivalent: ∃ρ ∈ Ck(C) such that Ω = {z|ρ(z) < 0} and dρ 6= 0 on bΩ
(This last remark implies the third one by the Implicit function theorem).
Let ρ = ± distance to bΩ near bΩ and patch it together elsewhere.
Recall that if g ∈ Ck(Ω0⇒ CΩ(g) ∈ Ck(Ω). How does CΩg behave at boundary points?

Example 0.57. Suppose g = 1,Ω = ∆. Check that C∆g =

{
z on ∆
1
z on C \∆

. This is clearly

continous on C but not C1 on the boundary.

Theorem 0.58. Suppose that bΩ is C4 and that g ∈ C3(Ω). Then CΩg ∈ C1(Ω).

Lemma 0.59. ∃ϕ ∈ C2(Ω) such that ∂(ρϕ)− g vanishes to first order on bΩ.

Proof. (Of Theorem Assuming lemma). Let g̃ =

{
g − ∂(ρϕ) on Ω
0 on C \ Ω

. Then g̃ ∈ C1(C).

CΩg = CCg̃+CΩ(∂(ρϕ)). The first term is in C1(C) and the second term, by Cauchy-Green’s
theorem, is ρϕ. Therefore CΩ is C1. �

Lecture 10. January 30, 2009

Cauchy Problem for ∂
Given: γ curve in C and g (a (0,1)-form g(z)dz) curve near γ

To Solve:

{
∂f ≡ g near γ
f ≡ 0 on γ

Rewrite ∂(ρζ) = g, defining function for γ

This problem cannot always be solved. For instance, let γ = R ⊂ C, ρ = y and g = 1
x3 e
− 1
x2 dz

(implicitly we are defining g(0) = 0).
e−

1
x2 is a solution to this and any two solutions differ by a holomorphic function, so:

yζ(z) = e−
1
x2 + h(z), where h(z) is holomorphic. This is holomorphic near the origin so

that h(x) = −e−
1
x2 but this cannot happen near 0.

The problem is always solvable when γ, g are real-analytic (see the homework), but these
conditions are too strong to be desirable, so instead we will relax the problem.
Relaxed Cauchy Problem: Settle for ∂(ρζ)− g vanished to some fized order on γ

Lemma 0.60. Let Ω ⊂ C be open and bounded, bΩCk+3, g ∈ Ck+2(Ω) ⇒ ∃ϕ ∈ Ck+1(Ω)
such that ∂(ρϕ)− g vanishes to kth order along γ.

Theorem 0.61. If Ω.g as above, then CΩg ∈ Ck(Ω).
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Proof. (Of Lemma). Let’s assume that k = 1. Suffices to get ∂(ρϕ) = g + ρ2η, where
η ∈ C1(Ω).

∂(ρϕ) = ϕ∂ρ+ ρ∂ϕ

Get $∂ρ = g on γ and ϕ = g

∂ρ
+ ρψ

( g

∂ρ
+ ρψ)∂ρ+ ρ∂( g

∂ρ
+ ρ2∂ψ + ρψ∂ρ = g + ρ2η

⇒ ψ = −
∂( g

2∂ρ

η = ∂ψ
All of these formulas work, but we have to make sure that the denominator does not vanish.
Along the curve itself, ∂ρ is nonzero and so it is nonzero on a neighborhood of the curve.
Since Ω is bounded we know that ρ must attain a minimum or maximum awa from the
boundary, so that at some point away from the boundary we will have that ∂ρ = 0. To
remove this problem, using partitions of unity split g into g1 + g2 where g1 ≡ 0 near the
zeroes of ∂ρ and g2 ≡ 0 near bΩ. Apply the above to g1 and ignore g.
Now suppose k = 2. We get ϕ1 as in k = 1 and ϕ2 = ϕ1 + ρ2q, what must q do on bΩ?
Exercise: Finish the proof for general k using induction. �

Let’s move to Cn:
Let S be a smooth real hypersurface (of real dimension 2n− 1) in Cn.
S = {z | ρ(z) = 0}, where ρ is R-valued and ∂ρ 6= 0 on S.
g = Σgj(z)dzj , smooth in a neighborhood of S, and ∂g = 0.
Also assume that g ∧ ∂ρ = 0 on S.
Cauchy Problem:
Solve ∂(ρϕ) = g near S. Relaxed Cauchy Problem:
Solve ∂(ρϕ)− g vanishes to first order on S.
As above, we need: ϕ∂ρ = g on S
We need g = λ∂ρ on S, where λ is a scalar function (i.e. g ∧ ∂ρ = 0 on S).
Then g = λ∂ρ+ ρτ , where ρτ is an error term. Take ϕ = λ+ ρv.
Goal: ∂(ρϕ)− g = ρ2η
Plugin to get that ρ(∂λ+ 2v∂ρ− τ) = ρ2(η − ∂v).
We can divide by ρ in the above equation so it simplifies to: ∂λ+ 2v∂ρ− τ = ρ(η − ∂v).
This is hopeless unless ∂λ− τ is a scalar multiple of ∂ρ along S.

0 = ∂g

= ∂λ ∧ ∂ρ+ ∂ρ ∧ τ + ρ∂τ

= (∂λ− τ) ∧ ∂ρ+ ρ∂τ

=

{
(∂λ− tau) ∧ ∂ρ = 0 on S

∂λ− τ = µ∂ρ+ ρσ

Apply this to: ∂λ + 2v∂ρ − τ = ρ(η − ∂v) (which we found above), and we get that
µ[∂]ρ+ 2v∂ρ = ρ(η − ∂v − σ).
Take v = −µ2 and η = ∂v + σ.

Lecture 11. February 2, 2009

Lemma 0.62. Give S a C4 real hypersurface in Cn, ρ defining function for S , g a C3(0, 1)-
form near S, ∂g = 0, and g a scalar multiple of ∂ρ on S. Then ∃ϕC2 near S such that
∂(ρϕ)− g vanishes to first order on S.

Note that for us, smooth is something between C1 and C∞, but the precise meaning is
negotiable.
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Topic: Boundary Value of Holomorphic Functions
Let Ω ⊂ C be an open, bounded set. Suppose bΩ is smooth and connected, f : bΩ - C.
When does f extend to a holomorphic functiion on Ω?
Special Case: Assume that bΩ and f are real-analytic (so f is given by a real power series).
Then we can extend f to be holomorphic in some neighborhood of bΩ.
Let γ1 be a curve on the inside of bΩ and γ2 be a curve on the outside of bΩ, where γ1, γ2, bΩ
are all curves oriented in the same direction. Then

f(z) =
1

2πi

∫
γ2

f(ζ)dζ
ζ − z

− 1
2πi

∫
γ1

f(ζ)dζ
ζ − z

≡ f2(z)− f1(z)

So f2 is holomorphic inside γ2 and f1 is holomorphic outside γ1 and vanishes at infinity.
f1 ≡ 0 ⇒ f extends to a holomorphic function on Ω since γ2 contains Ω. The other impli-
cation (⇐) follows by Cauchy’s Theorem.
f1 ≡ 0⇔

∫
bΩ

f(ζ)dζ
ζ−z = 0∀z ∈ C \ Ω⇔ 0 =

∫
bΩ
f(ζ)ζndζ∀n ≥ 0

Exercise 0.63.
∑
n≥0

(−1)n

2πi z
−n ∫

bΩ
f(ζ)ζndζ =

∫
bΩ

f(ζ)dζ
ζ−z = 0∀z ∈ C \Ω. Note that this is

called a moment.

Theorem 0.64. Let n ≥ 2. Suppose that Ω ⊂ Cn is bounded and open, bΩ is connected
and C4, f ∈ C4(Ω),

† ∂f is a scalar multiple of ∂ρ on bΩ,
Then ∃h ∈ C1(Ω) such that h is holomorphic on Ω and h = f on b
Omega.

Proof. (Reference: see Range 2002 Math Intelligencier for the history on this theorem)
Use the lemma stated at te begining of this lecture. Let ∂(ρϕ) = ∂f + ρ2η. Let

β =

{
ρ2η = ∂(ρϕ− f) on Ω
0 on Cn \ Ω

Then β is C1 on Cn and β has compact support. Also notice that β ≡ 0.
Let α ∈ CCnβ (as defined 3 lectures ago). Then α is C1 and ∂α = β.
We need n ≥ 2 since in this case α has compact support. Then α ≡ 0 on Cn \Ω. Note that
we are combining connectedness, compact support, and the unique continuation principle.
Then α ≡ 0 on bΩ. Let h = f + α− ρϕ on Ω. Then ∂h ≡ 0 on Ω⇒ h is holomorphicon Ω.
h ≡ f on bΩ. �

Common Trick/Method:
Get holomorphic functions as the difference of two different solutions of a ∂-problem.
The assumption † is necessary: h = f + ρg. Apply ∂ :
0 = ∂f + ρ∂g + g∂ρ. On bΩ: ∂f = −g∂ρ

Example 0.65. Let Ω = B2 (the unit ball in C2) and ρ = z1z1 + z2z2 − 1.
We need ∂f = fz1dz1 + fz2dz2 to be a scalar multple of ρz1dz1 + ρz2dz2 on bB2.
ρz1dz1 + ρz2dz2 = z1dz1 + z2dz2

So we need their wedge product to be zero: z2fz1 − z1fz2 = 0 on bΩ.
Now let Ω = Bn (the unit ball in Cn). Then ρ = z1z1 + · · ·+ znzn − 1.
We need zjfzk − zkfzj = 0 on bBn for j < k.
If we are not concerned about the denominators vanishing we can simplify this as:

fz1

z1
= · · · = fzn

zn
Near any particular point this can be describe with n− 1 equations.
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Lecture 12. February 4, 2009

Let bΩCn be bounded, bΩ be smooth and connected, then te boundary values of holomorphic
functions is characterized by PDEs for n ≥ 2.
Another Approach: Suppose that f is on bΩ extends to a holomorphic function h on Ω,
which is smooth on Ω.

dfp : TpbΩ - C extends to dhp : TpCn - C
‡ dhp is C-linear so dfp must be C-linear on the maximal C-subspace of TpbΩ (i.e. on
Hp(bΩ) ≡ TpbΩ ∩ JTpbΩ).
So we need that df(JX) = idf(X)∀X ∈ Hp(bΩ).
Let X = (a, b, . . .) ∈ R2n = Cn and identify it with a ∂

∂x1
+ b ∂

∂y1
+ . . . .

Then Xf = df(X) = derivative of f in the direction of X.
So (JX)f = df(JX) = idf(X) = iXf∀X ∈ Hp(bΩ) ⇒ (X + iJX)f = 0∀X ∈ Hp(bΩ) ⇒
Xp = 0 = (JX)p∀p ∈ bΩ.

Exercise 0.66. {X + iJX} = {
∑
cj

∂
∂zj

f satisfies: ‡ ⇔
∑

cj
∂f

∂zj
= 0 when

∑
cj
∂ρ

∂zj
= 0

⇔ ∂f is a scalar multiple of ∂ρ

⇔def f satisfies the tangential CR-equations

⇔exercise df ∧ dz1 ∧ . . . ∧ dzn|bΩ = 0

Theorem 0.67. Ω ⊆ Cn bounded, bΩ smooth and connected with n ≥ 2, then f on bΩ
extends to a holomorphic function on Ω⇔ f satisfies the tangential CR-equation.

More generally: If M is a real submanifold of Cn and p ∈M , then HpM = TpM ∩JTpM
is a maximal C-subspace of TpM .

Definition 0.68. M is a CR-manifold if dimHpM is constant.

Definition 0.69. M is totally real if dimHpM = 0.

Definition 0.70. M is a generic CR-manifold if
Def. 1 dimHpM = max{dimR M − n, 0}
Def. 2 dimHpM = dimR M − n

Definition 0.71. Let M be a CR-manifold then f : M - C (atleast C1) is CR if dpf
is C-linear on each HpM .

Equivalently, (X + iJX)f = 0∀X ∈ HpM .

Theorem 0.72 (Tool Baouendi-Treves Approximation Theorem). Given p ∈ U ⊂M ⊂ Cn,
where U is open and M is a Def. 1 generic CR-manifold, and f : U - C is CR. Then
∃{fj} entire functions such that fj - f uniformly on V where p ∈ V ⊆ U open.

Proof. Tools to use are: Gaussian convolution, Stoke’s, Cauchy theory for ∂. A reference
is: Boggess “CR Manifolds and . . . ”. We will omit the proof here, but it would take about
one full lecture. �

Example 0.73 (Special Case). Suppose that M = bB2 and p = (1, 0).Choose an open set
V that contains a neighborhood of p. In particular, we can choose a neighborhood of
the form bB2 ∩ {Rez2 > 1 − ε} ⊂ M . Fix z2 with Re(z2) > 1 − ε. Suppose we have a
sequence of functions {fj(z1, z2} that converge uniformly to f(z1, z2) for |z1| =

√
1− |z2|2
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and to h(z1, z2) for |z1| ≤
√

1− |z2|2. Use the uniform Cauchy-criterion and the maximum
principle. Then fj - h uniformly on B2 ∩ {Re(z2) > 1 − ε} and h is holomorphic on
B2∩{Re(z2) > 1−ε} such that h|bB2 = f . So a CR function is any neighborhood of p ∈ bB2

has local 1-sided holomorphic extension.
This method of proof is called the “disk method.”

Exercise 0.74. Let M = {(z1, z2, z3) | Re(z3) = |z1|2−|Z2|2}. Show that any CR function
defined near 0 ∈M has a holomorphic extension to a full neighborhood of 0.

Lecture 13. February 6, 2009

Recall: Given T : Cn - Ck is R-linear, then T is C-linear ⇔ the graph of T is a
C-subspace of Cn+k.

Corollary 0.75. Given a C1 function f : Ω - Ck, where Ω ⊂ Cn is open, then:

f is holomorphic ⇐⇒ each Tp(graph of f) is a C-subspace of Cn+k

So the graph of the derivative map gives the tangent space to the graph of the original map.
Now consider a submanifold M ⊂ C2 such that dimR M = 2 and TpM is complex ∀p ∈M .
Pick a point p ∈M and assume that TpM 6= {0}×C. Then by the implicit fuction theorem,
M is a graph {(z, w) | w = f(z)} near p. Therefore by the corollary, f is holomorphic.

Exercise 0.76. Show that M satisfies the holomorphic version of all conditions for 1-
manifolds from the lecture on January 28. Need to show that there exists a global defining
function, but omit this for now since it is a more advanced result.

Similar results hold whenever M is a complex submanifold of Cn (i.e. all TpM are complex).
Laurent Series:
Let Aj = {z ∈ C | rj < |z| < Rj} and f be holomorphic on a neighborhood of A1×· · ·×An.
Then:

f(z) =
1

(2πi)n

∫
bA1×···×bAn

f(ζ)ddζ1 ∧ · · · ∧ dζn
(ζ1 − z1) . . . (ζn − zn)

Use the same method as for the polydisk case. Note that bA1 × · · · × bAn has 2n connected
components since each Ai has two connected boundary components. Each component is the
product of n circles, so it is an n-dimensional torus.
It is an exercise to show that the above f(z) becomes:

f(z) =
∑
α∈Zn

cαz
α, this is almost uniform on A1 × . . . Ak

We get this result by using the following, where zj ∈ Aj :

1
ζj − zj

=


− 1
zj

1

1−
ζj
zj

on the inner boundary

1
ζj

1

1−
zj
ζj

on the outer boundary

So the formula for determining cα is:

cα =
1

(2πi)n

∫
|ζj |=γj

f(ζ)dζ1 ∧ · · · ∧ dζn
ζα+1

The γj must stay between rj and Rj , but we can slide the γj around.
Proof 1: Quote the 1-dimensional result and use it repeatedly for each of the j.
Proof 2: Suppose we have two different γj ’s (i.e. γj and γ̃j). Then a curve between these
two points on the z1, zn plane is an n+ 1-dimensional manifold bounded by two tori, so we
can apply Stoke’s theorem. So we can consider ∂( f(ζ)dζ1∧···∧dζn

ζα+1 ) = 0. So the integral does
not depend on the specific γj .
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Definition 0.77. A Reinhardt domain is a connected open subset of Cn that is invariant
under the map:

(z1, . . . , zn) 7→ (eiθ1z1, . . . , e
iθnzn) ≡ eiθz

Theorem 0.78. If f is holomorphic on a Reinhardt domain Ω, then f(z) =
∑
cαz

α is
almost uniform on Ω, where cα is given as above.

Proof. 1 Quote the 1-dimensional result
2 Repeat the Stoke’s theorem argument
Almost uniform convergence: We can cover any compact subset K with a finite subcover
and then use earlier results for convergence. �

Suppose that Ω intersects an axis so that Ω ∩ {zj = 0} 6= ∅ ⇒ cα = 0 when αj < 0.
Proof 1: Use Cauchy on a disk times a polyannulus.
Proof 2: Use Stoke’s theorem again to cα = 0 when αj < 0. On a coordinate axis we
would be dividing by ζα1+1

i so that if α < 0 then we are not dividing by zero but instead
multiplying by it.
Re-explaining:
If we are considering n = 2, then a point on the zi axis corresponds to a circle, the origin
corresponds to a point, and a point not on an axis corresponds to a circle times a circle
(i.e. a torus). What we are using to show that if α1 < 0, then cα < 0 is two things. One is
that since α < 0, there will be no problems dividing by ζα1+1, where α1 = 0, since we will
instead by multiply be zero. The other thing is that our function is holomorphic, so using
Stoke’s theorem the integral will be zero.

Lecture 14. February 9, 2009

{fj} converges uniformly on E ⇔ ∀ε > 0∃N such that |fj(x)− fk(x)| < ε, x ∈ E, j, k > N

⇔ {fj} uniformly Cauchy on E

∑
f − j uniformly convergent on E ⇔ ∀ε > 0∃N such that |fj(x)− fk(x)| < ε, x ∈ E,N < j < k

⇔
∑

fj uniformly Cauchy on E

Rienhardt domain is a connected open set in Cn that is invariant under all coordinate
rotations.
Flip it: start with

∑
cαz

α - where does this converge?
Let A = {z ∈ Cn |

∑
|cαzα| <∞} - A is rotation invariant.

Let Ω = Int(A) = interior of A - A is rotation invariant
Let L(A) = {(log |z1|, . . . , log |zn|) ∈ Rn | z ∈ A, zi 6= 0} = {x ∈ Rn|

∑
|cα|eαx ≡ ψ(x) <

∞}. Then ψ : Rn - R ∪ {∞}. ψ is convex (i.e. ψ(tx1 + (1 − t)x2) ≤ tψ(x1) + (1 −
t)ψ(x2)∀xi ∈ Rn, 0 ≤ t ≤ 1). Convexity of ψ follows from the convexity of the exponential
function in one variable. Therefore L(A) is convex (i.e. for any two points in L(A), the line
joining them must also be in L(A)) and so L(Ω) = L(Int(A)) = Int(L(A)) is also convex.
Therefore Ω is “logarithmically convex.” It follows that Ω is a Reinhardt domain.
If cα 6= 0 for some α with αj < 0, then Ω ∩ {zj = 0} = ∅. Otherwise, if for some j we have
cα < 0 when αj < 0, then ψ increasing function of xj

Therefore the projection of Ω, Proj{zj=0}Ω ⊂ Ω.
We will show that the properties:

• Let Ω = Int(A) = interior of A - A is rotation invariant
• Ω is “logaritimically convex”
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• Proj{zj=0}Ω ⊂ Ω
Characterize “domains of convergence”

We want f(z) =
∑
cαz

α holomorphic on Ω. It suffices to show that
∑
cαz

α is uniform in a
neighborhood of each z0 ∈ Ω.
Pick x0 ∈ L(Ω). Since L(Ω) is convex, we can get a cube surrounding x0 in L(Ω).

∑
|cα|eαx

converges uniformly on vertices. Since L(Ω) is convex, is the unifom Cauchy critierion
is satisfied on the vertices, then it must also be satisfied on the edges and by the same
reasoning it is satisfied on the faces (2-dimensional). Continuing by induction, the sum
must converge uniforrmly on the verticles⇒ edges⇒ faces⇒ · · · ⇒ cube. Therefore

∑
cαz

α

converges absolutely uniformly on the poly-annulus containing z0.

Remark 0.79. Absolutely convergent sums, converge to the same thing even if the terms are
rearranged, while conditionally convergent sums can converge to different things when the
terms are rearranged.

So far we have aassume absolute convergence, but what about conditional convergence?
Let B = {z | sup{|cαzα|} <∞}.

Exercise 0.80. Prove Abel’s lemma: that the interior of B is contained in A (so Int(B) =
Ω).

Example 0.81. Let |zw| < 1. We draw a picture of this restricted to R2 and by looking at
the logarithms so that log z < − logw.∑∞
i=0 z

jwj = 1
1−zw converges on Ω but nowhere else.

Example 0.82. Suppose |z|2|w|1+
√

5 < 1. Then we can draw the same types of pictures as
above. Our first attempt to find a series that converges only on Ω, might be to consider∑∞
j=0 z

2jw(1+
√

5)j , but this does not work since we get non-integer exponents. A second
attempt might be:
Due to the density of the rationals in R, the value of j(1+

√
5), where j ∈ N, will get close to

be an integer infinitely many times, so we will through out the terms where this is not close to
an integer. A power series that does converge precisely on Ω, zw+z2w3+z5w8+z13w621+. . .
(note that the exponents are coming from the Fibonacci series).

Lecture 15. February 11, 2009

Theorem 0.83. Given an open set Ω ⊂ Cn, then Ω is the domain of convergence for some
Laurent series if and only if the following hold:

(1) Ω is Reinhardt
(2) Ω is logarithmically convex
(3) ∀j,Ω ∩ {zj = 0} = ∅ or Proj{zj=0}Ω ⊂ Ω.

Proof. (⇒) Proved last lecture
(⇐) Will prove later �

Exercise 0.84. (Weak form of (⇐) in above theorem) Given Ω1 ( Ω2 Reinhardt, where
Ω1 satisfies conditions 1 and 2, then ∃

∑
cαz

α converges on Ω1 by not on Ω2.

Recall: Hartogs Figure
If we graph this on a logarithmic graph, we can see that it is not logarithmically convex,
so if there is a Laurent series that converges on the Hartog’s figure, it must converge on a
larger domain by the previous theorem. This recovers the “Hartog’s configuration theorem.”

Given f holomorphic on Ω Reinhardt (and assuming that 2 and/or 3 fails), let f =
∑
cαz

α.
Then

∑
cαz

α converges on a Reinhardt domain Ω̃ ) Ω, where Ω̃ satisfies conditions 2 and
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3. Fact: there is a minimial Ω̃ satisfying the above. All holomorphic functions on Ω extend
to Ω̃.

Example 0.85. We now consider a Hartog’s figure H with a fattened real curve (i.e. tail)
extending from the figure. Every real function on Ω = H∪ tail, extends to Ω̃ = ∆2∪
tail. Note: we know that it extends from H to ∆2 by the Hartog’s configuration theorem.
However, this extension may force the function on Ω̃ to be a multi-valued function since
the bi-disk ∆2 will overlap part of the tail that was disjoint from H. To fix this, we will
consider Riemann surfaces.

Definition 0.86. A Riemann domain is a Hausdorff topological space X equipped with
a local homeomorphism ϕ : X - Cn.

One can think of this as a Riemann surface projecting down to Cn - so there can be infinitely
many sheets that project down to Cn. Every Riemann manifold is a complex manifold with
extra structure.

Definition 0.87. Let X be a Riemann domain. Then a function f : X - C is holomor-
phic if f ◦ ϕ−1 is holomorphic for all continuous branches of ϕ−1.

Example 0.88. Given two annuli in the log |z|, log |w| plane that have one cut (a straight
cut from the outside to the inside circle). Let X be the space where the two annuli are
pasted together along both sides of the cuts in a way that produces a 2-sheeted glued
object. Suppose that f : X - C is holomorphic. Then f(z) =

∑
cαz

α1wα2 , where the cα
are local constants and, hence, constant. This is single-valued so that f does not separate
points. Every holomorphic function f on X extends to a single valued function.

Lecture 16. February 13, 2009

Facts:
(1) K̂R−lin convex
(2) K = K̂R−lin ⇔ K convex (version of Hahn Banach Thmeorem)
(3) K̂R−lin is the smallest convex set containing K
(4) ˆ{x1, . . . , xn}R−lin = {

∑
cjxj | cj ≥ 0,

∑
cj = 1}

(5) K general ⇒ K̂R−lin = ∪{x1,...,xn+1}
ˆ{x1, . . . , xn+1}R−lin (carathedory)

(6) Ω is Reinhardt ⇒ L(Ω̃) = ˆL(Ω)R−lin
Reference: Hormader Notions of Convexity
Given F a family of R-valued (or C-valued) functions on E and K ⊂ E then

K̂F ≡ complement of {x ∈ E | ∃f ∈ F such that f(x) > f(y)
(
or |f(x)| > |f(y)|

)
∀y ∈ K}

If maxK f or maxK |f | exists ∀f ∈ F , then we can rewrite it as:

K̂F = {x ∈ E | f(x) ≤ max
K

f
(
or K̂F = {x ∈ E | |f(x)| ≤ max

K
|f |
)
∀f ∈ F}

(Note: the text inside parenthesis refers to C-valued functions).

Proposition 0.89. ψ : ∆ - Ω continuous, holomorphic on ∆ and ψ(b∆) ⊂ K ⇒
ψ(∆) ⊂ K̂Holo(Ω).

Proof. |f ◦ ψ(z)| ≤maxprincipal maxb∆ |f ◦ ψ| ≤ maxK |f | �

Example 0.90. Ω = ∆ × ∆, K = {(z, w0) | |z| = r} ⊂ Ω, w0 ∈ ∆, 0 < r < 1. Then
K̂Holo(Ω) = {(z, w0) | |z| ≤ r} (use z − z0, w).

Note that K̂Holo(Ω) is always closed in Ω when K is compact.

Lemma 0.91. K̂Holo(Ω) ⊂ K̂R−lin
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Proof. z0 /∈ K̂R−lin ⇒ ∃l : Rn - R such that l(z0) > l(z)∀z ∈ K. Let l̃(z) = l(z)− il(iz),
so that this is C-linear.

|el̃(z0)| = el(z0) > el(z) = |el̃(z)|∀z ∈ K ⇒ z0 /∈ K̂Holo(Ω)

�

Corollary 0.92. If K is bounded, then K̂Holo(Ω) is bounded.

We want to determine when K̂ is guaranteed to be closed.
Let ||z||L∞ = max |zj | be the L∞-norm.
Let K ⊂compact Ω ⊂ Cn, where Ω is open. f ∈ Holo(Ω).
Pick 0 < r < distL∞(K, bΩ). Let M = {max{|f(z)| | distL∞(z, k) ≤ r} (note that this
depends on r). The set of z satsifying the inequality distL∞(z, k) ≤ r is a compact set, so
the maximum exists.
Cauchy Estimates: ∂αf

∂zα | ≤Mα!r−|α| on K.
The same estimates hold on K̂Holo(Ω). Take a point z0 ∈ K̂Holo(Ω) ⇒

∑
| terms of the

Taylor series for f at z0. Then

∂αf

∂zα
| ≤

∑
Mr−|α||z − z0|α =

M

(1− (z−z0)1
r ) . . . (1− (z−z0)n

r )
⇒ Taylor series for f at z0 converges on {z | ||z − z0||L∞ < r}.
This is only interesting if {z | ||z − z0||L∞ < r} * Ω, since we know that this works already
on polydisks.

Lecture 17. February 16,2009

Let Ω ⊂ Cn be open and K ⊂ Ω be compact.

K̂Holo(Ω) = {z ∈ Ω| |f(z)| ≤ max
K
|f |∀f holomorphic on Ω}

Special case: Ω = C
Let K̃ = K∪{ bounded components of C\K}. The maximum principle implies that K̃ ⊂ K̂
(since the bounded components achieve their maximum on the boundary⇒ on K. Therefore
K̃ = K̂

Proof. Let f(z) = 1
z−z1 satisfies |(f(z0)| > maxK |f | if z1 is close to z0. We can move the

pole:

1
z − z1

≈
M∑
j=0

(z1 − z2)j

(z − z2)j

≈ . . . (repeat process)

≈
M ′∑
j=0

αj
(z − zn)j

≈
M ′′∑
j=0

βjzj by Taylor

�

Suppose that the distance distl∞(K̂Holo(Ω), bΩ) < distL∞(K, bΩ).
Then ∃z0 ∈ K̂Holo(Ω), 0 < r < distL∞(K, bΩ) such that P = {z | ||z − z0||L∞ < r} * Ω.
Every holomorphic function f on Ω extends. Let

X =
Ω× {1} ∪ P × {2}

(z, 1) ∼ (z, 2)⇔ z ∈ z0component of Ω ∩ P
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Exercise: X is Hausdorff.

Exercise 0.93. Show the same result for Euclidean distance norm instead of the L∞ norm.

Definition 0.94. U is a unitary transformation of Cn if it is a C-linear map from Cn to
Cn that preserves distances)

Theorem 0.95. Let Ω ⊂ Cn be a (connected, - not a necessary assumption) open set and
n ≥ 1. The following are equivalent:

(1) There is no automatic extension: There is no Riemann domain X ! Ω such
that every holomorphic function on Ω extends to X.

(2) distL∞(K̂Holo(Ω), bΩ) = distL∞(K, bΩ)∀K ⊂ Ω compact
(3) Holomorphic convexity: K ⊂ Ω compact ⇒ K̂Holo(Ω) ⊂ Ω compact (its com-

pactness in Cn depends on whether or not K̂Holo(Ω) hits the boundary).
(4) Discrete interpolation: Let S ⊂ Ω discrete, f : S - C. then ∃h holomorphic

on Ω such that h|S = f
(5) Domain of Existence: There is a holomorphic function on Ω that cannot be

extended to any larger Riemman domain X ) Ω

What does a larger Riemann domain X ! Ω mean?
There is no Riemann domain (X,ϕ) and ρ : Ω - X continuous such that ϕ ◦ ρ = Id and
ρ(Ω) 6= X.

Exercise 0.96. Suppose that Ω ⊂ Rn open. Then Ω is convex ⇔ K̂R−linear is a compact
subset of Ω when K ⊂ Ω is compact.

Proof. (5)⇒ (1) is clear
(1)⇒ (2) we discussed earlier this lecture that not (2)⇒ not (1).
(2) ⇒ (3) Let K ⊂ Ω compact ⇒ ĤHolo(Ω) bounded and closed in Ω with no limit points
on bΩ, hence closed in Cn
(3) ⇒ (4) Let S = {zk}∞k=1 ⊂ Ω be discrete and let wk = f(zk). Let kj = {z ∈ Ω | ||z|| ≤
j, dist(z, bΩ) ≥ 1

j }. Then each kj is compact, k1 ⊂ k2 ⊂ k3 ⊂ . . . , and every compact

subset of Ω is contained in some kj so that k̂1 ⊂ k̂2 ⊂ . . . are all compact. Let h =
∑
gk,

where gk are holomorphic on Ω and gk(zk) = wk −
∑k−1
l=1 gl(z), so that gj(zk) = 0∀j > k.

We can construct such functions as these, but we need to make sure that they converge.
|gk| ≤ 2−k on K. We need zk /∈ K̂α(K), α(K)→∞. Let α(K) = max{m | zj /∈ K̂m∀j ≥ m}.
Assume that we have already constructed g1, . . . , gk−1. To construct gk, we need to find pk
holomorphic on Ω such that

pk(zj) =

{
wk −

∑k−1
l=1 gl(zk) j = k

0 j < k

and Uk is holomorphic on Ω such that Uk(zk) = 1,max |Uk| < 1,Kα(k). Take gk = pkU
Mk

k .
(4) ⇒ (5) General Plan Choose S = {zj} ⊂ Ω discrete clustering out all boudary points.
Solve h(zj) = j, h holomorphic on Ω. h is unbounded near boundary points. This is
enough to show that you cannot extend to any larger open set, but this does not rule out
extending to a larger Riemann domain. In order to rule out the latter possibility, pick {ζk}
a countable dense subset of bΩ. Consider components of Vn = Ω ∩ B(ζk, 1

n ), k, n ∈ N. Let
V1, V2, . . . with each appearing infinitely often. Pick zj ∈ Vj such that dist(zj , bΩ) = 1

j and
zj1 = zj2 ⇔ j1 = j2. {zj} is a discrete set in Ω. Each Vl contains infinitely many zj . Solve
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h(zj) = j. Claim: h does not extend.

X

Ω
⊂ - Cn

ϕ

?

X is connected and the diagram commutes so ϕ ◦ ρ = Id and ρ(Ω) 6= X.
We are assuming that ϕ is a local homeomorphism. Pick η boundary point of ρ(η) in X.
We may assume that ρ(η) = ζk. Get ψ local branch of ϕ−1 with ψ(ζk) = η, for n large
⇒ ψ : B(η, 1

n ) - U ⊂ X open.

ϕ(U ∩ ρ(Ω)) = {z ∈ B(η,
1
n

) ∩ Ω | ρ(z) = ψ(z)}

This is open since ϕ is an open map. Since X is a Riemann domain ⇒ X is Hausdorff
⇒ ϕ(U ∩ ρ(Ω)) is closed in B(η, 1

n ) ∩ Ω. Hence it is a union of components of B(η, 1
n ) ∩ Ω.

Note that ϕ(U ∩ρ(Ω)) 6= ∅, so there is at least one component. Conclude: h does not extend
to X. �

Lecture 18. February 18, 2009

Definition 0.97. Ω is a domain of holomorphy if Ω satisfies conditions (1)− (5) in the
previous theorem.

Definition 0.98. Ω is C-linearly convex if Cn\Ω is a union of complex affine hyperplanes.

Definition 0.99. A complex affine hyperplane in Cn is a translate of a C-subspace of
dimension n− 1.

Definition 0.100. Ω is C-convex if each intersection of Ω with a complex affine line is
connected and simply connected.

Fact:

• Ω is C-convex ⇒ Ω is C-linearly convex
• If Ω ⊆ Cn is C-linearly convex, bΩ is C1, and n ≥ 2⇒ Ω is C-convex

Proposition 0.101. Ω is convex, then Ω is C-linearly convex.

Proof. Take a point p ∈ Cn \ Ω ⇒ (see Hormander’s Notions of Convexity for proof) ∃ a
real affine hyperplane H through p such that Ω lie on one side of H. H contains a complex
affine hyperplane H ′ through p. Since H ′ ⊂ H, H ′ is also disjoint from Ω. �

Proposition 0.102. If Ω is C-linearly convex, then Ω is a domain of holomorphy

Proof. Take p ∈ bΩ ⇒ p ∈ H ′ = {z | l(z) = c}, where l : Cn - C is C-linear and c is
a constant. Then f(z) = 1

l(z)−c is singular at p “from all directions.” ⇒ there is no auto
extension of f . �

Corollary 0.103. If Ω is convex, then Ω is a domain of holomorphy.

Example 0.104. Suppose that Ω = {(z, w) ∈ C2 | z 6= 0}. Ω is not convex, it is C-linearly
convex, and it is not C-convex.

Lecture 19. February 20, 2009
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Let Ω be a Reinhardt domain.

Ωis a domain of holomorphy⇒cond. 5 Ω is a domain of convergence for some
∑

cαz
α

⇒ i) Ω is logarithmically convex and ii) ∀j,Ω ∩ {zj = 0} = ∅ or Proj{zj=0}Ω ⊂ Ω
⇒ Ω is a domain of holomorphy

Corollary 0.105. If Ω is Reinhardt, then Ω is a domain of convergence ⇔ Ω satisfies i)
and ii).

Proof. We want to check ⇐ since we already have shown the ⇒ implication. Our goal is to
show that there is a function that cannot extend beyond Ω. When n = 2: if there is a point
on Ω that has a tangent line with an irrational slope when we are looking at log(Ω), we can
push out and tilt slight at that point to get a rational slope m

n , where m,n are rational.
Then we can use the function: 1

zm1 z
n
2−ec+iθ

, where log |zm1 zn2 | = c. �

One more class of examples:
Given U ⊂ Cn open, f = (f1, . . . , fm) - Cm, and ∆m ⊂ Cm the unit polydisk. Then:

f−1(∆m) = {z ∈ U | ||f(zj)| < 1∀j} is an analytic polyhedron ⇔ f−1(∆m) has compact closure in U

Proposition 0.106. Analytic polyhedra are domains of holomorphy.

Proof. Look at 1
fj(z)−eiθ and condition (5) in the “defniition” of domain of holomorphy. �

Proposition 0.107. If {Ωα}α∈A are domains of holomorphy, then Ω = Int(∩αΩα is a
domain of holomorphy.

Proof. Use condition (2) in the “definition” of domain of holomorphy.

distL∞(K̂Holo(Ω), bΩ) = inf
α
distL∞(K̂Holo(Ω), bΩα)

≥ inf
α
distLinfty(K̂Holo(Ωα), bΩα)

= inf distL∞(K, bΩα)

= distL∞(K, bΩ)

�

Proposition 0.108. If Ω1 and Ω2 are domains of holomorphy, then Ω1 × Ω2 is a domain
of holomorphy.

Proof. Use condition (3). Let compact K ⊂ Ω1 × Ω2. Then K ⊂ K1 ×K2 where K1,K2

are compact. Then

hatkHolo(Ω) ⊂ ̂K1 ×K2Holo(Ω) ⊂ K̂1Holo(Ω1) × K̂2Holo(Ω2)

�

Despite these results, unless we are lucky, it is difficult to determine if a subset is a domain
of holomorphy.

Example 0.109. Let Ω = {(z, w) | |z| > 1, |z − 3| > 1, Re(ei(log |z|+
√

2 log |z−3|))w > 0. This

can also be described as: | 1z | < 1, | 1
z−3 | < 1, | z

i(z−3)
√

2iw−1

zi(z−3)
√

2iw+1
| < 1. Note that the imaginary

numbers makes this a multi-valued function. So Ω is a “local analytic polyhedra.”
Challenge: Show that Ω is a domain of holomorphy.

Lecture 20. March 2, 2009
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Hn
ε = {(z1, . . . , zn) | 1−ε < |z1| < 1, |zj | < 1 for j > 1}∪{(z1, . . . , zn) |‖z1| < 1, |zj | < ε for j > 1}

Holomorphic functions on Hn
ε extend to ∆n.

Suppose that ψ : ∆n - Cn is bi-holomorphic (i.e. injective, ψ(∆n) is open, and ψ−1 is
holomorphic). ψ(Hn

ε ) ⊂ Ω ⊂open Cn. Then holomorphic functions on Ω extend to:

X = Ωtψ(∆n)/ ∼ where ∼ is given by glueing along components of Ω∩ψ(∆n) containing ψ(Hn
ε )

Ω is a domain of holomorphy (no auto extension) ⇒ ψ is as above ⇒ ψ(∆n) ⊂ Ω
(hartogs figure property).
Suppose that ∆ × {0} × · · · × {0} ⊂ Ω. Pick −→v ∈ bΩ closet to 0. Suppose that −→v
independent of −→e1 = (1, 0, . . . , 0). Let f : ∆ - C \ {0} be holomorphic. Choose a basis
−→e1 ,

−→v
||−→v || ,

−→
b3 , . . . ,

−→
bn with ||bj || ≤ δ

100n , where δ > 0 is arbitrary.

ψ : ∆n - Cn where (z1, . . . , zn) 7→ z1
−→e1 + f(z1)(z2

−→v
||−→v ||

+ z3
−→
b3 + · · ·+ zn

−→
bn

†ψ(Hn
ε ) ⊂ Ω for ε < ε0 if (1 + δ)|f(z)| ≤ dist((z, 0, . . . , 0), bΩ) for |z| = 1.

‡ψ(∆n) * Ω if |f(0)| > dist(
−→
0 , bΩ) = ||−→z ||

Proof. Look at ψ(0, z2, 0, . . . , 0) with −→z = (0, z2, 0, . . . , 0) and |z2| barely less than 1. �

What’s a useful for f? Let u be continuous on ∆ and harmonic on ∆.

u(z) = log(dist((z, 0, . . . , 0), bΩ)) for |z| = 1(see Ahlfors 4.6.4)

Let v be a harmonic conjugate for u. Then f = eu+iv

1+δ satisfies the hypothesis †. Then

Ω satisfies the Hartogs figure property ⇒ ‡ fails ⇒ |f(0)| = eu(0)

1+δ ≤ dist(
−→
0 , bΩ)∀δ >

0, since δ was arbitrary ⇒ eu(0) ≤ dist(
−→
0 , bΩ) ⇒ u(0) ≤ dist(

−→
0 , bΩ) and so u(0) =

1
2π

∫ 2π

0
log dist((eiθ, 0, . . . , 0), bΩ)dθ ⇒ − log dist(

−→
0 , bΩ) ≤ avgθ(− log dist(eiθ−→e1 , bΩ) (∗ ∗ ∗)

(note: the integral at the origin is the average of the boundary values).
What if −→z is a multiple of −→e1? (i.e. it is on the z1-axis).

Assume n = 1.

− log dist(0, bΩ) = max
z∈bΩ

(− log |z|)

=MVT max
z∈bΩ

avgθ(− log |z − eiθ|)

≤ avgθ max
z∈bΩ

(− log |z − eiθ|)

= avg(− log dist(eiθ, bΩ))

Assume n > 1.

− log dist(
−→
0 , bΩ) ≤ avgθ(− log dist(eiθ−→e1 , bΩ ∩ (C ∩ {0}n−1))

≤ avgθ(− log dist(eiθ−→e1 , bΩ))

Proposition 0.110. If Ω satisfies the Hartog’s Figure property and α : ∆ - Ω is affine,

then − log dist(α(0), bΩ) ≤ avgθ(− log dist(α(eiθ), bΩ))

Proof. Reduce to the previous case using unitary maps, translations, and dilations. �

The function − log(distance to the boundary) has the property that it sub-averages along
any disk. In otherwords, − log dist(,̇bΩ) is plurisubharmonic. So now we will look into
more plurisubharmonic functions next.
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Lecture 21. March 4, 2009

Definition 0.111. Let Ω ⊆ Cn be open and u : Ω - R continuous. Then u is plurisub-
harmonic if u(α(0)) ≤ avgθu(α(eiθ))∀α : ∆ - Ω where α is C-affine.

Note: We are assuming that u is continuous. If we don’t make this assumption we need to
make other assumptions (for discontinuous plurisubharmonic functions). Facts:

• Plurisubharmonic functions are closed under addition
• u(z) = ||z||2 is a continuous plurisubharmonic function

Definition 0.112. An exhaustion function for Ω is a continuous function u : Ω - R
such that {z ∈ Ω | u(z) ≤ c} is compact ∀c ∈ R. (i.e. u(z) → ∞ as z → bΩ or ||z|| → ∞
within Ω).

Domain of Holomorphy ⇒
Hartog’s figure property ⇒
− log dist(z, bΩ) is continuous and plurisubharmonic ⇒
Ω has a plurisubharmonic exhaustion function

Of last implication. u(z) = − log dist(z, bΩ) + ||z||2 �

Eventually we will show that all of these implications go both directions.

Information on Plurisubharmonic Functions:
When n = 1, plurisubharmonic functions are called subharmonic.

Theorem 0.113. If Ω ⊂ C, u : Ω - R is C2, then u is subharmonic ⇔ ∆u ≥ 0.

Proof. Without loss of generality, assume that 0 ∈ Ω and let M(r) = avg|z|=ru. M(r) →
u(0) as r decreases to 0.

M ′(r) =
d

dr

( 1
2π

∫ 2π

0

u(reiθ)dθ
)

=
1

2π

∫ 2π

0

∂u

∂r
(reiθ)dθ

=
1

2π

∫ 2π

0

(
∂u

∂x

x

r
+
∂u

∂y

y

r
)(reiθ)dθ

=
1

2πr

∫
|z|=r

(
∂u

∂x
dy − ∂u

∂y
dx)

=
1

2πr

∫ ∫
|z|≤r

∆udA

We used polar coordinate to go from line 2 to 3: x = r cos θ, y = r sin θ, ∂x∂r = x
r and ∂y

∂r = y
r .

Also, on |z| = r, dx = −ydθ and dy = xdθ. The last step is by Green’s theorem.

∆u ≥ 0⇒M(r) is increasing in r,M(r) ≥ u(0)

∆u(0) < 0⇒M(r) is strictly decreasing for small r,M(ε) < u(0)

Since 0 is not a special point, we can translate any point to 0 and get the same result. �

Recall: ∆u = 4 ∂2u
∂z∂z . Assume that u is C2.

u is plurisubharmonic ⇔ ∂2u

∂z∂z
(~p+ a1z ~e1 + · · ·+ anz ~en|z=0 ≥ 0∀~p,~a
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Claim: ∂2u
∂z∂z (~p+ a1z ~e1 + · · ·+ anz ~en|z=0 =

∑
j,k

∂2u
∂zi∂zk

(~p)ajak
Justification:

(u ◦ α)′ = (u′ ◦ α)α′

= (∂u ◦ α+ ∂u ◦ α)(∂α+ ∂α)
this is a combination of C-linear terms and two are conjugate linear

∂(u ◦ α) = (∂u ◦ α)∂α+ (∂u ◦ α)∂α

∂(u ◦ α) = (∂u ◦ α)∂α+ (∂u ◦ α)∂α
in the previous two lines the second term disappears since α is C affine

∂(u ◦ α
∂z

=
∑
k

∂u

∂zk
ak

∂2(u ◦ α)
∂z∂z

=
∑
j,k

∂2u

∂zj∂zk
akaj

The term ∂2u
∂zj∂zk

is the C-Hessian of u.
If u is C2, then u is plurisubharmonic if and only if all of its C-Hessians are atleast 0.

0.0.1. Digression on Hessians. Let Ω ⊆ Rn be open and u : Ω - R be C2. The Hessian
of u at p is ∂2u

∂xj∂xk
(p).

u(x) = u(p) + u′(p)(x− p) +
1
2

(x− p)tr(Hessian of u at p)(x− p) + (higher-order terms)

Note that (x− p) is a column vector.
What happens to the Hessian under a change of variable?
Special Case: R ϕ- R u- R

(u ◦ ϕ)′ = (u′ ◦ ϕ)ϕ′

(u ◦ ϕ)′′ = (u′′ ◦ ϕ)(ϕ′)2 + (u′ ◦ ϕ)ϕ′′

In the second line we have a term that does not involve u′′ at all, which we do not like.
In general it is better to view u′, u′′ as a package (called a “2-jet”). We do get a good
translation law for u′′ by itself if ϕ′′ = 0 (e.g. ϕ is affine) or if u′ = 0 (i.e. at a critical point
of u).

Exercise 0.114. Let u(x) = x2. This is a convex function, show how it can be made into
a concave function by a change of variable except at x = 0.(The point x = 0 is an exception
because it is a critical point of u).

Lecture 22. March 6, 2009

Today’s Assumptions:
All functions are assume to be C2 and f : Rn - Rm means that f : Ω - Rm where
Ω ⊂ Rn is open.

Rs ϕ- Rn u- R

The Hessian of u at a is: ∂2u
∂xj∂xk

(a).
The Hessian of u ◦ ϕ at p is ?
Method 1: (u ◦ ϕ)jk = . . .

Method 2: ϕ(x)+ϕ(p)+ϕ′(p)(x−p)+ 1
2 (x−p)tr(Hessian of ϕ at p)(x−p)+(Higher-order
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terms)

u(ϕ(x)) = u(ϕ(p)) + u′(ϕ(p))ϕ′(p)(x− p)

+
1
2
u′(ϕ(p))((x−−p)tr(Hessian of ϕ at p)(x− p)

+
1
2

(x− p)tr(ϕ′(p))tr(Hessian of u at ϕ(p))ϕ′(p)(x− p)

+ (Higher-Order terms)

Note that tr stands for transpose.

vtr(Hessian of u◦ϕ at p)v = vtrϕ′(p)tr(Hessian of u at p)ϕ′(p)v+u′(ϕ(p))(vtr(Hessian of ϕ at p)v)

Note that the terms are row or column vectors and not matrices. We call the last term,
u′(ϕ(p))(vtr(Hessian of ϕ at p)v), the error term since we prefer to work with the other
terms. We like the second term since it corresponds to quadratic forms on the tangent
space. The error term disappears if:

(1) ϕ is affine (then the Hessian of ϕ is zero)
(2) u′(ϕ(p)) =, i.e. ϕ(p) is a critical point of u

Corollary 0.115. The signature of the Hessian (i.e. the number of positive, negative, and
null directions) is diffeomorphism invariant at critical points.

Definition 0.116. A function u is convex if u(tp+ (1− t)q) ≤ tu(p) + (1− t)u(q),∀p, q, 0 ≤
t ≤ 1.

Fact: u : R - R is convex ⇔ u′′ ≥ 0.

u : Rn - R is convex ⇔ u is convex along each line

⇔ u′′(x, v) = vtr(Hessian of u at p) ≥ 0,∀x, v
⇔ all Hessians are atleast zero

Corollary 0.117. If u is convex and ϕ is affine, then u ◦ ϕ is convex.

Now consider u : W - R, where W ⊂ Cn is open.
The R-Hessian is:

∑
∂2u

∂xj∂xk
+ . . .

Converting this into complex variables (xj = zj+zj
2 ), we get:∑ ∂2u

∂xj∂xk
+ · · · =

∑ ∂2u

∂zj∂zk
zjzk +

∑ ∂2u

∂zj∂zk
zjzk +

∑ ∂2

∂zjzk
zjzk

The first term on the right is Hermitian, and the other two are anit-Hermitian. So C-Hessian
of u is the Hermitian part of the real Hessian.

u is plurisubharmonic⇔ All C-Hessians are at least 0

⇔ nR
−(R−Hessian) ≤ nC

−(C-Hessian) + n = n

Also, u(x1, . . . , xn) is a plurisubharmonic function of (x1 + iy1, . . . , xn+ iyn)⇔ u is convex.

Now consider Cs ϕ

holo.
- Cn u- R.

The R-Hessian of ϕ is anti-Hermintian, so the C-Hessian of u ◦ ϕ at p = (ϕ′)tr(C-Hessian
of u)ϕ′.

Corollary 0.118. If u is plurisubharmonic and ϕ is holomorphic, then u ◦ ϕ is plurisub-
harmonic.
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Corollary 0.119. For C2 functions, plurisubharmonicity is biholomorphic-invariant

Lecture 23. March 9, 2009

Again, we want to assume that all functions are C2.

Proposition 0.120. Given Rs ϕ- Rn u- R, where u is convex and non-decreasing in
each variable and the ϕj are all convex, then u ◦ ϕ is convex.

Proof. We need to look at this equation:

vtr(Hessian of u◦ϕ at p)v = vtrϕ′(p)tr(Hessian of u at p)ϕ′(p)v+u′(ϕ(p))(vtr(Hessian of ϕ at p)v)

All of the entries of the vector u′(ϕ(p)) are non-negative since we assumed that it was non-
decreasing in each variable and all the entries of (Hessian of ϕ at p) are non-negative. Also
the second term has non-negative entries so u ◦ ϕ is convex. �

Proposition 0.121. Given Cs ϕ- Rn u- R, where u is convex and non-decreasing in
each variable and the ϕj are all plurisubharmonic, then u ◦ ϕ is plurisubharmonic.

Proof. Take the Hermittian part of each term in:

vtr(Hessian of u◦ϕ at p)v = vtrϕ′(p)tr(Hessian of u at p)ϕ′(p)v+u′(ϕ(p))(vtr(Hessian of ϕ at p)v)

Use lemma: Q ≥ 0⇒ QHerm. ≥ 0 since

QHerm.(v, v) =
Q(v, v) +Q(Jv, Jv)

2
�

In the two previous propositions, the same result holds if we restrict ϕ to open subsets of
its given domain and range.

Corollary 0.122. If u is plurisubharmonic, then eu is plurisubharmonic.

Corollary 0.123. If uj > 0 is plurisubharmonic, then (up1 + · · ·+upn)
1
p is plurisubharmonic

for p ≥ 1.

We would like to get versions of these results without having to assume that the functions
are all C2.
Idea: Approximate convex/plurisubharmonic functions by smooth convex/plurisubharmonic
functions.
Recall: Let Ω ⊂ Cn be open. Then u : Ω - R is continuous and plurisubharmonic ⇔
U(α(0)) ≤ avgθu(α(eiθ),∀C-affine maps α : ∆ - Ω.
Note: If we have a sequence of functions uj that are continuous and plurisubharmonic such
that uj → u almost uniformly, then u is plurisubharmonic.
Pick η ∈ C∞(Cn) such that:

(1) η(z) = 0 for ||z|| > 1
2

(2) η ≥ 0
(3)

∫
η = 1

uε(z) ≡
∫

Cn
u(z − εζ)η(ζ)dVζ

=
∫
u(ζ)η(

z − ζ
ε

dVζ
ε2n

= u(z) +
∫

(−u(z) + u(ζ))η(
z − ζ
ε

dVζ
ε2n

Exercise 0.124. uε is C∞ on Ωε = {z ∈ Ω | dist(z, bΩ) > ε}.
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Exercise 0.125. uε → u almost uniformly as ε→ 0.

Exercise 0.126. If u is plurisubharmonic, then uε is plurisubharmonic (use Fubini’s the-
orem). If we start with η in Rn instead of Cn, we get the result that u is convex ⇒ uε
convex.

Assume the results from all of these exercises. Then:

u is plurisubharmonic ⇔ uε is plurisubharmonic for 0 < ε < ε0

Corollary 0.127. Locally plurisubharmonic functions are plurisubharmonic.

From the definition of plurisubharmonic, it was unclear that this was a local condition.
However, from the results above that we can approximate a plurisubharmonic u by uε,
which are defined locally and are plurisubharmonic, it is now clear that plurisubharmonic
is a local condition.

Corollary 0.128. If u is continuous, plurisubharmonic and ϕ is holomorphic, then u ◦ ϕ
is continuous and plurisubharmonic.

Proof. u ◦ ϕ = limuε ◦ ϕ �

Corollary 0.129. If u is plurisubharmonic, then u is subaveraging along every holomorphic
disk.

Note: we already know that u is subaveraging along every affine disk, but the above result
extends this further to every holomorphic disk.

Corollary 0.130. Plurisubharmonicity is a biholomorphic invariant notion.

Corollary 0.131. Let Ω ⊆ Cn be open. Ω
ϕ- Rn, where each component is plurisub-

harmonic and Rn u- R is convex and non-decreasing in each variable, then u ◦ ϕ is
plurisubharmonic.

Proof. u ◦ ϕ = limε→0 uε ◦ ϕε.. �

Examples:

(1) If u is plurisubharmonic, then eu is plurisubharmonic.
(2) If u < α is plurisubharmonic, then 1

α−u is plurisubharmonic.
(3) If {uj}nj=1 are plurisubharmonic, then u1 + · · ·+ un is plurisubharmonic.
(4) If {uj}nj=1 are plurisubharmonic, then max{u1, . . . , un} is plurisubharmonic.
(5) If u1, u2 are plurisubharmonic, then log(eu1 + eu2) is plurisubharmonic.

Proof. Check that the Hessian is 1
(eu1+eu2 )2

(
eiu1 eu1+u2

eu1+u2 eiu2

)
�

(6) If {uj}nj=1 are plurisubharmonic, then log(eu1 + · · ·+ eun) is plurisubharmonic.

Proof. Use a larger Hessian or induction with the previous example. �

(7) If {uj}nj=1 are plurisubharmonic, uj ≥ 0, and p > 1, then (up1 + · · · + upn)
1
p is

plurisubharmonic.

Remark 0.132. Plurisubharmonic functions are much more flexible than holomorphic func-
tions. If we want to construct a holomorphic function satisfying a set of conditions, it can
be very difficult because of the unique continuation principle (i.e. we cannot hold the func-
tion fixed in one area while varying it in another and still ensure that the function remains
holomorphic. However, we can do this with plurisubharmonic functions. We will see how to
get holomorphic functions from plurisubharmonic functions (the reason why we are in fact
studying plurisubharmonic functions).
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Lecture 24. March 11, 2009

Recall:

Domain of Holomorphy⇔def. No auto extension
⇔
⇔ Holomorphic Convexity
⇔ Discrete Interpolation
⇔ Domain of Existence
⇒ Hartog’s Figure Property

Pseudoconvex Domain⇔def. Hartog’s Figure Property

⇔ − log dist(z, bΩ) is plurisubharmonic
⇔ plurisubharmonic exhaustion function
⇔ plurisubharmonic convexity - by today
⇔ Kontinuitatsatz - by today
⇔ Hartog’s Figure Property - by today
⇒ Domain of holomorphy - “solution of the Levi problem” - by today

Domain of Holomorphy⇔ Pseudoconvex Domain

K̂plsh(Ω) ≡ {z ∈ Ω | u(z) ≤ max
k

u,∀u continuous, plurisubharmonic on Ω}

Proposition 0.133. If Ω has a plurisubharmonic function v, then K̂plsh(Ω)
is compact for

all compact K ⊂ Ω.

Proof. K̂plsh(Ω)
⊂ {z ∈ Ω | v(z) ≤ maxK v} is relatively closed in Ω so it is compact. �

∆
α

cont.
- Ω

u

plsh
- R, where α is holomorphic on ∆.

⇒ u ◦ α is continuous on ∆ and subharmonic on ∆
⇒ u(α(0)) ≤ avgθu(α(eiθ)) ≤ maxα(b∆) u

Composing with the auto of ∆, maxα(∆) = maxα(b∆) u. So α(∆) ⊂ ˆα(b∆))plsh(Ω)
.

Kontinuitatsatz or Disk Property
Suppose that Ω is plurisubharmonic convex. Then:
αz : ∆ - Ω is continuous on ∆, is holomorphic on ∆
∪vαv(b∆) is compact in Ω⇒ ∪vαv(∆) is compact in Ω
Also, Kontinuitatsatz implies the Hartog’s figurre property. In the 1950’s it was proven
(difficult proof) that a pseudoconvex domain is a domain of holomorphy. Hence domains of
holomorphy and pseudoconvex domains are equivalent.

Proposition 0.134. Suppose Ω1,Ω2 are pseudoconvex domains, then Ω1 ∩Ω2 is a pseudo-
conex domain.

Proof. − log dist(z, b(Ω1 ∩ Ω2)) = max{− log dist(z, bΩ1),− log dist(z, bΩ2)} �

Proposition 0.135. Ω is pseudoconvex ⇔ ∀p ∈ bΩ,∃ε > 0 such that Ω∩B(p, ε) is pseudo-
convex.

Proof. (⇒) use the above proposition. �
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Assuming Ω is bounded

− log dist(z, bΩ) = − log dist(z,Ω ∩B(p, ε)) for z ∈ Ω ∩B(p,
ε

2
)

Cover bΩ with finitely many balls of radius ε
2 .

− log dist(z, bΩ) is plurisubharmonic on Ω \K, where K compact.
u(z) = max{− log dist(z, bΩ),− log dist(K, bΩ) + 1} is a plurisubharmonic exhaustion func-
tion:
For any point in K, − log dist(K, bΩ) + 1 dominates the other value and it is constant,
hence plurisubharmonic. Use the fact that plurisubharmonicity is local to show that u(z) is
plurisubharmonic.
Assuming Ω is unbounded

Ω is locally pseudoconvex ⇒ Ω ∩B(0,M) is pseudoconvex

⇒ − log dist(z, b(Ω ∩B(0,M)) is plurisubharmonic

⇒ − log dist(z, bΩ) is plurisubharmonic since plurisubharmonicity is local

Lecture 25. March 13, 2009

Let Ω ⊂ Rn open. Ω + iRn ⊂ Cn is called the tube on Ω.

Proposition 0.136. u ∈ C(Ω) is plurisubharmonic on Ω× iRn ⇔ u is convex.

Proof. u is a function on Ω× iRn by ignoring the terms in iRn

C2 case:
(
∂2u
∂zjzk

)
= 1

4

(
∂2u

∂xj∂xk

)
General case: exercise - use convolutiosn in x variables following the previous lecture. �

Corollary 0.137. Assume that Ω ⊂ Rn is connected. Then Ω + iRn is pseudoconvex ⇔ Ω
is convex.

Proof. (⇐)
Omega is convex ⇒ Ω + iRn is convex ⇒ Ω + iRn is a domain of holomorphy ⇒ Ω + iRn
is pseudoconvex.
(⇒) Ω+iRn is pseudoconvex⇔ − log dist(z, b(Ω+iRn)) is plurisubharmonic⇔ − log dist(x, bΩ)
is convex ⇒ “line segment version of Kontinuitatsatz” ⇒ Ω is convex. �

Corollary 0.138. Suppose that p(z) = p(x + iy) is a polynomial on Cn. Then each com-
ponent of Ω ≡ {x ∈ Rn | p(x+ iy) 6= 0,∀y ∈ Rn} is convex.

Proof. Ω + iRn = ∩y(Cn \ {z | p(z) = 0}) + iy is a tube domain of holomorphy (since for
every boundary point we can define a fuction that blows up on the boundary) or a disjoint
union of tubes of domains of holomorphy if it is not connected. So this is a tube over a set
with convex components. �

Example 0.139. Let p(z1, z2) = z1z2. Ω = {(x1, x2) | x1x2 6= 0}

Example 0.140. Let p(z1, z2) = z2
1 + z2

2 − 1. Given x is there a y such that p(x+ iy) = 0⇔
||x||2 − ||y||2 − 1 = 0 and xy = 0?

Ω = {x ∈ R2 | ||x|| < 1}

Suppose M ⊂ Cn is a compact, real submanifold.
General Fact: ∃ε > 0 such that Mε = {z ∈ Cn | dist(x,M) < ε} ψ- R where ψ(z) =
(dist(z,M))2 is smooth. Let p ∈M and consider the Hessian of ψ at p.

vtr(Hessian of ψ at p)v = ψ′′(p, v, ) ≥ 0 since ψ has a minimum at p.
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Also, ψ(z) = ||z − p||2 for z ∈ Np ψ′′(p, z) > 0,∀v normal to M at p. Claim: as we travel
towards p, ψ is so small (since we took it to be the distance square) that it forces the second
derivative to be zero for all v tangent to M at p. In particular,

ψ′′(p, v) = 0⇔ v is tangent to M at p

Use: the set of null vectors for semi-definite quadratic form forms a vector space.

vtr(C−Hessian of ψ at p)v =
1
2
{ψ′′(p, v) + ψ′′(p, Jv)} ≥ 0

vtr(C−Hessian of ψ at p)v = 0⇔ v ∈ TpM and Jv ∈ TpM ⇔ v ∈ TpM ∩ JTpM

M is totally real⇒ C−Hessian of ψ at p ∈M > 0
⇒ C−Hessian of ψ at p ∈Mε, for a small ε > 0
⇒ ψ is strictly plurisubharmonic on Mε, for a small ε > 0

⇒ 1
ε− ψ

is a plurisubharmonic exhaustion for Mε, for a small ε > 0

⇒Mε are pseudoconvex, for a small ε > 0

Motivation behind the next lecture:

Example 0.141. Let Sn−1 = {x ∈ Rn | p(x) = 0}, where p(x) = ||x||2 − 1. Let α :
(0, 1) - Sn−1 be affine. Then 0 = (p ◦ α)′′(t) = α′(t)tr(Hessian of p at α(t))α′(t) ⇒
α′(t) = 0,∀t⇒ α is constant.

Example 0.142. Let α : ∆ - S2n−1 be holomorphic ⇒
0 = C-Hessian of p ◦ α at z = α′(z)tr(C-Hessian of p at α(z))α′(z) ⇒ α′(z) = 0,∀z ⇒ α is
constant.

Next time: Level sets

Lecture 26. March 16, 2009

Remark 0.143. Today’s lecture is presented in a different way than you can find in a standard
text on this subject.

Let M be a real hypersurface in Cn (i.e. a real manifold of dimension 2n− 1). Everything
in this lecture is atleast C2-smooth but can be considered as C∞ smooth.
Let ρ be the defining function for M . What happens to the Hessian of ρ if we replace ρ by
ρ̃ = ηρ, where η 6= 0 and η is a smooth as necessary to meet the smoothness requirements
of ρ̃?
Real Case: ρ̃′ = ρη′ + ηρ′

ρ̃′′ = ρη′′ + 2η′ρ′ + ηρ′′

i.e. ρ̃′′(x; v) = ρ(x)η′′(x; v) + 2η′(x; v)ρ′(x; v) + η(x)ρ′(x; v)
If ρ(x) = 0 (i.e. x ∈M) and ρ′(x; v) = 0 (i.e. v ∈ TxM), then

ρ̃′′(x; v) = η(x)ρ′′(x; v) = η(x)vtr(Hessian of ρ at x)v

So the Hessian of ρ̃ at x|TxM = η(x) · (Hesssian of ρ at x|TxM ).

Define: TxM
Fx- TxRn/TxM . We call Fx the second fundamental form. The first

fundamental form often corresponds to the inner product on some tangent space. However,
for the purposes of this lecture there is no first fundamental form because we want to be
able to look at translations and rotations.

ρ′(x) · Fx(v) ≡ ρ′′(x; v) = vtr(Hessian of ρ at x)v
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Note that ρ′′(x; v) is a scalar, ρ′(x) is a row vector, and Fx(x; v) is a column vector. Fx is
a quadratic form on TxM with values in TxRn/TxM . Suppose we have to column vectors
w1, w2 satisfying:

ρ′(x) · w1 = ρ′(x) · w2 ⇒ ρ′(x) · (w2 − w1) = ρ′(x;w2 − w1) = 0⇒ w2 − w1 ∈ TxM

Therefore them form Fx is well-defined.

Suppose that ρ̃ = ηρ, η 6= 0. Then ρ̃′(x) · Fx(v) =? ρ̃′′(x; v). Since we are asumming that
x ∈ M and v ∈ TxM , ρ̃′′(x; v) = η(x)ρ′′(x; v) (we saw this above). And ρ̃′(x) = η(x)ρ′(x).
Hence

ρ̃′(x) · Fx(v) = η(x)ρ′(x) · Fx(v) = η(x)ρ′′(x; v) = ρ̃′′(x; v).

So:
(1) Fx does not depend on the choice of ρ
(2) All of this transforms naturally under affine change of coordinates
(3) M convex hypersurface ⇔def Fx ≥ 0,∀x ∈M
(4) Fact: If Ω ⊂ Rn is an open, connected subset with smooth boundary. Then Ω is

convex ⇔ bΩ is a convex hypersurface.

Remark 0.144. Let Ω ⊂ Rn be an open, connected subset with smooth boundary. In order
to say that Fx ≥ 0, we need to define an orientation on TxRn/TxM . Orient TxRn/TxbΩ so
that the positive direction points out of Ω (i.e. corresponds to outside of Ω) and negative
direction points into Ω

Move onto C-Hessian: Assuming (still) that ρ is a defining function for a smooth hypersur-
face M .

ρ′′C(x; v) ≡ 1
2

(ρ′′(x; v) + ρ′′(x; Jv)) = vtr(C-Hessian of ρ at x)v

So Lz is a complex quadratic form on the maximal complex tangent space. We call Lz the
Levi form.
Recall: (ρ ◦ α)′′C(z; v) = ρ′′C(α(z);α′(z)v) if α is holomorphic.

Insist that z ∈M,v ∈ TzM ∩ JTzM . Get TzM ∩ JTzM
Lz- TzCn/TzM defined by:

ρ′(z) · Lz(v) = ρ′′C(z; v).

(1) This does not depend on the choice of ρ
(2) Transforms naturally under holomorphic maps (since complex Hessians transform

naturally
(3) Lz is a Hermitian form on TzM ∩ JTzM
(4) M is Levi-pseudoconvex ⇔def Lz ≥ 0,∀z ∈M
(5) Ω is pseudoconvex ⇔ bΩ is Levi-pseudoconvex (we will show this)

Remark 0.145. We are not requiring that Ω is connected when it is pseudoconvex. Instead
we are assuming that each connected component is pseudoconvex.

To study: M near z ∈ M . After translation, we may assume that z = 0. After C-linear
change of coordinates we may assume that T0M = Cn−1×R. The implicit function theorem
implies that M is locally a graph so that:

yn = f(z1, . . . , zn−1, xn), f(0) = 0, and f ′(0) = 0.

yn = quadratic terms in (z1, . . . , zn−1, xn)+ higher order terms.
Next time, we will use holomorphic change of variables to kill off many more terms.

Lecture 27. March 18, 2009
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Theorem 0.146 (R-inverse function theorem). Let Ω ⊆ Rn be open, F : Ω - Cn be
Ck (for k ≥ 1) and F ′(x0) is invertible. Then F has a Ck inverse, G, near F (x0) and
G′(F (x)) = (F ′(x))−1.

Theorem 0.147 (C-inverse function theorem). Let Ω ⊆ Cn be open, F : Ω - Cn
holomorphic, and F ′(z0) invertible. Then F has a holomorphic inverse near F (z0).

The C version follows immediately from the R version of this theorem.

Take a point p ∈ M a real hypersurface (in Rn). The second fundamental form Fp :
TpM - TpRn/TpM is a quadratic form which is invariant under R-affine changes in
coordinates.

Definition 0.148. M is a convex hypersurface if all Fp ≥ 0.

Theorem 0.149. M is a convex hypersurface ⇔M bounds a convex set.

Definition 0.150. M is a strongly convex hypersurface if all Fp > 0.

Definition 0.151. M is strictly convex if M is convex and M contains no line segments.

Strongly convex implies strictly convex, but not vice versa.

Example 0.152. y = x4 is strictly convex, but not strongly convex.

Take a point p ∈ M ⊂ Cn. The Levi form, Lp, is the Hermitian part of Fp|TpM∩JTpM and
this is holomorphically invariant.

Definition 0.153. M is Levi pseudoconvex if Lp ≥ 0 for all p ∈M .

Assume that M is the boundary of some domain, then M is Levi pseudoconvex⇔M bounds
a pseudoconvex domain.

Definition 0.154. M is strictly/strongly (Levi) pseudoconvex if Lp > 0 for all p ∈M .

These two terms are used interchangelably, but we will prefer to use strongly Levi pseudo-
convex since this definition is closer to the definition in the real case.

Idea: Use coordinate changes to simplify the geometry of M at p.
Last time: We used C-affine change of coordinates to reduce to the case that p = 0 and
TpM is Cn × R. Then M given by yn = f(z1, . . . , zn−1, xn), f(0) = 0, f ′(0) = 0. Using
Taylor expansion we get:

yn =
∑

1≤j,k≤n−1

(
ajkzjzk+ajkzjzk+bjkzjzk+cjzjxn+cjzjxn

)
+cnx2

n+(higher-order terms)

We need this to be self-conjugate so where bkj = bjk . We could also assume that ajk = akj
so that the matrix would be symmetric.

v ∈ Cn−1 × {0} ⇒ L0(v) =
∑

1≤j,k≤n−1

vjkzjvk
∂

∂yn

Make local holomorphic change of coordinates:

z̃j = zj for 1 ≤ j ≤ n− 1

z̃n = zn − 2i
∑

1≤j,k≤n−1

ajkzjzk − 2i
∑

1≤j≤n−1

cjzjzn + iγz2
n,

where γ is a real number yet to be determined. This gives us:

ỹn = yn−
∑

1≤j,k≤n−1

ajkzjzk−
∑

1≤j,k≤n−1

ajkzjzk−
∑

1≤j≤n−1

cjzjzn−
∑

1≤j≤n−1

cjzjzn+γ(x2
n−y2

n)
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On M̃,

ỹn =
∑

1≤j≤n−1

bjkz̃j z̃n + (cn + γ)x̃n
2 + (higher-order terms)

So we may assume that:

yn =
∑

1≤j,k≤n−1

bjkzjzk + x2
n + (higher-order terms)

We may also assume that the matrix for (bjk) is diagonal with 1’s, -1’s, and 0’s (in that
order) on the diagonal times a matrix J .

Lecture 28. March 20, 2009

M is a real hypersurface in Cn:
M+ corresponds to the inside and M− corresponds to the outside. In particular, M+ is the
region where yn >

∑
1≤j,k≤n−1 bjkzjzk + x2

n + (higher-order terms) and M− is the region
where yn <

∑
1≤j,k≤n−1 bjkzjzk + x2

n + (higher-order terms).

Theorem 0.155. M+ is pseudoconvex ⇔M is Levi-pseudoconvex.

Proof. There are 3 cases:
(1) Suppose some LpM � 0. Show that M+ is not pseudoconvex.

We may assume that b11 < 0. Then (z1, 0, . . . , 0) ∈ M+ for 0 < |z1| < δ. For
t ∈ (0, ε), f+ : ∆ - M+ by z 7→ (Sz, 0, . . . , 0, it). We have a sequence of circles
whose boundaries are in M+ but whose closures are in M . Therefore Kontinuitsatz
fails for M+ and so it is not pseudoconvex.

(2) Suppose that M is strongly pseudoconvex (i.e. Lp > 0). Show that M+ is
pseudoconvex.
Reduce to yn =

∑
1≤j≤n+1 |zj |2 + x2

n+(higher-order terms). The Hessian is strictly
positive near and at the origin, so it is a convex function of (z1, . . . , zn−1, xn)⇒M+

is convex ⇒M+ is pseudoconvex.
(3) M is Levi-pseudoconvex, but not stongly pseudoconvex.

1st idea: choose holomorphic coordinates such that M+ is convex - this is not
always possible (proof by Kohn-Nirenberg in 1973). We still need to show that
LpM ≥ 0,∀p ∈M near 0⇒M+ is pseudoconvex near 0.
Idea: Use M ε defined by

yn =
∑

1≤j,k≤n−1

bjkzjzk + x2
n + (higher-order terms) + ε(|z1|2 + · · ·+ |zn−1|2)

LMε

0 = LM0 + εI > 0.

Exercise 0.156. ∃η > 0 independent of ε > 0 such that LMε

q > 0 for q ∈ M ε ∩
B(0, η), 0 < ε < ε0.

M ε strongly pseudoconvex in B(0, η)⇒M ε
+ is pseudoconvex

⇒ − log dist(z,M ε) is plurisubharmonic in B(0,
η

2
)

⇒ − log dist(z,M) is plurisubharmonic in B(0,
η

2
)

⇒M+ ∩B(0,
η

2
) is pseudoconvex.

�

Addenda:
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(1) M is strongly pseudoconvex ⇔ M is locally biholomorphic to a strongly convex
hypersurface.

(2) Cannot always do this globally (ex. M = boundary of a slightly thickened, compact
totally real submanifold.

(3) M is Levi pseudoconvex⇔M is the limit of a strongly pseudoconvex hypersurface.

An example for last clase: curvature of y = f(x) in R2 is given by y′′

(1+(y′)2)
3
2

.

Homework 2a: | z
iw−1
ziw+1 | < 1.

0.1. Digression on a Related Topic. Consider Ω1,Ω2 ⊂ Cn, φ : Ω1
- Ω2 is biholo-

morphic.
Fact: φ maps C-lines to C-lines ⇔ φ is a linear fractional translation (LFT) z 7→ A·−→z +

−→
b−→c tr·−→z +d

,

det

(
A

−→
b

−→c tr d

)
6= 0 , A is an n × n matrix ⇔ φ extends to an automorphism of complex

projective space.

Remark 0.157 (Homework 4: #3). φ is LFT ⇒ vtr( ∂2φ
∂zj∂zk

v and θ′(z) · v is C-linearly
dependent.

Recall: Ω1
φ- Ω2

u- R
Recall: vtr(Hessian of u◦φ)v = vtrφ′(p)tr(Hessian of u at p)φ′(p)v+u′(φ(p))·(vtr(Hessian of φ at p)v)
The 2nd term will disappear if v is in the maximal C-subspace of u ◦ φ = c. Conclude that
βp = Fp|maximalC-subspace is LFT invariant. We will discuss this further next lecture.

Lecture 29. March 23, 2009

A level set is a set of the form: {(z1, . . . , zn) | f(z1, . . . , zn) = c}, where c is a constant.
Linear Fractional Transformations (LFT):

z
φ-

(A10 +A11z1 + · · ·+A1nzn
A00 +A01z1 + · · ·+A0nzn

, . . . ,
An0 +An1z1 + · · ·+Annzn
A00 +A01z1 + · · ·+A0nzn

)
To keep this from degenerating we need det(Ajk) 6= 0.
Assume that these level sets are submanifolds:

A
φ

LFT
- B(u = c)

u- R, u ◦ φ = c

v tangent to (the level set) u◦φ = c at p ∈ A⇔ (u◦φ)′(p)·v = u′(φ(p))·φ′(p)·v = 0⇔ φ′(p)·v
is tangent to u = c at p

Claim: Bp = Fp|TpM∩JTpM is LFT-invariant. (Lp = Hermitian part of Bp). Note that this
is sometimes referred to as the Bolt form.

Proof. We need u′(φ(p)) · (vtr(holo. Hessian of φ at p)v). By homework 4, we know that
the holomorphic Hessian of phi at p is a C scalar multiple of φ′(p) ·v. We are ok if φ′(p) ·v is
in the maximal C-subspace which occurs if and only if v is in the maximal C-subspace. �

Given Ω ⊂ Cn a connected, open set with smooth boundary. Facts:
(1) All Bp(bΩ) ≥ 0⇔ ΩC-linear convexity ⇔ Ω is C-convex

(Ω is C-linearly convex ⇔Def. Cn \ Ω is a union on C-lines.
Ω is C-convex ⇔ intersections of Ω with C-lines are connected and simply con-
nected.)

(2) Bp(bΩ) > 0⇔Def. bΩ is strongly C-linearly convex ⇔ bΩ is locally LFT-equivalent
to a strongly convex domain.

(3) Ω above is C-linearly convex ⇔ bΩ is a limit of strongly C-linearly convex
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Theorem 0.158 (Martineau; 1967). Ω ⊂ Cn is C-convex, then
† Lu = f is solvable on Ω for L =

∑
|α|≤k cα

(
∂
∂z

)α
where f is holomorphic on Ω (solution u holomorphic on Ω)

Theorem 0.159. If Ω is a bounded, pseudoconvex set which satisfies †, then Ω is C-convex.

ODEs: Fundamental Theorem of ODEs - basic existence, uniqueness results
PDEs:

(1) Cauchy-Kowalevski Theorem - “analytic PDEs are locally solvable” (analytic
PDE - all of the data is analytic). The assumption that the PDEs be analytic can
be a deal-breaker for some mathematicians - i.e. this assumption is too strong for
some.

(2) Constant coefficient linear partial differential operators (LPDO)
(3) Finding solutions can fail with variable coefficients

There is currently no concensus on a fundamental theorem of PDEs. The subject of several
complex variables is lurking behind all of these PDE results.

Lecture 30. March 25, 2009

Let Ω ⊂ Cn be open.

Ω is pseudoconvex ⇔ Ω admits a (continuous) plurisubharmonic exhaustion function

Theorem 0.160. Ω is pseudoconvex ⇔ Ω admits a C∞ plurisubharmonic exhaustion func-
tion.

Proof. (⇐) trivial
(⇒) Main tool to use is convolutions (details later) �

Theorem 0.161 (Sard’s). Let Ω ⊂ Rn be open and Ωn
f- Rk be Cmax{n−k+1,1} smooth.

Let C = {x ∈ Ω | rank(f ′(x)) < k}. Then f(C) has measure zero.

Definition 0.162. Let Ω
f- Rn. Then x0 is a critical point of f if f ′(x) = 0, in which

case f(x) is a critical value.

Let Ω ⊂ Rn and Ω
u- R smooth.

Definition 0.163. A point x0 is a non-degenerate critical point if u′(x0) = 0 and the
Hessian of u at x0 is non-degenerate.

Equivalently, if Ω
u′- (Rn)∗ sending x 7→ u′(x) is non-critical at x0 and u′(x0) = 0.

If x0 is a non-degenerate critical point then:
• u′ is a local diffeomorphism at x0 (by the inverse function theorem)
• x0 is an isolated critical point

Theorem 0.164. If Ω
u- R is smooth, then for almost every l ∈ (Rn)∗ the function

ũ(x) = u(x)− l · x has no degenerate critical points.

Proof. ũ′ = u′ − l:
{bad l′s} = {critical values of u′} has measure zero by Sard’s theorem. �

Corollary 0.165. If Ω is pseudoconvex, then Ω admits a C∞ strongly plurisubharmonic
exhaustion function without degenerate critical points.

Proof. If Ω is unbounded, start with an exhaustion function with at leat quadratic growth.
�
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0.2. Morse Theory. Let u(x1, x2, x3) = x3 restricted to the torus on R3. Imagine the torus
standing on one side so that it looks like an O. We are only considering the positive and
negative terms in the signature of the Hessian. At the highest point, the Hessian signature
is (0,2). At the lowest point the Hessian signature is (2,0). And at the two inside edge
points between the high and low the Hessian signature is (1,1). These four points are the
critical points of u on the torus. In descending order (accorrding to height) let a, b, c, d be
the critical points. The flow is along the gradient of u.
The basins are all the points that flow into a given critical point.

• For the highest point, a, the basin is only that point.
• The point b has a 1-disk as its basin (starting from close to the point a and making

a circle between that point and b)
• The point c has a 1-disk as its basin (starting from close to the point b and making

a circle between that point and c)
• The point d has a 2-disk as its basin

Differential geometers refer to the disks as cells.

Definition 0.166. Let M be a manifold and M
u- R be a smooth exhaustion function

with no degenerate critical points. Then u is a Morse function.

Theorem 0.167. Let M be a manifold and M
u- R be a Morse function. Then there

exists a cell complex E ⊂ M with one j-dimensional cell for each critical point x0 with n−
(Hessian of u at x0)= j such that E is a deformation retract of M . Then Hj(M,Z) = 0 if
j > max{n−(Hessian of u at x0) | x0 is a critical point}.

For references, see:

• Milnor, Morse Theory
• Milnor, k-cobordism theory
• Nicolaescu, Invitation to Morse Theory

Now relating Morse theory to Complex Analysis:
Let u be a strictly plurisubharmonic and Morse, then (by the second lecture) n− ≤ n.

Corollary 0.168. Let Ω ⊂ Cn be pseudoconvex, then Hj(Ω,Z) = 0,∀j > n.

Recall:

M is a C-submanifold ⇔ TpM = JTpM,∀p ∈M ⇔M

⇔M is locally a holomorphic graph Ω
holo.- Cn−k,Ω ⊂ Ck

Theorem 0.169. Let M be a closed C-submanifold of Cn, then almost every z0 ∈ Cn,
M

f- R sending z 7→ ||z − z0||2 is a strongly plurisubharmonic Morse function.

Corollary 0.170. M be a closed C-submanifold of Cn and dimC M = k, then M is homo-
topy equivalent to a k-dimensional cell complex.

Lecture 31. March 30, 2009

C∗ = C \ {0}

Definition 0.171. A complex manifold (or C-maniifold) is a Hausdorff topological
space X equipped with charts given by homeomorphisms {ρj : Uj - Ωj}, where Uj ⊂ X
is open and Ωj ⊂ Cn is open, such that ∪Uj = X and for any j, k, ρk ◦ ρ−1

j is holomorphic
where it is defined. In addition, each connected component must have a countable dense
subset.
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Definition 0.172. LetX be a complex manifold with charts given as above. Then f is holo-
morphic/plurisubharmonic/etc. if each f ◦ ρ−1

j is holomorphic/plurisubharmonic/etc.
where it is defined.

Definition 0.173. LetX and X̃ be complex manifolds with charts given by {ρj : Uj - Ωj}
and {ρ̃j : Ũj - Ω̃j}, respectively. X

f- X̃ is holomorphic if each ρ̃k ◦ f ◦ ρ−1
j is

holomorphic where it is defined.

Definition 0.174. A complex manifold X is toric if each Ωj is a product of C’s and C∗’s
and there are only finitely many Ωj ’s.

ρk ◦ ρ−1
j : (C∗)n - (C∗)n given by z 7→ (zα1 , . . . , zαn) Mjk = (α1αn)tr

inv. integer matrix with determinant not equal to 1.

Theorem 0.175. Let X be toric manifold with top row entries of M1k positive for all k.
Let K ⊂ X be compact and X \K connected. If f is holomorphic on X \K, then f extends
to a holomorphic function on X.

Remark 0.176. This theorem was presented as the AMS meeting on March 27, 2009.

We want to look at complex manifolds that ressemble pseudoconvex domains.

Definition 0.177. Let X be a C-manifold of C-dimension n. X is Stein if X satisfies:
(1) holomorphic convexity

(2) ∀p ∈ X,∃f1, . . . , fn, where X
fj- C is holomorphic, and such that f ′1(p), . . . , f ′n(p)

are C-linearly independent.

Remark 0.178. If X ⊆ Cn is a C-manifold of dimension n, then the second condition is
satisfied by setting fj(z) = zj .

Theorem 0.179. A C-manifold is Stein ⇔ X has a strongly plurisubharmonic exhaustion
function.

Proof. (⇒) Like earlier in the course and (⇐) Like the Levi problem. �

Theorem 0.180 (Bishop/Narasimhan, 1961). A C-manifold is Stein⇔ X is biholomorphic
to a closed C-manifold of CN (for some N ≥ n).

Proof. (⇒) Like Whitney Embedding theorem and (⇐) Trivial. �

What values of N work in the previous theorem?
Bishop/Narasimhan: N = 2 dimC(X) + 1
Eliashberg-Gromov: N = 3

2 (dimC(X) + 1)
Open Question: N = 2 for dimC(X) = 1
– Globevnik-Stensones: OK for X ⊂ C with smooth boundary.

Let X be a Stein manifold with dimC(X) = k. Then X admits a Morse function with
n− ≤ k at each critical point. Also (by Morse Theory) X is homotopy equivalent to a cell
complex of real dimension at most k.

Theorem 0.181 (Eliasberg, 1990’s). If M is an R-manifold with dimR M = 2k, k > 2, then
M is diffeomorphic to a Stein manifold⇔M admits a smoothly varying Jp : TpM - TpM
such that J2 = −I (i.e. M is “almost a C-manifold) and M admits a Morse function with
n− ≤ k at each critical point.

Remark 0.182. There is a more complicated result for k = 2. We probably need to assume
that M is atleast C2 so that we can consider the Hessian.
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Open Question: When is M diffeomorphic to a pseudoconvex in Ck?

Lecture 32. April 1, 2009

Assume that everything is smooth (although we could make a less stringent assumption)
A vector field L on a manifold M assigns to a point x ∈ M a tangent vector L(x) ∈ TxM .
Get a differential operator: for a smooth map M

f- R, (Lf)(x) = f ′(x) · L(x). Let
M ⊂ Rn be open. Identify TxM with Rn. M

L- Rn by x 7→ (a1(x), . . . , an(x)) where
Lf = (a1

∂
∂x1

+ · · ·+ an
∂
∂xn

)f . Let L̃ = b1
∂
∂x1

+ · · ·+ bn
∂
∂xn

. Then Lie bracket is:

[L, L̃] = LL̃− L̃L =
∑
j,k

(ak
∂bj
∂xk
− bk

∂aj
∂xk

)
∂

∂xj
)

This is also a vector field.

Exercise 0.183. [αL, βL̃] = αβ[L, L̃] + α(Lβ)L̃− β(L̃α)L

We want to study: † L1f = · · · = Lsf = 0
† ⇒ (ϕ1L1 + . . . ϕsLs)f = 0

span{L1, . . . , Ls} ≡ {ϕ1L1 + · · ·+ ϕsLs | M
ϕj- R}

View L1, . . . , Ls as equivalent to L̃1, . . . , L̃s if they have the same span.
Special Case: Lj = ∂

∂xj
, 1 ≤ j ≤ s < n

f satisfies † ⇔ f is (locally) a function of xs+1, . . . , xn.
The span of {L1, . . . , Ls} is closed under the Lie bracket.

Theorem 0.184 (Frobenius). If span{L1, . . . , Ls} is closed under the Lie bracket and
L1(x), . . . , Ls(x) are linearly independent at x, then there exists a change of coordinates
near x converting the span of {L1, . . . , Ls} to the span of { ∂

∂x1
, . . . , ∂

∂xs
}.

When s = 1 there is a slightly stronger result: if L 6= 0 at x, then L is locally equivalent to
∂
∂x1

. This is the “Fundamental Theorem of ODEs” - reference: Arnold “ODEs.”

Proof. See Narasimhan’s result Analysis on Manifolds or Sharpe’s Differential Geometry
�

Remark 0.185. There is also a holomorphic version of this result (i.e. a version for holo-
morphic vector fields).

“Almost C-structure” on a manifold M is Jx : TxM - TxM,R-linear such that J2 = −I
(need dimR M to be even).
The subscript st stands for “standard.” Jst on R2n

(x1,y1,...,xn,yn):

Jst(
∂

∂xk
) =

∂

∂yk
and Jst(

∂

∂yk
) = − ∂

∂xk

Suppose that J can be converted by a local change of coordinates to Jst. Then these changes
of coordinates give holomorphic charts and M becomes an “honest” C-manifold.
Given J and a vector field X, then X + iJX is a type (0,1) vector field and X − iJX is a
type (1,0) vector field.
For Jst:
Type (0,1) vector fields have the form

∑
aj(z) ∂

∂zj

L is type (0,1) ⇔ Lh ≡ 0,∀h holomorphic
L1, L2 are type (0,1) ⇒ [L1, L2]h = L1L2h−L2L1h ≡ 0,∀h holomorphic ⇒ [L1, L1] is type
(0,1)
So the set of (0,1) vector fields is closed under the Lie bracket. (‡)
Condition ‡ is necessary for J to be locally equivalent to Jst. Let X,Y be real vector fields.

[X + iJX, Y + iJY ] = [JX, Y ] + [X,JY ] + i([JX, Y ] + [X, JY ])
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Need J([X,Y ]− [JX, JY ]) = [JX, Y ] + [X, JY ]

Exercise 0.186. J([X,Y ]− [JX, JY ]) = [JX, Y ] + [X,JY ] is automatic in real dimension
2.

Theorem 0.187 (Newlander-Nirenberg). J is locally equivalent to Jst ⇔ J satisfies J([X,Y ]−
[JX, JY ]) = [JX, Y ] + [X, JY ].

Definition 0.188. J is integrable if J is locally equivalent to Jst.

Exercise 0.189. f = (f1, . . . , fn) : (a piece of)M - Cn converts J to Jst ⇔ Lfj = 0
for L a (0,1) vector-field (with respect to J) - “fj is J-holomorphic” - and f ′1, . . . , f

′
n are

linearly indepenedent.

In C-dimension 1:
Cω (real-analytic): Gauss
C∞: Beltrami
“L∞”: Ahlfors-Bers
In C-dimension > 1:
Cω (real-analytic): easy proof
C∞: Neqlander-Nirenberg
“L∞”: Not yet avaialble

Cω case. Let X =
∑
aj(x) ∂

∂xj
be a Cω vector field near 0 ∈ R2n and X̃ =

∑
aj(z) ∂

∂zj
a

holomorphic vector field near 0 ∈ C2n.

J : (neighborhood of 0 ∈ R2n) - {real 2n× 2n matrices J | J2 = −I}
J̃ : (neighborhood of 0 ∈ C2n) - {complex 2n× 2n matrices J | J2 = −I}

{X + iJX} is closed under the Lie bracket ⇒ {X̃ + iJ̃X̃} is closed under the Lie bracket.
By the Holomorphic Frobenius theorem, ∃f̃1, . . . , f̃n holomorphic near 0 ∈ C2n such that
(X̃ + iJ̃X̃)f̃j = 0 and f̃1, . . . , f̃n are linearly independent. Restrict f̃ to R2n to get J-
holomorphic fj with f ′1, . . . , f

′
n linearly independent. �
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Facts

• Sn admits an almost C-structure ⇔ n = 2, 6
• Sn admits an “honest” C-structure ⇔ n = 2

For a typical non-integrable J :
• All J-holomorphic maps f : (open subset of M) - C are constant
• All J-holomorphic maps f : (open subset of Cn) - M have rank f ′ ≤ 1

There are many J-holomorphic maps f : ∆ - M (this is very important in symplectic
geometry).

Let M be a real hypersurface with defining function ρ and let X be a vector field on a
neighborhood of M .

X is tangent to M ⇔ Xρ ≡ 0 on M ⇔ Xf ≡ 0 on M,∀f = 0 on M

X,Y tangent to M ⇒ [X,Y ]f = XY f−Y Xf = 0 on M, ∀f = 0 on M ⇒ [X,Y ] tangent to M
This is valid for M of any dimension.

Now suppose that M is a CR-submanifold of Cn, HpM = TpM ∩ JTpM has constant
dimension.
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Proposition 0.190. Lp : HpM ×HpM - TpCn/TpM . If X(q), Y (q) ∈ HqM,∀q ∈ M ,
then Lp(X(p), Y (p)) = −J [X, JY ](p) is a well-defined symmetric Hermitian form.

Proof.

Lp(JX(p), JY (p)) = −J [JX,−Y ](p) = −J [Y, JX] = Lp(Y (p), X(p))

Lp(Y (p), X(p)) = J [JX, Y ](p) = (−J [X, JY ]−[X,Y ]+[JX, JY ])(p) = −J [X, JY ](p) = Lp(X(p), Y (p))

If X,Y are tangent to M , then JX, JY are tangent to M and the bracket of any combination
of these is also tangent to M . We still need to show that Lp(X(p), Y (p)) depends only on
X(p), Y (p) (i.e. if X(p) = X̃(p), then Lp(X(p), Y (p)) = Lp(X̃(p), Y (p))). Equivalently,
X(p) = 0 ⇒ Lp(X(p), Y (p)) = 0 and X =

∑
fjXj , fj(p) = 0. It suffices to show that

Lp(fX(p), Y (p)) = f(p)Lp(X(p), Y (p)).

Lp(fX, Y ) = J [fX, JY ]

= −J(f [X,JY ] + (JY f)X)

= −fJ [X, JY ]− (JY f)JX, JY f is tangent to M

f(p)Lp(X(p), Y (p))

�

Remarks:

(1) If M is a real hypersurface, then this definition agrees with the definition given
earlier.

Proof. First reduce to yn = |z2
1 |+ · · ·+ |z2

n−1|+ ( higher-order terms). Then use the
vector field: ∂

∂xj
− 2xj ∂

∂yn
+ ( higher-order terms ). �

(2) Suppose that S is a complex-submanifold of M . The vector fieldds tangent to S
are closed under [, ]⇒ Lp(X(p), Y (p)) = 0 for X(p), Y (p) ∈ TpS. If M is a strongly
pseudoconvex hypersurface, then M contains no (non-trivial) C-submanifolds.

(3) L = 0 onM ⇔ {vector fields with values in HpM are closed under the Lie bracket.}.
By the Frobenius theorem, this implies that M decomposes locally into disjoint com-
plex submanifolds St with TpSt = HpM . This is a foliation by C-submanifolds.
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Definition 0.191. An “abstract” CR-manifold is a manifold M equipped with a sub-
bundle HM ⊂ TM and linear maps Jp : HpM - HpM such that:

(1) J2 = −I
(2) If X,Y are HM -valued vector-fields, then:

[X,Y ]− [JX, JY ] is HM -valued and J([X,Y ]− [JX, JY ]) = [JX, Y ] + [X, JY ]

The Levi-form:

HpM ×HpM
fLp- TpM/HpM given by (X,Y ) 7→ [X, JY ], where X,Y are HM -valued

• If everything is Cω (i.e. real analytic), then M is locally equivalent to a CR-
submanifold of CN .

• If dimR M = dimR HM + 1 ≥ 7, L̃ > 0, C∞ then M is locally equivalent to a
CR-submanifold of CN .

• If dimR M = dimR HM + 1 = 3, L̃ > 0, C∞, then there is no CR-embedding.
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0.3. Zero-sets of Holomorphic Functions: If n = 1, if f is a holomorphic function that
is not identically zero, then near z0, f can be factored as: f(z) = (z − z0)nh(z), where h is
holomorphic and h(z0) 6= 0. In this case, “f has a zero of order n at z0.”
Now consider n > 1. Let f be holomorphic on a convex neighborhood of 0 ∈ Cn, f(0) = 0,
and f is not identically zero. Look at f along C-lines through 0:
Given a C-line L through 0, f has a zero of order: ordL(f) at 0 along L. Let m = ord(f) =
minL(ordL(f)).

Example 0.192. Let f(z1, z2) = z2
1 − z3

2 . Then ordz2−axis(f) = 3 and ordL(f) = 2 for all
other lines through 0. Therefore ord(f) = 2.

After a linear change of coordinates we may assume that m = ord(f) = ordzn−axis(f) (i.e.
f(0, . . . , 0, zn) has a zero of order m at zn = 0).
Special Case: If m = 1 and ∂f

∂xn
6= 0, then by the implicit function theorem {f = 0} is

local graph of a holomorphic function and {f = 0} is a C-submanifold of Cn. So we know
pretty much what happens when m = 1.
General Case: Assume m > 1. For a fixed z′ = (z1, . . . , zn−1) near 0, let hz′(zn) =
f(z′, zn). Pick ε > 0 such that h0 has m zeros in |zn| ≤ ε. By the argument principle,

#of zeros of hz′ inside |zn| = ε is
1

2πi

∫
|ζ|=ε

∂f
∂zn

(z′, ζ)
f(z′, ζ)

dζ

Holomorphic function of z′ near 0 is integer valued. Therefore hz′ has m zeros inside |zn| = ε
when z′ is near 0. Let these m zeros be given by: α1(z′), . . . , αm(z′).
More generally, if a(z) is holomorphic near 0, then

1
2πi

∫
|ζ|=ε

a(z′, ζ) ∂f∂zn (z′, ζ)
f(z′, ζ)

dζ =
m∑
j=1

a(z′jαj(z
′))

This is holomorphic for z′ near 0.

Suppose g(z) is holomorphic near 0. Let a(z) = log(1 − δg(z)), which is holomorphic near
z = 0 for δ small. Conclude:

m∑
j=1

log(1− δg(z′, αj(z′)) is holomorphic near z′ = 0 for small δ

Exponentiating, we see that:
m∏
j=1

(1− δg(z′, αj(z′)) =
m∑
j=0

cj(z′)δj is holomorphic near z′ = 0,

where cj(z′) =
1

2πi

∫
ζ=ε

m∏
j=1

(1− δg(z′, αj(z′))
∂ζ

ζj+1
, which is holomorphic near z′ = 0

In particular, c0(z′) = 1

c1(z′) = −
m∑
j=1

g(z′, αj(z′))

c2(z′) =
∑
j<k

g(z′, αj(z′))g(z′, αk(z′)), . . . ,

cm(z′) = (−1)m
m∏
j=1

g(z′, αj(z′))



46 Sara W. Lapan

Definition 0.193. The Weierstrass polynomial, W (z), for f at 0 is:

W (z) =
m∏
j=1

(zn − αj(z′)) = zmn + b1(z′)zm−1
n + · · ·+ bn(z′),

where all bj(z′) are holomorphic near z′ = 0, “bj = cj with g(z) = zn.”

Lecture 35. April 8, 2009

Some algebra:

(z−w1) . . . (z−wn) = zn−e1(w1, . . . , wn)zn−1+e2(w1, . . . , wn)zn−2−. . . (−1)nen(w1, . . . , wn),

where e1(w1, . . . , wn) =
∑
j

wj , . . . , en(w1, . . . , wn) =
∏
j

wj

∏
j<k

(wj − wk)2 = (−1)
n(n−1)

2 detA, where A is a matrix involving the e′js

Example 0.194. {z1 − z2
2 = 0} = {z1 = z2

2} = {z2 =
√
z1} is a 1-dimensional C-manifold.

Example 0.195. {z2
1 − z2

2 = 0} = {z2 = ±z1} is a union of two 1-dimensional C-manifolds.

Example 0.196. {z3
1−z2

2 = 0} = {z2 = z
3
2
1 } is not a finite union of 1-dimensional C-manifolds.

Given a function f which is holomorphic near 0 and f 6= 0, after a change in coordinates:

f(0, . . . , 0, zn) has m zeros in |zn| ≤ ε all at zn = 0

For z′ = (z1, . . . , zn−1) small, f(z′, zn) has m zeros given by α1(z′), . . . , αn(z′) in |zn| ≤ ε
(none on |zn| = ε),
Recall: if g is holomorphic near 0, then the elementary symmetric functions of g(z′, αj(z′))
are holomorphic near z′ = 0.

Let h(z) =
1

2πi

∫
|ζ|=ε

f(z′, ζ)
w(z′, ζ)

dζ

ζ − zn

This is holomorphic near z = 0 and f(z′,ζ)
w(z′,ζ) has no poles. Then h(z) = f(z′,zn)

w(z′,zn) , where this
makes sense. So that f(z) = W (z)h(z), where W is the Weierstrass polynomial and h is
holomorphic near 0. Near zero, f(0, zn) = zmn h(0, zn) and no more zeros can be pulled out,
so h(0) 6= 0.

Theorem 0.197 (Weierstrass Preparation). f(z) = W (z)h(z), where h is holomorphic near
0 and h(0) 6= 0.

Corollary 0.198. Zeros of f are not isolated.

Corollary 0.199. Suppose g is holomorphic near 0, f is a function vanishing near the
origin (as we assumed previously) and |g| has a local maximum at 0 along {f = 0}. Then
g is constant on {f = 0}.

Proof. Since |g| has a local max at 0 along {f = 0}, |
∑m
j=1 g(z′, αj(z′))| is holomorphic near

z′ = 0 and it has a local max at z′ = 0 (by the triangle inequality). Then
∑m
j=1 g(z′, αj(z′))

is constant near z′ = 0. Therefore g(z′, αj(z′)) = g(0). �

Corollary 0.200. Let f be holomorphic on Ω, f 6= 0, and let g be holomorphic and bounded
on Ω \ {f = 0}. Then g extends uniquely to a holomorphic function on Ω.
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Proof. Localize, reduce to f as above. For fixed z′, g(z′, zn) is a bounded holomorphic
function of zn with isolated (removable) singularities at αj(z′). By Cauchy’s theorem:

g(z′, zn) =
1

2πi

∫
|ζ|=ε

g(z′, ζ)
dζ

ζ − zn
,

which is a holomorphic function at z near 0. �

Theorem 0.201 (Rado’s). Given Ω
f- C continuous and f holomorphic on Ω\{f = 0},

then f is holomorphic on Ω.

Proof. Using Cauchy integrals as in the previous proof, it suffices to prove this on slices so
we can focus on the case when n = 1. The problem is local, so assume that Ω = ∆ ⊂ C,
f continuous on ∆ and |f | < 1 on ∆. Let E = {f = 0}. Let g be the continuous function
of ∆ which solves the Dirichlet problem: g harmonic on ∆ and g = f on b∆. Define ϕ for
ε > 0 as:

ϕ = Re(f − g) + ε log |f | this is harmonic on ∆ \ E and has “ negative boundary values”

By the maximum principle (since ϕ is negative near the boundary), ϕ ≤ 0 on ∆. Let ε→ 0,
then Re(f − g) ≤ 0 on ∆. Similarly, Re(f − g) ≥ 0, Im(f − g) ≤ 0, Im(f − g) ≥ 0⇒ f = g.
f is holomorphic on (∆ \ E) ∪ Int(E) (dense open subset of ∆), so f is holomorphic on
∆. �

Lecture 36. April 10, 2009

Example 0.202. (w2 − 21)2 = (w1 + w2)2 − 4w1w2 = e2
1 − 4e2 = −det

1 −e1 e2

2 −e1 0
0 2 −e1


Theorem 0.203 (Holomorphic Inverse Function Theorem, Version 2). Given Ω1,Ω2 ⊆ Cn

open and Ω1
f- Ω2 holomorphic bijection with continuous inverse, then f−1 is holomor-

phic.

Proof. Assume that Ω1,Ω2 are connected, bounded and det f ′ = 0. Then (by Sard’s Theo-
rem) So det(f ′) is not zero. Let g(w) = det(f ′(f−1(w)) on Ω2. Then g is continuous on Ω2

and g is holomorphic on Ω2 \{g = 0} (by the holomorphic inverse function theorem, version
1). By Rado’s theorem, g is holomorphic on Ω2. (f−1)k (i.e. the k-th component of f−1)
is a bounded, holomorphic function on Ω2 \ {g = 0}. The removable singularity result from
last lecture implies that f−1 is holomorphic on Ω2. �

Remark 0.204. The assumption that f−1 is continuous is unnecessary, however without this
assumption the proof is a bit harder. See Rudin’s Function Theory in the Unit Ball.

Weierstrass Preparation Theorem
f holomorphic near 0 but not identically zero, then after a linear change of coordinates:

f(z) =
m∏
j=1

(zn − αj(z′)) · h(z) = W (z) · h(z), in ||z′|| < ε, ||zn|| < ε

h(z) is a non-vanishing, holomorphic function and W (z) is the Weierstrass polynomial and
its coefficients are holomorphic for ||z′|| < ε with all αj(0) = 0. Let k be the maximum
number of distinct roots.

Suppose m = 5, n = 2. Then there will be one triple root, which varies holomorphically in
z′ and one double root which varies holomorphically with z′. In general, this shows that:

U ≡ {z′ | ||z′|| < ε,W (z′, zn) has k distinct roots} 6= ∅
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is an open subset of ||z′|| < ε. Let

δ(z′) =

{
discriminant of distinct roots for z′ ∈ U

0 for z′ /∈ U

δ is continuous on ||z′|| < ε and holomorphic on U = {||z′|| < ε} \ {δ(z′) = 0}. By Rado’s
theorem, δ is a holomorphic function on ||z′|| < ε. {f(z) = 0} \ {f(z) = 0, δ(z′) = 0} is
an (n−1)-dimensional C-submanifold and {f(z) = 0, δ(z′) = 0} is a small “exceptional” set.

Example 0.205. When n = 2: the set of “exceptional” points is (locally) finite and (globally)
a countable discrete set. So that {f(z) = 0} \ (finite set) is a 1-dimensional C-manifold.
When n > 2: f is holomorphic on Ω ⊆ Cn is a connected open set and f is not identically
zero, then {f = 0} = Xn−1 ∪ Xn−2 ∪ · · · ∪ X0, where Xj is a closed, j-dimensional C-
submanifold of Ω \ (X0 ∪ · · · ∪Xj−1).

Definition 0.206. An analytic subset X of Ω is a closed subset locally described as
{f1(z) = · · · = fk(z) = 0}.

This gives the same stratification result.

Remark 0.207. Some good references are:
Chirka’s, Complex Analytic Sets
Fritzche’s and Grauert’s, From Holomorphic Functions to . . . (chapter III).

Recall: A function Ω
u- R which is C2 is:

plurisubharmonic⇔
∑
j,k

uj,kajak ≥ 0 on Ω,∀a ∈ Cn

⇔
∫

Ω

∑
j,k

uj,kajakϕ ≥ 0,∀a ∈ Cn, ϕ ∈ C∞0 (Ω), ϕ ≥ 0

⇔ †
∫

Ω

u

(∑
ajakϕj,k

)
≥ 0, a ∈ Cn, ϕ ∈ C∞0 (Ω), ϕ ≥ 0

The al is a constant and uj,kl is the derivative of u.
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Theorem 0.208. Let Ω ⊂ Cn be an open connected set. If u ∈ L1
loc.(Ω) satisfying †, then

∃!v : Ω - R ∪ {−∞} such that:
(1) u = v almost everywhere
(2) v satisfies the sub-averaging property

(i.e. v(α(0)) ≤ avgθv(α(eiθ)),∀C-affine maps ∆
α- Ω)

(3) v(z) ≥ lim supζ→z v(ζ) (i.e. v is “upper semi-continuous”)
(4) v 6= −∞

Ω
v- R ∪ {−∞} is plurisubharmonic⇔Def. v satisfies conditions 2-4 in the previous theorem

⇒ v satisfies the assumptions of the previous theorem

Remark 0.209. A good reference is Hormander’s monograph.

Example 0.210. If f is holomorphic on Ω, then log |f | is plurisubharmonic on Ω.
To show this, it suffices to check that if f is holomorphic on a neighborhood of ∆ ⊂ C, then
log |f(0)| ≤ avgθ log |f(eiθ)|.
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Let z1, . . . , zm be the zeros of f in ∆. Then f(z) =
(∏m

j=1
z−zj
1−zjz

)
eg(z) ≡ B(z)eg(z) on ∆.

g(z) is holomorphic on ∆ and B(z) is a Blashcke product so |B(z)| = 1 on b∆.

log |f(0)| = log |B(0)|+ log |eg(0)| = 0 + |Re(g(0))| ≤ avgθRe(g(eiθ)) = avgθ log |f(eiθ)|

Example 0.211. Suppose f1, . . . , fk are holomorphic on Ω. Then log(|f1|2 + · · · + |fk|2) is
plurisubharmonic on Ω. This follows from the previous example and an example from the
lecture on March 29.

Example 0.212. Let v(z) =
∑
n>0

log |z− 1
n |

n2 is subharmonic on C (recall: subharmonic is
plurisubharmonic when n = 1). Then v( 1

n ) = −∞ and v(0) > −∞, so v is not “continuous
in the generalized sense” (i.e. including −∞).

Facts:

(1) Let v1, v2, . . . be plurisubharmonic on Ω and v1 ≥ v2 ≥ . . . , then lim vj is either
plurisubharmonic or −∞.

(2) v is plurisubharmonic ⇔ locally ∃ smooth plurisubharmonic functions satisfying
v1 ≥ v2 ≥ . . . and such that vj → v. (To show this, define v to be the pointwise
limit of the convolutions of vj.)

Theorem 0.213. If Ω is a pseudoconvex domain, then Ω has a C∞ strongly plurisubhar-
monic exhaustion function, ρ.

Proof. Since Ω is pseudoconvex, we have a continuous plurisubharmonic exhaustion function
ψ for Ω. Let ψj ∈ C∞(Ω) such that {ψj is strongly plurisubharmonic and |ψj − ψ| < 1

10}
on {ψ ≤ j}. How can we find such a ψj? Let

ψj(z) = δ||z||2 +
(
convolution-approximation of ψ · χ{ψ≤j+1}

)
Pick η ∈ C∞(R) such that η = 0 on (∞, 0) and η is strictly increasing and strictly convex
on (0,∞). Set

ρ = ρ0 +
∑

cjη ◦ (ψj + 2− j),

where cj > 0 and η ◦ (ψj + 2 − j) is plurisubharmonic for ψ(z) ≤ j. In fact, ρ is strongly
plurisubharmonic for j − 1 ≤ ψ(z) ≤ j and vanishes for j ≥ ψ(z) + 3. On a neighborhood
of {k − 1 ≤ ψ(z) ≤ k} we have j ≤ k − 1 no control, j = k strongly plurisubharmonic and
positive, j ≥ k + 1 plurisubharmonic, and j ≥ k + 3 identically zero. Choose ck > 0 large
enough so that ρ is strongly plurisubharmonic and ρ ≥ ψ on {k − 1 < ψ(z) ≤ k}. �

Corollary 0.214. If Ω is a pseudoconvex domain, then there exist smooth, bounded, strongly
pseudoconvex domains Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ω such that every compact K ⊂ Ω is contained in
some Ωj.

Proof Of Corollary. Let Ωj = {z ∈ Ω | ρ(z) < νj}, where ρ is the exhaustion function of
Ω given by the previous theorem and ν1 < ν2 < · · · → ∞ where each vj is not a critical
value. �
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Definition 0.215. Ω ⊂ Cn open is circular if eiθΩ = Ω,∀θ ∈ R.

Definition 0.216. Ω ⊂ Cn open is complete circular if λΩ ⊂ Ω,∀λ ∈ ∆.

If f is holomorphic on a complete circular set Ω and f ∈ L1(Ω), then∫ 2π

0

∫
Ω

f(eiθz)dv(z)dθ =
∫

Ω

∫ 2π

0

f(eiθz)dθdv(z).
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∫ 2π

0

∫
Ω
f(eiθz)dv(z)dθ = 2π

∫
Ω
fdv and by the Mean Value Theorem,

∫
Ω

∫ 2π

0
f(eiθz)dθdv(z) =

2πf(0)vol(Ω). Therefore

f(0) =
1

vol(Ω)

∫
Ω

fdV

Assume p ≥ 1. Then by Holder’s inequality,

|f(0)| ≤ ||f ||p||1||q
vol(Ω)

=
||f ||p

(vol(Ω))1− 1
q

=
||f ||p

(vol(Ω))
1
p

Corollary 0.217. Let f be holomorphic on Ω, then

|f(z)| ≤ cn
||f ||p

(dist(z, bΩ))
2n
p

and ||f ||L∞(K) ≤ cK,p||f ||Lp(Ω),∀K ⊂ Ω compact

Corollary 0.218. Let {fj} be a sequence of holomorphic functions on Ω with ||fj ||p bounded
∀j. Then there exists a subsequence convergent almost uniformly to a holomorphic function
f on Ω.

Suppose f =
∑
fj(z)dzj is a (0,1)-form. What is the “size” of f at z0?

An obvious choice would be:
√∑

|fj(z0)|2, but this does not transform well under a change
in coordinates. Instead, use a strongly plurisubharmonic function ψ on Ω. For v ∈ Tz0Cn,
let

||v||ψ,z0 ≡ ψ′′C(z0, v) =
∑

ψj,k(z0)vjvk = ∂∂ψ(v, Jv).

||f ||ψ,z0 =Def. max{|f · v| | ||v||ψ,z0 = 1} =
√∑

ψj,k(z0)fj(z0)fk(z0),

where ψj,k = (ψj,k)−1.

Exercise 0.219. Let f be a (0,1)-form on Ω2 and Ω
ϕ- Ω2

ψ- R, where ϕ is biholo-
morphic and ψ is strongly plurisubharmonic, then ||f ||ψ ◦ ϕ = ||ϕ∗f ||ψ◦ϕ.

Theorem 0.220 (Hormander’s, V.1). Given:
• a strongly plurisubharmonic function ψ on a pseudoconvex domain Ω,
• a (0,1)-form f on Ω with ∂f = 0, and
•
∫

Ω
||f ||2ψe−ψdV <∞,

then one can solve ∂u = f and
∫

Ω
|u|2e−ψdV ≤

∫
Ω
||f ||2ψe−ψdV .

Theorem 0.221 (Hormanders, V.2). Given:
• a strongly plurisubharmonic function ψ on a pseudoconvex domain Ω,
• ρ plurisubharmonic exhaustion function on Ω,
• f a ∂-closed (0,1)-form on Ω, and
•
∫
||f ||2ψe−θdV <∞, where θ = ψ + ρ,

then one can solve ∂u = f and
∫

Ω
|u|2e−θdV ≤

∫
Ω
||f ||2ψe−θdV .

Corollary 0.222. Can always solve ∂u = f for any ∂-closed (0,1)-form on a pseudoconvex
domain.

Corollary 0.223 (Oka-Weil Approximation Theorem). If K = ̂KPLSH(Ω) ⊂ Ω ⊂ Cn, where
K is compact and Ω is a pseudoconvex domain, and h is holomorphic on a neighborhood of
K. Then h is a K-uniform limit of functions holomorphic on Ω (i.e. there is a sequence of
functions on Ω which converge uniformly to h on K).

Corollary 0.224. Let K be a compact subset of a pseudoconvex domain Ω, then ̂KHolo(Ω) =
̂KPLSH(Ω).
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Corollary 0.225. Ω is a pseudoconvex domain⇔ Ω is a plurisubharmonic convex hull⇒ Ω
is holomorphic convex hull ⇔Def. Ω is a domain of holomorphy.

Remark 0.226. A good online monograph for Hormander’s theorem is by Berndtsson. This
is what we would do next if the semester were longer.

Lecture 39. April 17, 2009

Lemma 0.227. If K ⊂ Ω ⊂ Cn, where K compact and Ω open, and z0 ∈ Ω, then
̂K ∪ {z0}PLSH(Ω) = K̂PLSH(Ω) ∪ {z0}.

Proof.
(⊇) Trivial
(⊆) w /∈ K̂∪{z0} ⇒ ∃u plurisubharmonic on Ω such that u(w) > maxKu. Let v = max{u+
ε log ||z − z0||,−M} for some fixed M . This is plurisubharmonic since if f = (f1, . . . , fl) is
holomorphic ⇒ log ||f || plurisubharmonic. For ε small, v(w) > maxK∪{z0} �

Lemma 0.228. Given K = K̂PLSH(Ω) ⊂ U ⊂open Ω ⊂ Cn, where Ω is pseudoconvex, then
∃ρ plurisubharmonic on Ω with ρ < 0 on K, ρ < 1 on Ω \ u.

Proof. For z ∈ Ω \K, ∃ψz continuous plurisubharmonic on Ω with ψz < 0 on K and ψz > 1
on a neighborhood of uz of z. Also, ∃ϕ plurisubharmonic exhaustion function on Ω, ϕ < 0
on K. {ϕ ≤ 2} \ U is compact so ∃Uz1 , . . . , Uzm , where each Uzj is associated to a point zj
and together they cover {ϕ ≤ 2} \ U . ρ = max{ψz1 , . . . , ψzm , ϕ} works. �

Oka-Weil Approxiimation Theorem:
If K = K̂PLSH(Ω) ⊂ Ω ⊂ Cn, where Ω is pseudoconvex, then every function holomorphic
on a neighborhood of K is K-uniform limit of functions holomorphic on Ω.

Definition 0.229. K is Runge in Ω if every function holomorphic on a neighborhood of
K is K-uniform limit of functions holomorphic on Ω.

Proof. (Assuming Hormander) Choose η ∈ C∞0 (Ω), η = h on a bounded neighborhood U of
K. Approximating f = η+u, need ∂u = −∂η for u small on K. Use Hormander (V.2) with
ψ = ||z||2 and ρ = Nρ (by Hormander and the previous lemma). Solve ∂u = −∂η with

e−maxU ||z||
2
∫
{ρ<0}

|u|2dV
∫

Ω

|u|2e−||z||
2−NρdV ≤

∫
Ω

||∂η||2Eucl.e−||z||
2−NρdV

N→∞- 0

By the solid mean value theorem and Cauchy-L2 estimates,

||u||2L∞(K) = constant ≤ e−maxU ||z||
2
∫
{ρ<0}

|u|2dV.

�

Theorem 0.230. K = K̂PLSH(Ω) ⊂ Ω pseudconvex domain, then K = K̂Holo(Ω).

Proof.
(⊂) Trivial
(⊃) Consider z0 /∈ K. Then ̂K ∪ {z0}PLSH = K̂PLSH ∪ {z0} = K ∪ {z0}. Pick h ={

1 near z0

0 near K
. By Oka-Weil, h is a (K ∪ {z0})-uniform limit of functions holomorphic on Ω.

Therefore z0 /∈ K̂Holo(Ω). �

Corollary 0.231. Let K be a compact subset of a pseudoconvex domain Ω. Then K̂PLSH =
K̂Holo.
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Proof. K̂PLSH ⊂always K̂Holo ⊂since Ω
pseudoconvex

̂(K̂PLSH)Holo = K̂PLSH . �

Lecture 40. April 20, 2009

Outline of Proof for Hormander’s Theorem
Case: n = 1, Version 1
For f ∈ C(Ω), u ∈ C1(Ω):

∂u

∂z
= f ⇔

∫
Ω

∂u

∂z
α =

∫
Ω

fα, ∀α ∈ C∞0 (Ω)

⇔ −
∫

Ω

u
∂α

∂z
=
∫

Ω

fα, ∀α ∈ C∞0 †

If u, f ∈ L1
loc(Ω) and † holds, say ∂u = f weakly (or “in the sense of distributions”).

Proposition 0.232. ∂u = 0 weakly ⇒ u agrees almost everywhere with a holomorphic
function.

Outline of Proof. On a slightly smaller set, we get a convolution approximation by uj ∈
C∞(Ω) with uj → u under the L1-norm. By Fubini’s theorem, ∂uj = 0 weakly, so uj are
holomorphic. Therefore uj → u almost uniformly, and so u is holomorphic on Ω. �

Corollary 0.233. Suppose f is C1 and ∂u = f weakly, then u is equivalent to a C1 function
and ∂u = f classically.

Proof. (Outline) On a slightly smaller set, use the Cauchy transform to get v ∈ C1 with
∂v = f classically.

∂(u− v) = 0 weakly ⇒ u− v holomorphic ⇒ u = v + (u− v) ∈ C1, ∂u = ∂v = f

�

Goal: Solve ∂u
∂z = f with

∫
|u|2e−ϕ ≤

∫ |f |2
ϕzz

e−ϕ.
∃u ∈ L2(e−ϕ) = {v |

∫
|v|2e−ϕ <∞} such that ∂u = f weakly.

Equivalently, ∃u ∈ L2(e−ϕ) such that −
∫
u∂α∂z =

∫
fα, ∀α ∈ C∞0 .

Equivalently, (replacing α by αe−ϕ) ∃u ∈ L2(e−ϕ) such that −
∫
u(eϕ ∂

∂z (e−ϕα))e−ϕ =∫
fαe−ϕ,∀α ∈ C∞0 (Ω).
−
∫
u(eϕ ∂

∂z (e−ϕα))e−ϕ =

−
∫
ueϕ ∂

∂z (e−ϕα)e−ϕ ≡
∫
u∂∗ϕαe−ϕ

Notes

(1)
∫
u∂∗ϕαe−ϕ =

∫
(∂u)ue−ϕ

(2) ∂∗ϕα = 0, α ∈ C∞0 ⇒ e−ϕα holomorphic ⇒ α = 0.
Recall: Hahn-Banach and Riesz
E ⊂ H is a subspace of a Hilbert space. Let E

T- C be linear. Then ∃u ∈ H such that
Tv =< v, u >⇔ ∃C such that |Tv| ≤ C||v||,∀v ∈ E.
Apply with E = ∂∗ϕ(C∞0 ) and T = (∂∗ϕα) =

∫
fαe−ϕ.

Applying these result to our previous work we have:

−
∫
ueϕ ∂

∂z (e−ϕα)e−ϕ ≡
∫
u∂∗ϕαe−ϕ ⇔ ∃C such that |

∫
fαe−ϕ| ≤ C

√∫
|∂∗ϕα|2e−ϕ

Want ∀f ∈ L2( e
−ϕ

ϕzz
),∃u such that

∂u = f, ||u||L2(e−ϕ) ≤ ||f ||L2( e
−ϕ
ϕzz

)
⇔

∀f ∈ L2(
e−ϕ

ϕzz
), |
∫
fαe−ϕ| ≤ ||f ||

L2( e
−ϕ
ϕzz

)
⇔
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∀α ∈ C∞0 ,

∫
ϕzz|α|2e−ϕ ≤ ||∂∗ϕα||L2(e−ϕ)

So our previous goal, can be restated (from the above work) as:

∀α ∈ C∞0 ,

∫
ϕzz|α|2e−ϕ ≤ ||∂∗ϕα||L2(e−ϕ)∫

|∂∗ϕα|2e−ϕ =
∫

(∂∂∗ϕα)αe−ϕ

=
∫

(∂∗∂α)αe−ϕ +
∫
ϕzz|α|2e−ϕ

=
∫
|αα|2e−ϕ +

∫
ϕzz|α|e−ϕ

≥
∫
ϕzz|α|e−ϕ

In the second line we used: ∂∗ = −∂ + ∂ϕ
∂z . We also used:

∫
∂∗∂ααe−ϕ =

∫
∂α∂αe−ϕ

Lecture 41. April 20, 2009

What happens to the proof of Hormander’s theorem when n ≥ 2?
One approach:

• Work on strongly pseudoconvex domains Ω with smooth boundary (get general
pseudoconvex Ω by passing to a limit)

• We have fewer “f” ’s than when n = 1 - need ∂f = 0
• This leads to a bigger class of test functions α:

α,C∞ vector fields on Ω

α(p) ∈ Hp(bΩ),∀p ∈ bΩ
• Get a boundary term when integrating by parts in the previous calculation. In

the case where n = 1, this was not a problems since the functions vanished on the
boundary.

• The boundary term is:
∫
bΩ

L(α)

unit norme−ϕdS ≥ 0 (in several variables we need to
assume that Ω is pseudoconvex)

Related Results:

Theorem 0.234 (Ohsawa-Takegoshi Ext. Theorem (1987)). Given :
• a pseudoconvex domain inside the unit ball, i.e. Ω ⊂ Bn,
• a plurisubharmonic function ϕ on Ω,
• E ⊂ Cn a C-affine subspace,
• f holomorphic on Ω ∩ E = ∅
•
∫

Ω∩E |f |
2e−ϕ <∞

Then ∃F holomorphic on Ω such that

F |Ω∩E = f and∫
Ω

|F |2e−ϕ ≤ (4π)n−dim.E
∫

Ω∩E
|f |2e−ϕ

For the following assume that ϕ plurisubharmonic on the pseudconvex domain Ω ⊂ Bn. Let

Km(z) = sup{|f(z)|2 | f ∈ Holo(Ω),
∫

Ω

|f |2e−mϕ ≤ 1}

The “sup” can be replaced by “max.”
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Corollary 0.235. (Km(z))
1
m

m→∞- eϕ(z) almost uniformly if ϕ is continuous.

Exercise 0.236. Km(z) =
∑
j |fj,m(z)|2, where {fj,m}∞j=1 is an orthonormal basis for

L2(Ω, e−mϕ) ∩Holo(Ω) (weighted Bergman space).

Corollary 0.237. ϕ ≈ log(|f1,m|2+|f2,m|2+... )
m (approximate this by a finite sum).

Remark 0.238. Let K(z, w) =
∑
j fj(z)fj(w). Then

∫
Ω
h(w)K(z, w)e−mϕ = h(z), where h

is holomorphic. This can be used to help solve the previous exercise.

Another important family of L2 spaces in complex analysis:
Let Ω ⊂ Cn be bounded with smooth (or “not too bad”) boundary.
Hardy Space: H(bΩ) = L2(bΩ) ∩ CR(bΩ).
What measure is used for L2 here?
When n = 1, arc length is a good measure to use.
When n ≥ 2, most people use surface area in Euclidean space. However, this is not a
particularly good choice because a change in coordinates has drastic effects on the integral.
Other choices are more appropriate for specific problems.

Given g ∈ H(bΩ) we get an entire function Lg via the Laplace transform:

Lg(z) =
∫
w∈bΩ

ezwg(w)dσw

(Part of) Paley-Weiner Theory: identify L(H(bΩ)) as a weighted L2-space of entire func-
tions. Reasonable versions are avaliable for str. C-linearly convex Ω (with smooth bound-
ary). But they can be improved and extended. Using this (and other ideas) one can reduce
the study of constant coefficient linear PDE on Ω to:

• multiplication of entire functions by polynomials
• dual C-linear convex domains

***These topics form part of the agenda for Math 703.***
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