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1. Introduction to Varieties:

1.1. Affine Varieties.

Lecture 1. Affine Algebraic Sets

Definition 1.1.1. Let k be a field. Affine n-space, Ank , is a vector space of dimension n
over k.

Our goal is to understand several types of algebraic varieties. Informally, an algebraic variety
is a geometric object that looks locally like the zero set of a collection of polynomials.

Definition 1.1.2. An affine algebraic set is the common zero set, in Ank , of a collection
of polynomials {Fλ}λ∈Λ, where Fλ ∈ k[x1, ..., xn] and k is any field. This is denoted by
V({Fλ}λ∈Λ).

Examples:
(1) V(x2 + y2 + z2 − 1) ⊂ C3

(2) V(y − x2) ⊂ A2
C

(3) {All n× n-matrices of determinant 1} ⊂ An2

Algebra Blackbox:

Definition 1.1.3. A ring is Noetherian if every ideal is finitely generated

Theorem 1.1.4. Hilbert Basis If a ring R is Noetherian, then the polynomial ring over
R in one variable, R[x], is Noetherian.

Remark 1.1.5. By finite induction on indeterminates, if R is a Noetherian ring, then
R[x1, . . . , xn] is also Noetherian.

An immediate consequence of this algebraic result is:

Proposition 1.1.6. Every affine algebraic set is the vanishing set of a finite collection of
polynomials.

Proof. Let V ≡ V({Fλ}λ∈Λ) ⊂ Ank . Let I = ({Fλ}λ∈Λ) ⊂ k[x1, . . . , xn] so that V =
V(I). k is Noetherian, so, by the Hilbert Basis theorem, k[x1, . . . , xn] is Noetherian.
Therefore I is generated by finitely many polynomials. �

Lecture 2. Hilbert Nulltellensatz

The topology given to affine space is the Zariski-Topology. Instead of defining the topology
in terms of open sets, it is defined in terms of closed sets. In particular, affine algebraic
sets define the closed sets of the Zariski topology. The closed sets in the Zariski topology,
excluding the space itself, are comparatively small since they are the zeros of finitely many
polynomials.

Questions:
(1) Is an arbitrary union of affine algebraic subsets of An an affine algebraic set?

No. In A1 any closed set is given by an ideal. But every ideal is principal, so it is
generated by one polynomial. Since a polynomial (non-zero) in one variable only
has finitely many roots, all the closed sets in A1 are either empty, finite, or all of
A1.

(2) How does the Zariski-Topology (for closed sets) on A2 look?
Curves in two variables, points, finite unions thereof, ∅, and A2 are all the closed
sets.

(3) Is the Zariski-topology Hausdorff? No.
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Algebra Blackbox:

Definition 1.1.7. The radical of I is defined as: RadI ≡ {f ∈ R | fn ∈ I for some n}

Let I ⊆ R be an ideal of the commutative ring with identity, R.

{(Radical) Ideals of R/I} ←→ { (radical) ideals in R containing I}

One can think of affine algebraic sets as being given by an ideal of polynomials.
Let {Fλ}λ∈Λ ⊆ k[x1, . . . , xn], then V({Fλ}λ∈Λ) = V(I) where I is the ideal generated by
{Fλ}λ∈Λ.

Proposition 1.1.8. V(I) = V(RadI)

Proof. I ⊆ RadI ⇒ V(I) ⊇ V(RadI). If p ∈ V(I) we want to show that f ∈ RadI ⇒
f(p) = 0. But for some n ∈ N, fn ∈ I ⇒ fn(p) = 0⇒ f(p) = 0⇒ p ∈ V(RadI). �

Fix an affine algebraic set V(I) = V ⊆ An (defined over some field k).

Definition 1.1.9. A regular function g : V → k is a function that agrees with the
restriction of a polynomial.

Definition 1.1.10. The coordinate ring of V , k[V ], is the set of regular functions in V ,
considered with the obvious pointwise addition and multiplication of functions.

Example 1.1.11. Let V = V(xy−1) ⊆ k2. Then 1
y ∈ k[V ] is a regular function, since xy = 1

on V implies that 1
y = x in V .

Remark 1.1.12. There is a natural ring homomorphism: k[x1, . . . , xn]
ϕ- k[V ] given by

restriction, that is surjective and whose kernel is the ideal I(V ) = {G ∈ k[x1, . . . , xn] |G(p) =
0 ∀ p ∈ V }. Therefore, k[V ] ∼= k[x1, . . . , xn]/I(V ).

Properties of k[V ]:

(1) It is a commutative, finitely generated k-algebra ⇒ it is Noetherian
(2) It does not contain any non-zero nilpotent element (i.e. it is reduced). Equivalently,

I(V ) is radical.

Let I = collection of all radical ideals in k[x1, . . . , xn].
Let V = collection of all algebraic subsets of An.

Remark 1.1.13. It is an easy fact that V(I(V )) = V , where V is a variety.

Proof. V = V(I) for some ideal I ⇒ I ⊆ I(V )⇒ V ⊇ V(I(V )). If p ∈ V and g ∈ I(V ),
then g(p) = 0, so p ∈ V(I(V ))⇒ V ⊆ V(I(V )). �

Theorem 1.1.14. (Hilbert’s Nullstellensatz) If k is algebraically closed and I ⊆ k[x1, . . . , xn]
is an ideal, then I(V(I)) =

√
I.

Therefore there is a one-to-one order-reversing correspondence between affine algebraic sets
in An and radical ideals in a polynomial ring when k = k.

Geometric �V()
Algebraic

An I()- (0)
V I(V ) ⊇ (0)

W ⊆ V I(W ) ⊇ I(V )
p = (λ1, . . . , λn) (x1 − λ1, . . . , xn − λn) ⊇ I(W )

Lecture 3. Developing Affine Varieties
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Algebra Blackbox:

Definition 1.1.15. Let R be a ring. An ideal P ⊆ R is prime if xy ∈ P ⇒ x ∈ P or
y ∈ P . Equivalently, P is prime ⇔ R/P is a domain.

In a Noetherian ring, R, if an ideal I ⊆ R is radical then it has a unique decomposition (up
to order) into prime ideals containing it. In other words, I = P1 ∩ . . . ∩ Pt for some prime
ideals Pi.

Definition 1.1.16. A topological space V is irreducible if whenever V = V1 ∪ V2, where
V1, V2 ⊂ V closed, then V = V1 or V = V2.

Proposition 1.1.17. V(I ∩ J) = V(I) ∪ V(J).

Proposition 1.1.18. Fix an affine algebraic set V ⊆ An.
V is irreducible ⇔ I(V ) ⊆ k[x1, . . . , xn] is prime ⇔ k[V ] is a domain.

Proof. The second ⇔ is clear since k[V ] ∼= k[x1, . . . , xn]/I(V ), so it remains to prove
the first one. (⇒) Assume that V is reducible. Then V = V1 ∪ V2 for some Vi  V .
Then I(Vi) ! I(V ) and I(V ) = I(V1)∩I(V2). Take fi ∈ I(Vi)−I(V ), f1f2 ∈ I(V )⇒ I(V )
is not prime.
(⇐) Take f1f2 ∈ I(V ) ≡ I. We want to show that for f1 or f2 is in I(V ). Assume not.
Let Vi ≡ V(I, fi)  V . Clearly V ⊇ V1 ∪ V2. Take any p ∈ V − V1, so f1(p) 6= 0.
Now f1f2 ∈ I so f1f2(p) = 0 and I is prime ⇒ f2(p) = 0. Therefore p ∈ V2 and so
V = V1 ∪ V2 ⇒ V is reducible. �

Theorem 1.1.19. An affine algebraic set V has a unique decomposition (up to order) as a
finite union of irreducible components.

Proof. V = V(I(V )) = V(P1 ∩ . . . ∩ Pt) = V(P1) ∪ . . . ∪ V(Pt), where the Pi are prime
ideals. �

Fix V ⊆ An,W ⊆ Am affine algebraic sets.

Definition 1.1.20. A morphism (or regular map) between affine algebraic sets V
f- W

is a mapping (that is the restriction of) a polynomial map on the ambient affine spaces.

Example 1.1.21. If V
g- W such that g = F |V , where F = (F1, . . . , Fm) and Fi ∈

k[x1, . . . , xn], then g is a morphism.

Definition 1.1.22. An isomorphism of affine algebraic sets are morphism V
f-�
g

W

such that their composition is the identity, f ◦ g = 1, g ◦ f = 1.

Crucial Concept:
Any regular map V

f- W induces a natural k-algebra homomorphism k[W ]
f∗- k[V ]

called the pull-back, where g 7→ g ◦ f . This is functorial: If V
f- W

g- W ′, then
k[V ] �

f∗

k[W ] �
g∗

k[W ′].

Lecture 4. Rational Functions

Algebra Blackbox:
Every domain R embeds into a (unique smallest) field Q(R) = { fg | g 6= 0, f, g ∈ R}.

In fancy language, there is a contravariant functor between the category of affine algebraic
sets and finitely generated reduced k-algebras. Assuming that k = k, this functor defines
an anti-equivalence of categories.

Theorem 1.1.23. Fix an algebraically closed field, k:



Sara W. Lapan 5

(1) Every finitely generated, reduced algebra over k is (isomorphic to) the coordinate ring
of some affine algebraic set, which is determined uniquely (up to isomorphism).

(2) Every k-algebra homomorphism between finitely generated reduced k-algebras is the
pull-back of the corresponding regular map of the corresponding affine algebraic sets.

Proof. (1) Fix R, a finitely generated reduced k-algebra. Fix a finite set of generators
y1, . . . , yn. This means that k[x1, . . . , xn] -- R sending xi → yi is a k-algebra
homomorphism. Let I be the kernel of this map. I is radical since k[x1, . . . , xn]/I ∼=
R. Let V = V(I) ⊆ An, k[V ] ∼= k[x1, . . . , xn]/I(V ). But I(V(I)) = I since k is
algebraically closed. The result follows.

(2) Let R = k[y1, . . . , ym]/J
ϕ- S = k[x1, . . . , xn]/I. Defining this k-algebra map

amounts to giving polynomials whose residue classes modulo I are the images of the
yi. So each yi 7→ Fi ∈ k[x1, . . . , xn]. Consider An F=(F1,...,Fm)- Am when restricted
to V , So V ≡ V(I)

f≡F |V- V(J) ≡ W . The coordinate ring of V (or (W ) is S (or
R). Since ϕ is well-defined, it must send J to I, so if g ∈ J, then g ◦ F ∈ I.
Claim: f is a regular map whose pull-back recovers ϕ. First of all, f(V ) ⊆ W :
∀p ∈ V, F (p) ∈W. That is we need that for any g ∈ J, g(F (p)) = g(F1, . . . , Fm)(p) =
0, but g ◦ F ∈ I, so F (V ) ⊆W .

�

Fix an irreducible affine algebraic set, V .

Definition 1.1.24. The function field of V (or the field of rational functions of V ) is the
quotient field k(V ) of k[V ].

Definition 1.1.25. A rational function ϕ is regular at p ∈ V if ∃f, g ∈ k[V ] such that
g(p) 6= 0 and ϕ = f

g .

Example 1.1.26. V = V(xz − yw) ⊆ A4, ϕ = x
y is regular at (1, 1, 1, 1) and (1, 1, 0, 0). Is it

regular at (0, 0, 1, 1)?
ϕ = x

y = 0
0 , but xz − yw = 0⇒ x

y = w
z = 1. So yes.

Definition 1.1.27. The locus of points where ϕ ∈ k(V ) is regular is the domain of
definition of ϕ.

Proposition 1.1.28. The domain of definition of ϕ ∈ k(V ) is a non-empty open subset of
V in the Zariski-topology.

Proof. Consider all possible representations, { fλgλ }λ∈Λ, of ϕ. Clearly ϕ is regular on
Uλ = V − V(gλ), which is open, and so the domain of definition is ∪λ∈ΛUλ. �

Proposition 1.1.29. The values of ϕ are uniquely determined everywhere on its domain
of definition by its values on any (non-empty) open set.

Remark 1.1.30. Let V be an irreducible variety. If ϕ,ϕ′ ∈ k(V ) and ϕ|W = ϕ′|W on some
non-empty W ⊆ V in the domain of definition of both functions, then their domains of
definition are equal as are they.

Sketch of Proof. Let ψ = ϕ− ϕ′. It suffices to show that ψ|W = 0⇒ ψ = 0 in k(V ). Take
any representative ψ = f

g , V = (V −W ) ∪V(f) (since W ⊆ V(f)) gives a decomposition of
V . It remains to show that V is not irreducible, which is a contradiction. �

Lecture 5. Introduction to Sheaf Theory

The following are definitions from Hartshorne’s “Algebraic Geometry:”
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Definition 1.1.31. Let X be a topological space. A presheaf, F , of abelian groups on X
consists of data:

• For every open subset U ⊆ X, an abelian group F(U), and
• For every inclusion V ⊆ U of open subsets of X, a morphism of abelian groups
ρUV : F(U) - F(V )

subject to the conditions:

(1) F(∅) = 0
(2) ρUU is the identity map F(U) - F(U), and
(3) If W ⊆ V ⊆ U are three open subsets, then ρUW = ρVW ◦ ρUV

Definition 1.1.32. A presheaf F on a topological space X is a sheaf if it satisfies the
following conditions:

(1) If U is an open set, {Vi} is an open covering of U , and if s ∈ F(U) is an element
such that s|Vi = 0∀i, then s = 0. (Note that this condition implies that s is unique)

(2) If U is an open set, {Vi} is an open covering of U , and if we have elements si ∈
F(Vi)∀i, with the property that for each i, j we have si|Vi∩Vj = sj |Vi∩Vj , then there
is an element s ∈ F(U) such that s|Vi = si∀i.

Definition 1.1.33. If F is a presheaf on X, and if P is a point of X, we define the stalk
Fp of F at P to be the direct limit of the groups F(U) for all open sets U containing P via
the restriction maps ρ.

Definition 1.1.34. If F and G are presheaves on X, a morphism of abelian groups ϕ(U) :
F(U) - G(U) for each open set U , such that whenever V ⊆ U is an inclusion, the
following diagram commutes:

F(U)
ϕ(U)- G(U)

F(V )

ρUV

? ϕ(V )- G(V )

ρ′UV

?

Fix V ⊆ An irreducible affine algebraic set of over k = k.

Definition 1.1.35. Take an open set U ⊆ V . The ring of regular functions on U is
the ring of all rationals functions that are regular on U . This is denoted by OV (U) = {ϕ ∈
k(V ) | ϕ is regular at each p ∈ U}.

OV (U) is a domain because it is a subring of a domain, k(V ). This is a more local definition
of the ring of regular functions than the previous definition.

Theorem 1.1.36. If U = V , then OV (U) = k[V ]

Proof. Clearly OV (U) ⊇ k[V ] since if f ∈ k[V ], then f
1 ∈ OV (U). Take ϕ ∈ k(V )

that is regular ∀p ∈ U = V (i.e. ϕ ∈ OV (U)). ∀p∃fp, gp ∈ k[V ], such that ϕ = fp
gp

where gp(p) 6= 0. Consider V({gp}p∈V ) = ∅ ⇒ I(V({gp}p∈V )) = (1). By Hilbert
Nullstellensatz, ∃h1, . . . ht ∈ k[V ] such that 1 = h1gp1 + . . . + htgpt (this comes from
the result that k[V ] ∼= k[x1, . . . , xn]/I(V )). ϕ = h1(gp1ϕ) + . . . + ht(gptϕ) = h1fp1 +
. . . htfpt ∈ k[V ], since by definition fp = gpϕ. Therefore OV (U) ⊆ k[V ]. �

OV maps open sets of V to k-algebras or rings. If W ⊆ U , then OV (U)
ν

restrict
- OV (W ).
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Definition 1.1.37. A presheaf of rings (or groups, etc), F , on a topological space X
is a contravariant functor from the category of open sets of X to the category of rings (or
groups, etc.).

We say that it is a sheaf if the elements of F(U) are like functions on U given by local
properties. More precisely, if U =

⋃
λ∈Λ Uλ is open and sλ ∈ (F )(Uλ) with sλ|Uλ∩Uλ′ then

there is a unique s ∈ F(U) that restricts to sλ on Uλ. This is the sheaf axiom.

Example 1.1.38. Smooth functions on differentiable manifolds, holomorphic functions (sheaf
of rings), and sections on a k-vector bundle (sheaf of modules). Non-example: integrable
functions on Rn form a presheaf but not a sheaf.

Remark 1.1.39. To every pre-sheaf there is a unique sheafification which makes it a sheaf.
For instance, constant functions form a pre-sheaf and the sheafification makes it into a sheaf
of locally constant functions.

Local Picture of Algebraic Geometry:
One can define an abstract algebraic variety over k = k to be a topological space, V , together
with a sheaf of k-algebras (from OV ) such that V has an open cover {Uλ}λ∈Λ where Uλ
is homeomorphic to an affine algebraic set and under this homeomorphism OV |Uλ becomes
the sheaf of regular functions on V . Note that one could also define a differentiable manifold
in this way.

1.2. Projective Space.

Lecture 6. Introduction to Projective Space

Algebra Blackbox:

Proposition 1.2.1. An ideal I ⊆ k[x1, . . . , xn] is homogeneous ⇔ I can be generated by
homogeneous elements ⇔ If f = Σni=1fi ∈ I where fi is a homogeneous polynomial of degree
i, then each fi ∈ I.

Furthermore, if I is homogeneous, then RadI is homogeneous and k[x1, . . . , xn]/I is graded.
Fix a field k (need not be algebraically closed) and a vector space V over k.

Definition 1.2.2. For any vector space V over k, the projective space of V , denoted
P(V ), is the set of all 1-dimensional subspaces of V . Alternatively one can write Pnk =
P(kn+1) to denote the set of lines through the origin in kn+1.

Example 1.2.3. P(C2): one usually thinks of this by fixing a reference line, for instance the
line z = 1. Then P(C2) is every 1-dimensional subspace that intersects the reference line
plus the one line that is parallel to the reference line. Equivalently, P(C2) = C ∪ {∞}.

Example 1.2.4. P2
R = P(R2) = R ∪ P1

R and more generally, Pnk = Ank ∪ P
n−1
k where Pn−1

k is
the stuff at infinity.

Goal: We want to think of Pn as something that looks locally like an algebraic variety An,
in fact, it is a natural compactification of An.

We can represent a point p ∈ Pnk = P(kn+1) by a choice of basis so that p = [x0 : . . . : xn].
We call the xi homogeneous coordinates. Caution: the xi are not well-defined functions on
Pn.
Pn = An t Pn−1 where An = {p | p = [x0 : . . . : xn], x0 6= 0} and Pn−1 = {p | p =
[0 : x1 : . . . : xn]}. We get a standard affine cover of Pn from An given by open sets
Ui = {p | p = [x0 : . . . : xn], xi 6= 0}.
Proposition 1.2.5. Let F ∈ k[x0, . . . , xn] (so F is not a function on Pn). If F is homoge-
neous of degree d, then F (λa0, . . . , λan) = λdF (a0, . . . , an)
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Definition 1.2.6. A projective algebraic set (projective variety) V ⊆ Pnk is the common
zero set of an arbitrary collection {Fλ}λ∈Λ of homogeneous polynomials in k[x0, . . . , xn], V =
V({Fλ}λ∈Λ) ⊆ Pnk .

Easy Facts:
(1) We can assume that {Fλ}λ∈Λ defining a projective algebraic set is finite.
(2) An arbitrary intersection of projective algebraic sets in Pn is also a projective alge-

braic set.
(3) If V,W are projective algebraic sets, then so is V ∪W .
(4) The sets of projective algebraic sets are the closed sets of a topology on Pn called

the Zariski-topology.

Definition 1.2.7. Given a projective algebraic variety V = V({Fλ}λ∈Λ) ⊆ Pnk , the affine
cone over V is the affine algebraic set in An+1 defined by the same polynomials.

Definition 1.2.8. The homogeneous coordinate ring V ⊆ Pn, k[V ] = k[x0, . . . , xn]/I(V ),
where I(V ) is the ideal generated by homogeneous polynomials vanishing on V .

Remark 1.2.9. Ṽ ⊆ An+1 affine cone of V ⊆ Pn, then k[V ] ∼= k[Ṽ ] (this isomorphism is
canonical).

Lecture 7. Introduction to Projective Space

Pn is covered by affine charts {Ui}i, where Ui = {[x0 : · · · : xn] | xi 6= 0} and is open
since Ui = Pn − V(xi). These sets form the standard affine cover of Pn and a point
[x0 : · · · : xn] ∈ Ui corresponds to
(x0
xi
, . . . , xnxi ) ∈ An where the ith component is removed.

Fix V = V(F1, . . . , Ft) ⊆ Pn where the Fi are homogeneous polynomials in x0, . . . , xn.
V is covered by open sets V ∩ Ui ⊆ Ui and each of these sets is an affine algebraic variety
in Ui. This concept is analogous to charts on manifolds.

Definition 1.2.10. If V ⊆ An is an affine algebraic set in An, then its projective closure
V is its Zariski-closure, in Pn, under the embedding: An ⊂ - Pn by (x1, . . . , xn) 7→ [1 : x1 :
· · · : xn].

Example 1.2.11. Let V = V(xy − 1) ⊆ A2 ⊆ P2,A2 3 (x, y) 7→ [x : y : 1] ∈ P2.
Then V = V ∪ {[1 : 0 : 0] ∪ [0 : 1 : 0]}, where these two points are identified at ∞. Can we
homogenize this? Does V(xy − z2) = V ? Well,

V(xy−z2)∩Uz = V and V(xy−z2)∩”stuff at ∞” = V(xy−z2)∩V(z) = {[1 : 0 : 0]∪[0 : 1 : 0]}
So yes, we can homogenize V(xy − z2).

Definition 1.2.12. If f ∈ k[x1, . . . , xn], write f = fd + fd+1 + · · ·+ fd+t where the degree
of fi is i and fi 6= 0. The homogenization of degree d+ t of f is f̃ ∈ k[x0, . . . , xn], where
f̃ = xt0fd + · · ·+ x0fd+t−1 + fd+t.

Definition 1.2.13. If F ∈ k[x0, . . . , xn] is homogeneous of degree t, we de-homogenize
(with respect to x0) F by setting f(x1, . . . , xn) = F (1, x1, . . . , xn).

Theorem 1.2.14. Let V ⊆ An be an affine algebraic set, V its projective closure. Then
I(V ) ⊆ k[x0, . . . , xn] is generated by the homogenization of all elements of I(V ).

Proof. Let Ĩ ⊆ k[x0, . . . , xn] be the ideal generated by the homogenization of all ele-
ments of I(V ).
We want to show that Ĩ = I(V ) :
(⊆) f̃ ∈ Ĩ where f ∈ I(V ) ⇒ f̃(1, x1, . . . , xn) = f ∈ I(V ) ⇒ f̃ vanishes in V ⊆ Ṽ . So
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V ⊆ V(f) ⊆ Pn and V ⊂ V(f̃) because it is closed. ⇒ f̃ ∈ I(V )
(⊇) Take any F ∈ I(V ) ⇒ F vanishes on V ⇒ V = V ∩ U0 ⇒ F (1, x1, . . . , xn) =
f(x1, . . . , xn) vanishes on V ⇒ fiV⇒ F = xq0f̃ ∈ Ĩ �

Example 1.2.15. Why you cannot homogenize randomly: Let V = {(t, t2, t3) | t ∈ k} = V(y−
x2, z−x3) ⊆ A3. Let W = V(wy−x2, w2z−x3) ⊆ P3. Then W ∩U0 = V(y−x2, z−x3) = V ,
but W at∞ is W ∩V(w) = V(wy−x2, w2z−x3) = V(w, x) = {[0 : 0 : y : z]} ⊆ P1. There’s
a point [0 : 0 : 0 : 1] that is unaccounted for.

1.3. Quasi-Projective Varieties:

Lecture 8. Quasi-Projective Varieties

Let L ⊆ A2 be the line given by y = mx+ b for some fixed m, b ∈ k. We want to determine
what point corresponds to ∞ on L ⊂ P2. Equivalently, for any point p ∈ L there is a line
connecting p to the origin. The point p ∈ L is sent to the point in P2 that corresponds to
the line through the origin and p in A2.
We can solve this by using algebra: P2 has coordinates x, y, z. We need to homogenize the
equation for L so that L = V(y −mx− bz) ⊆ P2,V(z) = P1 at ∞. At ∞,V(y −mx− bz)∩
V(z) = V(y −mx, z) = [1 : m : 0], so we see that the line y = mx in A2 goes to the point
at infinity.
We can also solve this geometrically: the only line through the origin that does not intersect
L is the line that is parallel to L, hence the line y = mx must be the one corresponding to
∞ on L. In P2 this line corresponds to the point [1 : m : 0].

Definition 1.3.1. A quasi-projective variety is a locally closed subset of Pnk .

Definition 1.3.2. A subset, V , of a topological space is locally closed in X if V = U ∩C
where U ⊂ X is open and C ⊂ X is closed.

Remark 1.3.3. Often when people say variety, they actually mean quasi-projective variety
instead of an abstract variety.

For now, assume that k = k and that the subset X of Pnk is a topological space with the
induced Zariski-topology from Pnk .

Examples:
(1) Every projective algebraic set X is a quasi-projective variety
(2) Every affine algebraic set X ⊆ An ≡ U0 is a quasi-projective variety. X = X ∩ U0

(3) Every open subset of a quasi-projective variety is a quasi projective variety.
(4) Every closed subset of a quasi-projective variety is a quasi-projective variety.

Now we need a notion of morphisms between quasi-projective varieties, but first we need a
notion of regular functions of a quasi-projective variety. Fix a quasi-projective variety V/k.
For each open set U ⊆ V , we want OV (U) to be a k-algebra of regular functions on V .

(1) ϕ : U → k is an actual function such that ϕ is regular on U ⇐⇒ f is regular at
each point in U

(2) U1 ⊆ U2 ⇒ OV (U2) restricts−−−−−−→ OV (U2) (note that this forms a sheaf)
(3) We want it to agree with the notion that we already have for irreducible affine

algebraic sets.

Example 1.3.4. (Quintessential) Let ϕ ≡ F (x0,...,xn)
G(x0,...,xn) , where F and G are homogeneous

polynomials of the same degree. This will be a regular function on Pn \V(G). Note that ϕ
is well-defined because F,G are homogeneous of the same degree. An ∼= Ui ≡ Pn\V(xi) ⊆ Pn
so that ϕ|Ui maps (t0, . . . , t̂i, . . . , tn)→ [x0 : . . . 1 : . . . : xn] and is defined on Ui \ V(G).
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Definition 1.3.5. Let W ⊆ Pn be a quasi-projective variety. A function ϕ : W → k is
regular on W if for all points p ∈ W , there exists Fp, Gp ∈ k[x0, . . . , xn] homogeneous of
the same degree such that ϕ agrees with the function Fp

Gp
on some neighborhood of p.

Remark 1.3.6. This gives us a sheaf of k-algebras OV on every quasi-projective variety and
it satisfies the three conditions. It also agrees with the definition of regular functions from
before when we were restricting to affine varieties.

CAUTION: If V is an affine variety then OV (V ) = k[V ] determines V completely, but this
is not the case for a general quasi-projective variety. For instance, OP1(P1) = k

Quintessential examples of morphisms of quasi-projective varieties:

(1) P1 ν−→ P2 by [s : t] → [s2 : st : t2] is a well-defined map since it is homogeneous.
This function is given by regular functions in coordinates on affine charts.

P1 ⊇ Ut 3 [s : 1] → A1 3 swwww�
wwww�

P2 ⊇ Uz 3 [x : y : z]→A2 3 (x, y)

The image of ν = V(y2 − xz)

(2) Let P2 ⊃ V ≡ V(z−y2) π−→ P1, where the map π sends [x : y : z] to

{
[x : y], if x 6= 0
[y : z], if z 6= 0

We need to check that this map is well-defined (i.e. scaling, anything sent to 0, agrees
on overlaps). V ∩ Uz = V(x− y2), V ∩ Uy = V(xz − 1). Note that ν, π are inverses.

Lecture 9. The Veronese Map

Definition 1.3.7. A morphism (regular map) ϕ : X ⊂ PN → Y ⊂ PM of quasi-
projective varieties is a map of sets which is locally given by regular functions on affine
charts. More precisely, ∀x ∈ X,∃open U ⊆ X containing x such that ϕ(U) ⊆ Ui and on
U , ϕ : p ∈ U → (ϕ1(p), . . . , ϕM (p)) ∈ Y ∩ Ui ⊆ Ui = AM , where ϕi ∈ OX(U) are regular
functions on U .

Definition 1.3.8. An isomorphism of quasi-projective varieties is a morphism ϕ :
X → Y that admits a (regular morphism) inverse ψ : Y → X such that ϕ◦ψ : Y → Y = 1Y
and ψ ◦ φ = 1X .

CAUTION: Two projective varieties can be isomorphic and still have non-isomorphic coor-
dinate rings.

Example 1.3.9. Consider the projection from a point p ∈ P2 onto a line l and send q ∈ P2\{p}
to qp∩l ∈ l. To show that this map is regular we choose a convenient basis so let p = [0 : 1 : 0]
and l = V(y). Let q = [a : b : c], then pq is the 2-dimensional subspace spanned by p and q
whereas l is the 2 dimensional subspace spanned by [1 : 0 : 0] and [0 : 0 : 1]. l∩pq = [a : 0 : 0]
so [x : y : z] 7→ [x : 0 : z]. We could have chosen coordinates so that l was the line at infinity,
corresponding to V(z), and p = [0 : 0 : 1]. then π(q) will be the point at ∞ corresponding
to the slope of pq.

Veronese Maps:
Fix N, d,M (where M =

(
N+d
d

)
− 1). Define the Veronese map νd as follows:

PN νd- PM where [x0 : · · · : xN ] 7→ [xd0 : xd−1
0 x1 : · · · : xdN ]
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Note that all of the terms in the image are monomials in x0, . . . , xN of degree d.
Also, we can think of PM as P((k[x0, . . . , xN ])d) = P(SymdV ), where V has dimension N .
We have already seen the Veronese map in early examples.

Example 1.3.10. P1 ν3- P3 where [s : t] 7→ [s3 : s2t : st2 : t3]. The image of νd is twisted
cubic.

In general, the image of νd is a “twisted degree d curve” or a “rational (normal) curve of
degree d.”

Example 1.3.11. P2 ν2- P5, where [s : t : u] 7→ [s2 : t2 : u2 : su : st : ut]. It is nice
to use the coordinates zijk for the monomial sitjuk in this scenario (this, of course, easily
generalizes).

Proposition 1.3.12. PN νd- PM defines an isomorphism between PN and a closed set in
PM .

Sketch of Proof. Let W ⊂ PM be the closed set {zI | I = (i0, . . . , iN ) and |I| = d}.
Then W = V({zIzJ − zkzL}I+J+K+L=d). Check that W = Imνd. Also the inverse is just
the projection [xd0 : xd−1

0 x1 : · · · : xdN ] ∈ Pm 7→ [x0 : x1 : · · · : xN ], where xd0 6= 0. �

Lecture 10. The Segre Map

Algebra Blackbox:
If A ∈Mm×n(k), then the following are equivalent:

(1) The row space of A has dimension at most t
(2) The column space of A has dimension at most t
(3) The (t+ 1) minors vanish
(4) A = BC where B ∈Mm×t(k) and C ∈Mt×n(k)

Any linear invertible linear transformation V
T- V , where V ∼= kn+1, always induces a

morphism P(V ) - P(V ) by sending [x0 : · · · : xn] 7→ [L0(x) : · · · : Ln(x)] where Li ∈ V ∗.
In fact, the set of all invertible regular maps Pn - Pn is Aut(Pn) = PSL(n+ 1).

Definition 1.3.13. A polynomial, F (x0, . . . , xn, y0, . . . , ym) is bihomogeneous if it is
homogeneous in the xi’s and homogeneous in the yi’s.

The Segre Map:
This is a map from the product of two projective spaces to a projective space.
For example, define P1 × P1 σ11- P3, where the coordinates on P1 × P1 are s, t, u, v and
on P3 are w, x, y, z, as: ([s : t], [u : v]) 7→ [su : sv : tu : tv] = [w : x : y : z]. This map is
well-defined.

Proposition 1.3.14. The above map, σ11, defines a bijection between P1 × P1 and Σ ≡
V(wz − xy).

Note that Σ = V(det
(
w x
y z

)
) = {rank 1, 2 by 2 matrices}.

Sketch of Proof. We can define the map Σ - P1 × P1 as:

[x : y : z : w] 7→


([w : x], [w : y]) w 6= 0
([w : x], [x : z]) x 6= 0
([y : z], [x : z]) z 6= 0
([y : z], [w : y]) y 6= 0
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Check that these formulas do in fact agree on their overlaps. Also note that the map
Σ - P1 × P1 is equivalent to:(

w x
y z

)
7→ (projection onto row, projection onto column)

Look in affine chart:

P1 × P1 ⊇ A1 × A1 3 ([1 : t], [1 : v]) 7→ [1 : v : t : tv] ∈ A3 = V(wz − xy) ⊆ P3

Fix b = [1 : t] so that b× A1 - A3 has the image {(v, b, bv)} = {

0
b
0

+ v

1
0
b

}v∈k
Note that the image is a set of lines in A3. So Σ is covered by families of disjoint lines in
P3, {σ11(b× P1)}b∈P1 and, by symmetry, another disjoint family of lines {σ11(P1 × b)}b∈P1 .
Think of Σ as P1 × P1 embedded in a natural way in P3. Look at Σ at ∞ in P3. Σ ∩ Uw is
the finite part. At ∞,Σ ∩V(w) = V(wz − xy,w) = V(xy,w) = V(x,w) ∪V(y, w) ⊆ P3. �

Remark 1.3.15. It is easy to show that Σ is the product of P1 × P1 on the category of
projective varieties.

General construction of the Segre Map: Define σm,n : Pm × Pn - P(m+1)(n+1)−1 by:

([x0 : · · · : xn], [y0 : · · · : ym]) 7→ { the entries of the (m+ 1)× (n+ 1) matrix}

This matrix is generated by:

x0

...
xm

(y0 . . . yn
)
. Call the coordinates of P(m+1)(n+1)−1, {zij}i,j

where i = 0, . . . , n and j = 0, . . . ,m. Define the image of σm,n to be Σm,n ⊆ P(m+1)(n+1)−1 =
P((m+ 1)× (n+ 1) matrices).
There are projections of Σm,n to Pm and Pn by projection onto the row or column of
A, respectively, where A ∈ Σm,n. Σm,n is covered by a family of disjoint linear spaces
{σm,n(Pm × {p})}p∈Pn and {σm,n({p} × Pn)}p∈Pm .

Lecture 11. Projective Hypersurfaces

Algebra Blackbox:

Proposition 1.3.16 (Eisenstein’s Criterion). Let P be a prime ideal of the integral domain
R and let f(x) = xn + an−1x

n−1 + · · · + a1x + a0 be a polynomial in R[x] (here n ≥ 1).
Suppose an−1, . . . , a1, a0 are the elements of P and suppose a0 is not an element of P 2.
Then f(x) is irreducible in R[x].

Remark 1.3.17. Eisenstein’s Criterion is a very useful tool for determining if polynomials
are irreducible.

Remark 1.3.18. There is a corrrespondence between Symd(V ∗) and homogeneous degree d
polynomials on kn+1 by using xa0

0 . . . xann as a basis where Σai = d.

Theorem 1.3.19. (Thm 1) The image of a projective variety under a regular mapping
is closed (in fact it is projective). More precisely, if X

ϕ- Y is a morphism of quasi-
projective varieties with X projective, then the image of X in Y is closed in Y .

Remark 1.3.20. There is nothing like this for affine varieties.

The following is an analogous theorem in topology:
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Theorem 1.3.21. If X
ϕ- Y is a continuous map of topological spaces with X compact,

then ϕ(X) is compact.

Corollary 1.3.22. If X is a projective and connected variety (e.g. irreducible) then the
only regular functions on X are the constant functions OX(X) = k.

Proof. Take a regular map ϕ ∈ OX(X), so X
ϕ- k = A1 ⊆ P1. X is projective

implies that Imϕ is closed in A1, which is closed in P1. All closed sets in P1 are either
empty, finite, or all of P1. Therefore Imϕ is a finite set. But X is connected⇒ Imϕ =
one point. �

Corollary 1.3.23. If X
ϕ- Y is a regular morphism from a connected projective variety

to an affine variety, then ϕ(X) is a point in Y .

Proof. X - Y ⊆ Am by sending x 7→ (ϕ1(x), . . . , ϕm(x)). Each ϕi is a regular
function on X ⇒ ϕi(x) = λi∀x( by the previous corollary)⇒ ϕ(x) = (λ1, . . . , λm). �

Corollary 1.3.24. There are no projective varieties sitting inside of affine varieties except
for points.

General Phenomenon: The set of varieties you want to study often forms a variety in
some natural way. Thm 1 will underlie the intuition that the BAD OBJECTS in that set
form a small subset. The bad set is a proper Zariski closed set of the variety of the varieties
that you are studying.

Example 1.3.25. Let Pn have coordinates x0, . . . , xn. The set of hyperplanes in Pn forms a
variety in a natural way.

H = V(a0x− 0 + · · ·+ anxn) ⊆ P(V )←→ [a0 : · · · : an] ∈ Pn = P(V ∗)

Fix a point p = [λ0 : · · · : λn]. When is p ∈ H?

p ∈ H ⇔ a0λ0 + · · ·+ anλn = 0

⇔ H ∈ V(a0λ0 + · · ·+ anλn) ⊆ P(V ∗)

We say that the “general hyperplane in Pn does not pass through p.”

Definition 1.3.26. A hypersurface of degree d in Pn is the zeroset of a single degree d,
homogeneous polynomial in (n+ 1)-variables.

Definition 1.3.27. A conic is a degree two hypersurface in P2.

Let C = V(ax2 + bxy + cxz + dy2 + eyz + fz2) ⊆ P2. Then C is a conic and there is a
correspondence between C and P5 given by:
C = V(ax2 + bxy + cxz + dy2 + eyz + fz2)↔ [a : b : c : d : e : f ] ∈ P5 = P(Sym2(V ∗)).
Ths set includes degenerate conics, for example V(xy) which looks like +, V(x2) which is a
double line, and V(x(x+ λy)) which is a pair of intersecting lines.

Remark 1.3.28. In general, the set

{set of all degree d hypersurfaces in P(V ), including degenerate ones} = P(Symd(V ∗))

.

Theorem 1.3.29. The subset of reducible degree d hypersurfaces in P(V ) is a (proper)
closed subset of the parameter space P(Symd(V ∗)) of all hypersurfaces of degree d.

Proof. Let F be a homogeneous polynomial of degree d.
V(F ) is irreducible ⇔ F does not factor as F = FtFd−t, where Fi is a homogeneous
degree i polynomial.
Let R = ∪d−1

i=1Ri = the subset of all reducible degree d hypersurfaces ⊆ P(Symd(V ∗)),
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where Ri = {V(F ) ∈ R | F factors as FiFd−i}. Show that each Ri is closed in
P(SymdV ∗).
Consider P(SymiV ∗) × P(Symd−iV ∗) - P(SymdV ∗) where (F,G) 7→ FG. The
image of this map is closed in P(SymdV ∗), Ri is the image ⇒ Ri is closed. �

Lecture 12.

We are building towards proving that projective varieties are proper (proper is the analog
to compact)

Theorem 1.3.30. If X is a projective variety and Y is a quasi-projective variety, then
X × Y project- Y is a closed map.

Remark 1.3.31. Use the Segre embedding to determine the topology on X × Y . You could
also find the topology on a product by doing it patch by patch with open sets identified
with An and then gluing together all of the sets. Don’t use the product topology!

We can associate the hypersurfaces of degree d in P(V ) to points in P(Symd(V ∗)). The
irreducible (i.e. non-degenerate) hypersurfaces of degree d in P(V ) are an open set of
hypersurfaces of degree d in P(V ).

Example 1.3.32. Associating conics in P2 with P5:

Q(x, y, z) ≡ ax2 + by2 + cz2 + dxy + exz + fyz =
(
x y z

)a d
2

c
2

d
2 b f

2
e
2

f
2 c

xy
z


Let C = V(Q). By sending the polynomial Q to [a : b : c : d : e : f ], we get a map from a
conics in P2 tos P5.

Digression on Products and Topologies:
Recall we have the Segre embedding: Pn × Pm → P(n+1)(m+1)−1.
If the coordinates are (xi, yj) ∈ Pn×Pm and zij ∈ P(n+1)(m+1)−1, then (xi, yj)→ xiyj = zij .
V = V(Gα(zij)) ∩ Pn × Pm where Gα is a homogeneous polynomial of degree dα.
So Gα(xiyj) is a bihomogeneous polynomial of degree (d, d).

Example 1.3.33. P1 × P1 → P3 with coordinates x0, x1, y0, y1, z00, z01, z10, z11

Now, say F (xi, yj) is bihomogeneous of degree (r, s), r > s. Then: V(F (xiyj)) = V(yr−s0 F (xiyj), . . . , yr−sm F (xiyj)).
Conclusion:

(1) Every closed set in Pn × Pm has the form:
V(a bunch of bi-homogeneous polynomials, not necessarily bi-degree)

(2) Every closed subset of Pn×Am, where {xi} are the variables in Pn and {yj} in An,
has the form:
V(a bunch of polynomials which are homogeneous in the xi’s).

Let f : Pn → Pm be given by (xi)→ (fj(xi)) where the fj ’s are homogeneous polynomials
of degree d. Γf ≡ {(x, y) | f(x) = y} ⊆ Pn × Pm. How do we check that Γf is closed?

Γf = V

(
2× 2 minors of:

(
f0(xi) f1(xi) . . . fm(xi)
y0 y1 . . . ym

))
This is nondegenerate ⇒ the determinant of the matrix is nonzero.

If X = V({fα}) ⊆ Pn, Y = V({gβ}) ⊆ Pm, is X × Y closed in Pn × Pm? Yes, X × Y =
V(fα, gβ).

Question: How many points determine a conic in P2?
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Note that two points in projective space determine a line and that conics can be identi-
fied with P5.
Fix p ∈ P2. How many conics go through p?
Let p = [p0 : p1 : p2] and Q(x, y, z) = ax2 + by2 + cz2 + . . ..
Then Q(p0, p1, p2) = ap2

0 + bp2
1 + cp2

2 + . . ..
So we have {conics through p} ⊆ {conics) } → H hyperplane ' P4 ⊆ P5 closed.
Say that we have 5 points in P2 with no 4 points on a line. Then the intersection of the 5
hyperplanes through those points is a single point in P5.

Claim: There is only one conic through these points.

Proof. Suppose there are 2 such conics C1, C2 where Ci = V(Qi) and C1 is nonde-
generate. We may assume that Q1(x, y, z) = xz − y2 since all nondegenerate conics
are isomorphic (by problem set). V(Q1) = Im(ν2). Look at Q2(s2, st, t2), which is a
homogeneous polynomial of degree 4. If Q2(s2, st, t2) is not identically zero, then it
has at most 4 zeros. But it has 5 zeros!
Exercise: look at the case when Q1 is degenerate. �

Lecture 13. Closed Maps

Proposition 1.3.34. If Y ⊆ Pm is a quasi-projective variety then Y = ∪Yi where Yi ⊆ Y
open and Yi is affine. Furthermore, Z ⊆ Y is closed ⇐⇒ Z ∩ Yi is closed in each Yi.

Proof. Y = X∩U for some X ⊆ Pm closed and U ⊆ Pm open⇒ Y =
⋃n
i=0(X∩Ui∩U),

where Ui = Pn − V(xi). Let Xi = X ∩ Ui ⇒ Xi ∩ U is open in Xi. Since Xi ∩ U is
open in Xi and Xi is open in X ⇒ Xi ∩ U is open in Y . If we let Yi = X ∩ Ui ∩ U ,
then our claim is proven. �

Theorem 1.3.35. A: If X is projective, Y is quasi-projective, and X
ϕ- Y is a morphism

of quasi-projective varieties, then ϕ(X) is closed in Y . In other words, ϕ is a closed map.

Theorem 1.3.36. B: If X is projective and Y is quasi-projective then the projection X ×
Y

π- Y is a closed map.

Proof. Thm B ⇒Thm A: Given ϕ as in Thm A, let Γϕ = {(x, ϕ(x)) | x ∈ X} be
its graph. By a previous theorem, Γϕ is closed in X × Y . Therefore, by Thm B,
π(Γϕ) = ϕ(X) ⊆ Y is closed.
Proof of Thm B:
Step 1: We want to reduce this to the case when X = Pn and Y = Am.
Claim: If the theorem is true for Pn then it is true for any projective variety X.
Assuming that Pn×Y π- Y is a closed map, suppose that X ⊆ Pn and Z ⊆ X×Y is
closed. Since Z is closed in X×Y and X×Y is closed in Pn×Y , Z is closed in Pn×Y .
Therefore π(Z) is closed. This argument is illustrated by the following diagram.

Pn × Y
π - Y

X × Y

closed ⊆
6

- Y

=

6

Z

closed ⊆
6

π- π(Z)

⊆

6
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Therefore if theorem B is true for Pn, it must be true for any projective variety X ⊆ Pn.
Claim: If the theorem is true for Am then it is true for any affine variety Y .
We can cover Y by affine sets, Yi, so that Y = ∪iYi. Let Z ⊆ Pn × Y . Then
Pn×Yi - Yi and Pn×Y ⊇ Z ∩ (Pn×Yi) - π(Z)∩Yi where both sets are closed.
Now look at: Pn × Y π- Y by Z 7→ π(Z). π(Z) is closed in Y ⇔ Z ∩ (Pn × Yi)
is closed in Yi∀i. The latter we just saw is true, so π(Z) is closed in Y . Therefore if
theorem B is true for Am, it must be true for any quasi-projective variety Y .
Hence we may assume that X = Pn and Y = Am.
Step 2: We want to show that Pn × Am π- An is a closed map.
Any closed set in Pn × Am is of the form Z ≡ V(F1(x0, . . . , xn, y0, . . . , ym), . . .) (note
that Fi is homogeneous in x). We want to show that π(Z) ⊆ An is closed.

π(Z) = {(λ0, . . . , λm) ∈ Am | π−1(λ0, . . . , λm) 6= ∅}
= {λ ∈ Am|V(F1(x, λ), . . .) 6= ∅}
= {(λ ∈ Am | Rad(F1(X,λ), . . .) + (x0, . . . , xn)}
= {λ ∈ Am | (F1(X,λ), . . .) ⊇ (x0, . . . , xn)t∀t}
= ∩t(Xt ≡ {λ ∈ Am | Wt ≡ [F1(x, λ), . . . , Fr(x, λ)]degt) + Vt

Where Vt ≡ the vector space of homogeneous degree t polynomials in x0, . . . , xn.
It is enough to show that each Xt ⊆ An is closed. Wt is obviously spanned by
{FiXJ}|J|=degFi,i=0,...,r. Write each FiX

J in terms of basis XI for Vt ⇒ Fix
J =

Σai,JI xI , where the aI are polynomials in over k in λ0, . . . , λm. The number of xI

combinations is:
(
n+t
t

)
. Find a matrix for this. Identify the row space with Wt. So

Wt 6= Vt ⇔ the rank of the matrix is less than
(
n+t
t

)
. ⇒ Xt = V

((
n+t
t

)
minors of the

matrix {ai,JI }
)
⊆ Am �

Lecture 14. Finite Maps

Algebra Blackbox: Let R ↪→ S be an (injective) extension of rings.

Definition 1.3.37. An element s ∈ S is integral over R if it satisfies a monic polynomial
with coefficients in R

Definition 1.3.38. The ring S is integral over R if all elements of S are integral over R

Remark 1.3.39. To check that S is integral over R, it is sufficient to check that each element
in a set of algebraic generators for S/R is integral

Fact: S is a finitely generated R-module ⇒ S is a finitely generated R-algebra and S is
integral over R.

Theorem 1.3.40. Lying Over Theorem: If R→ S is integral and P ⊂ R is a prime (or
maximal) ideal then there exists a unique q ⊆ S prime (or maximal) with q ∩R = P .

Proposition 1.3.41. If V ⊆ Pn is a projective variety and p ∈ Pn, p /∈ V then the projec-
tion:
πp : V → H ∼= Pn−1 is finite-to one onto its image, where H is a hyperplane not containing
the point p.

Proof. Take q ∈ H,π−1(q) = V ∩L where L = pq. V ∩L ⊂ L is closed. The choices for
π−1(q) are the empty set, L, or a finite set. Now L is not possible because if it were
we would have that L = L ∩ V ⇒ p ∈ V which is a contradiction. �

Definition 1.3.42. X
ϕ- Y is dominant if ϕ(X) is dense in Y .
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Definition 1.3.43. A morphism of affine varieties, X
ϕ- Y , is finite if it is dominant

and the corresponding map of coordinate rings k[Y ]
ϕ∗- k[X] is integral.

Definition 1.3.44. A morphism of quasi-projective varieties, X
ϕ- Y , is finite if ϕ is

dominant and ∀y ∈ Y there is an open affine neighborhood U of y such that ϕ−1(U) is affine
and ϕ−1(U)

ϕ- U is finite (equivalently, OY (U)
ϕ∗- OX(ϕ−1(U)) is integral).

Theorem 1.3.45. If X
ϕ- Y is a dominant morphism of affine varieties and ∀y ∈ Y ∃U

open affine that contains y with ϕ−1(U) affine and OY (U)
ϕ∗- OX(ϕ−1(U)) is integral,

then also k[Y ]
ϕ∗- k[X] is integral.

Remark 1.3.46. This proof can be found in 5.3 of Shaf. and is similar to the proof that
regular functions in an affine algebraic set is the restriction of a polynomial

Properties of Finite Maps:

Remark 1.3.47. If X
ϕ- Y is a finite map of quasi-projective varieties, then {ϕ−1(q)} is

finite ∀q ∈ Y .

Proof. We can look at an open affine variety of Y and its inverse image, which will
also be an affine variety. So, without loss of generality, we can reduce to the case
when X,Y are affine varieties. Take p ∈ ϕ−1(q). Claim: there are only finitely many
possibilities for each coordinate of p. k[Y ]

ϕ∗- k[X] ∼= k[x1, . . . , xn]/I(X) Each xi
satisfies xti + ϕ∗a1x

t−1
i + . . . + ϕ∗at = 0 where ai ∈ k[Y ]. Apply this to the point p.

Note that ϕ∗a1(p) = a1(ϕ(p)). The ith coordinate of p satisfies a monic polynomial
with coefficients in k. At most t possibilities for the ith coordinate of p. �

Remark 1.3.48. Caution: The converse of this statement is not true in general. For example
consider V = V(x2 + y2 − 1) − V(y − 1

2 ) ⊆ A2: Project this down to the x-axis. Clearly
the preimage of every point is finite. The problem occurs in the coordinate rings: k[X] →
k[x, y]/(x2 + y2 − 1)[ 1

y− 1
2

]. 1
y− 1

2
is not integral over k[X]. So ϕ is not finite.

Theorem 1.3.49. Let X0
π0- Y0 be a regular map of projective varieties. Let Y ⊆ Y0 be

any open subset, X = (π0)−1(Y ) its inverse image, and π the restriction of π0 to X. If the
fibers of π are finite then it is a finite map.

Proof. On page 178 of Algebraic Geometry: A First Course by Harris. �

Proposition 1.3.50. Finite map are surjective

Proof. Without loss of generality, we can assume that X
ϕ- Y is a morphism of affine

varieties (again because we can look at an affine open set and its inverse image will also
be affine). k[X] � k[Y ], q = (λ1, . . . , λm) is given by (y1 − λ1, . . . , ym − λm) = mQ

and ϕ−1(q) is defined by (ϕ∗(y1)−λ1, . . . , ϕ
∗(ym)−λm) ∈ k[X] (note that we want this

not to be (1)). There exists a maximal ideal Mp ∈ k[X] such that Mp∩k[Y ] = Mp. �

Lecture 15. Noether Normalization
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Algebra Blackbox:
Let k ↪→ L be a field extension.

Definition 1.3.51. x ∈ L is algebraic over k if it satisfies xn + a1x
n−1 + . . . + an = 0

where ai ∈ k. Otherwise k is transcendental

Definition 1.3.52. Elements x1, . . . , xd ∈ L are algebraically independent over k if
they satisfy no (non-zero) polynomial F (u1, . . . , ud) ∈ k[u1, . . . , ud]

Definition 1.3.53. A maximal set of algebraically independent elements of L/k is a tran-
scendence basis for L/k. The cardinality of any 2 transcendence basis is the same, it is
called the transcendence degree.

You can always choose a transcendence basis from any set of generators for L/k.
Basic Properties of Finite Maps (proven and yet to be proven):

(1) Finite maps are surjective with finite fibers
(2) Conversely, let X be projective and X

ϕ- Y . If ϕ is a dominant map with finite
fibers, then ϕ is finite.

(3) Compositions of finite maps are finite (since an integral extension of an integral
extension is an integral extension)

(4) Finite maps are closed:

Proof. Let X
ϕ- Y be a finite map. It is enough to prove this for an

irreducible subset Z ⊂ X. Then Z
ϕ|Z- ϕ(Z) is a finite map and since finite

maps are surjective, ϕ|Z(Z) = ϕ(Z). Therefore ϕ(Z) is closed and so finite
maps are closed. �

(5) Let X ⊂ Pn be projective and let H ⊂ Pn be any linear subspace. If X ∩H = ∅,
then projection from H is finite. (See Shaf. I, page 64 for a self-contained proof)

Theorem 1.3.54 (Noether Normalization:). A projective variety V admits a finite mor-
phism to some projective space Pd. Moreover the d is uniquely determined.

Let V ⊆ Pn be projective and irreducible. Take any point p ∈ Pn \ V and project from Pn
to Pn−1 through p. Let V1 = π(V ) Then we get the following diagram:

Pn
π

project
-- H ∼= Pn−1

V
∪

6

project
π

-- V1

∪

6

If V 6= Pn−1 then we repeat this process until it stops, which will occur when the image of
V is all of Pd for some d ∈ N. Thhis gives us a sequence: V → V1 → V2 → . . .→ Pd.

A more general statement of the above theorem is:

Theorem 1.3.55. If R = k[x1, . . . , , xn]/I is a domain finitely generated over k and |k| =∞
there exists y1, . . . , yd k-linear combinations of x1, . . . , xn such that y1, . . . , yd are alge-
braically independent and k[y1, . . . , yd] ⊆ R is a finite extension.

Corollary 1.3.56. If V is an irreducible affine variety, then V admits a finite morphism
to Ad where d is uniquely determined.
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2. Smoothness

2.1. Dimension of Varieties.

Definition 2.1.1. Let V be an irreducible quasi-projective variety. Define the function
field of V , denoted k(V ), to be the function field of any (dense) open affine subset of V .

Remark 2.1.2. This definition is independent of the choice of an affine open set. Take any
U1, U2 ⊆ V open affine. Let U2 ⊃ U3 =basic open affine of U1 = U1 − V(g) for some
g ∈ OV (U!). OV (U1) = k[U1]→ k[U3] = k[U1][ 1

g ].

Definition 2.1.3. The dimension of an irreducible quasi-projective variety V is the tran-
scendence degree of k(V ) over k.

So why is d uniquely determined?

π−1(U) ⊆ V
π -- U ⊆ Pd finite andU affine

k[π−1(U)] �
transcendence

k[U ] �
transcendence

k

The dimension of Pd = transcendence degree of k[Pd]/k.

Definition 2.1.4. The dimension of a (non-irreducible) quasi-projective variety is the max-
imal dimension of its irreducible components

Example 2.1.5. A3 ⊃ V(xz, xy) = V(x) ∪ V(y, z) and so k[y, z] ∼= k[x, y, z]/k[x] has tran-
scendence degree 2 and k[x, y, z]/(y, z) ∼= k[x] has transcendence degree 1.

Lecture 16. Dimension

Algebra Blackbox:

Definition 2.1.6. The Krull dimension of a commutative ring R is the length of the
longest chain of prime ideals of R.

Example 2.1.7. P0  P1  P2  . . .  Pd  R has length d.

Remark 2.1.8. Recall that k(V ) is the fraction field of the ring of regular functions OV (U)
on any open affine set U ⊆ V . If the variety is not irreducible, then just look at its (finitely
many) irreducible components).

Example 2.1.9. dim k(Pn) = n and its function field is: k(x1
x0
, . . . , xnx0

) then the transcendence
degree is n

Basic Properties of dimension:
(1) V ∼= W ⇒ dimV = dimW
(2) U ⊆ V dense and open, then dimV = dimU.

(3) X
ϕ- Y surjective and finite, then dimX = dimY

(4) dim(X × Y ) = dimX + dimY

Proposition 2.1.10. Let X = V(f) ⊆ An (or Pn) be a hypersurface. Then dimX = n− 1.

Proof. If X were in Pn then we would look at the affine open cover of Pn, so we can,
without loss of generality, reduce to the case when X ⊆ An. We can also reduce to
the case when f is irreducible, since if it were not then we would look at its irreducible
components. Also assume that f 6= 0, f 6= constant. Let f ∈ k[x1, . . . , xn]. Say that
xn appears in f . Claim: x1, . . . , xn−1 are a transcendent basis for k(X)/k. Need to
check that they are algebraically independent over k. If not, then there would exist a
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G(x1, . . . , xn−1) = 0 where G ∈ k[x1, . . . , xn−1]. Then G ∈ I(X) = (f)⇒ G = fh, but
xn appears in f but not in G. So there cannot exist such a G. The set {x1, . . . , xn−1}
is a maximal set of algebraically independent elements since {x1, . . . , xn} are not alge-
braically independent. �

Proposition 2.1.11. Let V be irreducible, and W  V is closed, then dimV > dimW .

Proof. Without loss of generality we can reduce to the affine case: W  V ⊆ An.
Again we can assume that W is irreducible by the standard trick: look at its irreducible
components.
k[x1, . . . , xn] -- k[V ]

ϕ-- k[W ]. Say dimW = dimV . Take a transcendence basis
for k(W ). Without loss of generality, x1, . . . , xd (restricted to W ). Note that this is a
transcendence basis for k(V ). Take g ∈ Kerϕ, g 6= 0.

k[x1, . . . , xd] ⊂ - k[V ]

k(x1, . . . , xd)
?

⊂
algebraic- k(V )

?

There exists a polynomial with coefficients in k(x1, . . . , xd) satisfied by g: Then
a0g

T + a1g
T−1 + . . .+ aT = 0, ai ∈ k[x0, . . . , xn]. This holds in k[V ].

Restrict to W . aT (x1, . . . , xd) = 0 in k[W ]. This is a contradiction. �

Theorem 2.1.12. Let V be a quasi-projective variety. Then dimV is equal to the length of
the longest chain of closed irreducible subvarieties of V .

For instance: V ⊇ Vd ! Vd−1 ! . . . ! V1 ! V0 = {point}.

Remark 2.1.13. The length of the longest chain of closed irreducible subvarieties of V is the
Krull dimension.

Example 2.1.14. Ad ! V(x1) = Ad−1 ! V(x1, x2) ! . . . ! V(x1, . . . , xd−1) ! V(x1, . . . , xd) =
0. This is a chain of length d.

Proof. First direction: dimV ≥ Krull dimension of V . Since V ⊇ Vd ! Vd−1 + . . . +
V1 + V0 = {point}, it is immediate from a previous proposition that a proper closed
set has strictly smaller dimension.
Second direction: Say V has dimension d. Without loss of generality, V is irreducible,
projective so that V ⊇ V ⊆ Pn. �

Lemma 2.1.15. Given any projective variety, V ⊂ Pn, there is a hyperplane H ⊆ Pn not
containing any components of V .

Proof. V ! V ∩H0 ! V ∩H0 ∩H1 ! . . . ! V ∩H0 ∩H1 ∩ . . . ∩HT = ∅
This is a chain of length T of irreducible, closed sets of V . Note that H1 ∩ . . . ∩HT is
a linear space.
We need to show that T ≥ d. Say that Hi = V(Li), Li is some linear polynomial.
Let Λ = V(L0, . . . , LT ) = H0 ∩ . . . ∩HT , this is a linear space. Project from Λ:

V
πΛ- PT

where x 7→ [L0(x) : . . . : LT (x)]. Projections are finite and surjective onto its image,
so V

finite

πΛ

-- πΛ(V ) ⊆ PT and dimV = dimπΛ(V ) ≤ T . �
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Lemma 2.1.16. (More general) Given any projective variety V ⊂ Pn,M ∈ N,∃fM ho-
mogeneous polynomial of degree M such that V(fM ) does not contain any component of
V .

Proof. Choose pi on component Vi where V = V1 ∪ . . . ∪ Vr. We need to find fM such
that Pi /∈ V(fM ). But the set

Hpi ⊆ P(SymM (V ∗))

of hypersurfaces containing Pi i a hypersurface in P(Sym∗(V ∗)). So, Up1...pr = Up1 ∩
Up2 ∩ . . . ∩ Uq open, dense in P(SymM (V ∗)).

U =
⋃
pi∈Vi

Up1...pr ⊆ P(SymM (V ∗))

�

Lecture 17.

Algebra Blackbox:

Remark 2.1.17. If R is a domain and f ∈ R − {0}, then all minimal primes of (f) have
height 1. In general, the minimal primes of (f1, . . . , fr) have height ≤ r.

Corollary 2.1.18. If V is an irreducible affine (or projective) variety of dimension d, and
f is a (homogeneous) polynomial not vanishing on V , then dim (V ∩V(f)) = d− 1 and all
components are also of dimension d− 1.

Remark 2.1.19. In particular, hyperplane sections of V have dimension one less than V ,
V 6= V ∩H.

Example 2.1.20. Let V = V(x2 + y2z2) ⊆ P3. One hyperplane section is V ∩ V(z − 4).

Corollary 2.1.21. Let V be a codimension 1 subvariety of An (or Pn). Then V = V(f)
for some (homogeneous) polynomial in n (or n+1) variables.

Proof. Let’s assume V is affine. Without loss of generality, V and f are irreducible,
where f ∈ I(V ) ⊆ k[x1, . . . , xn] prime ideal. (f) ⊆ I(V ) ⇒ V(f) ⊇ V(I(V )) = V. Now
dimV(f) = n− 1 and dimV = n− 1⇒ V(f) = V . �

Corollary 2.1.22. A quasi-projective variety of dimension d contains subvarieties of every
smaller dimension.

Proof. Unless you are very unlucky, any general hyperplane will cut a variety of di-
mension d into one of dimension d-1. Repeat this process. �

Corollary 2.1.23. If V is projective of dimension n and F1, . . . , Fr are homogeneous poly-
nomials,
then dim(V ∩ V(F1, . . . , Fr)) ≥ n − r and if the Fi are “sufficiently general” then we have
equality, where negative n− r means the variety is empty. In particular, a closed subvariety
of Pn defined by r homogeneous equations has dimension ≥ n− r.

Remark 2.1.24. “Sufficiently general” or “generic” means that there is an unspecified open
subset of the variety in which you are looking that has this property.

Example 2.1.25. In P2 intersects, every 2 curve intersects, however this is false on general
varieties. For instance, consider {q} × P1, {p} × P1 ⊂ P1 × P1.

Definition 2.1.26. A projective variety V ⊆ Pn is a set-theoretic complete intersec-
tion if it has codimension r and it is defined by r homogeneous equations.
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Open question: Is every curve in P3 an intersection of 2 surfaces (i.e. a complete inter-
section)?

Definition 2.1.27. A projective variety V ⊆ Pn is a scheme-theoretic complete inter-
section if
I(V ) ⊆ k[x0, . . . , xn] is generated by codimension V polynomials.

Remark 2.1.28. The set-theoretic definition is much weaker than the scheme theoretic defi-
nition.

Let X
ϕ-- Y where both are irreducible varieties.

What can be said about the relationship between dimX, dimY, and dim{ϕ−1(y)}y∈Y ?
For generic y ∈ Y, dimY + dimϕ−1(y) = dimX. This is not true for all y ∈ Y .

Theorem 2.1.29. Dimension of Fibers: If X
ϕ-- Y is a surjective map of irreducible

varieties, then:
(1) dimX ≥ dimY
(2) dim{ϕ−1(y)} ≥ dimX − dimY
(3) There’s a non-empty open set U ⊆ Y such that ∀y ∈ U , equality holds in (2).
(4) The set {y ∈ Y | dimϕ−1(y) = dimX − dimY } is open and non-empty in Y
(5) The set Yl = {y ∈ Y | dimϕ−1(y) ≥ l} is closed in Y .

Proof. (Proof of 1) Reduce to the case of affine (dominant):
k[Y ] ⊂

ϕ∗- k[X] and k[Y ] ⊆ k(Y ) ⊂ - k(X) ⇒ transcendence degree of k(X)/k ≥
k(Y )/k. Note that the transcendence degree of k(X)/k(Y ) is n-m.
(Proof of 2):
{ϕ−1(y)} = V(ϕ∗f1, . . . , ϕ

∗fd) ⊆ ϕ−1(U)
ϕ- U ⊆ Y , where U is an open neighbor-

hood of y. And dimV(ϕ∗f1, . . . , ϕ
∗fd) ≥ dimX − d. �

Lecture 18.

Remark 2.1.30. IfX
ϕ-- Y is a finite map of irreducible varieties, then dimX = dim( any generic fiber )+

dimY

Example 2.1.31. The canonical line bundle: the general fiber is of dimension 0, but π−1((0, 0)) ∼=
P1.

Lemma 2.1.32. Given y ∈ Y irreducible of dimension d. Then ∃F1, . . . , Fd regular func-
tions on some neighborhood U of y such that V(F1, . . . , Fd) ∩ U = {y}.

Sketch of Proof. You can choose regular functions Fi such that dim(V ∩V(F1, . . . , Fd)) = 0,
which only contains points. Since points are closed, we can easily choose an open neighbor-
hood of our point y that does not contain any of these points. �

Corollary 2.1.33. Given that X
ϕ-- Y is a surjective morphism of projective varieties,

Y is irreducible and the fibers ϕ−1(y) are all irreducible of the same dimension. Then X is
irreducible (of dimension dimY+ fiber dimension).

Proof. See Shaf. 6.2 �

Remark 2.1.34. If X and Y are irreducible projective varieties, then X × Y is irreducible.
One can proof this by defining X × Y ϕ-- Y and using the preceding corollary.

When does a hypersurface X ⊆ Pn of degree d contain a line?
Clearly true when d is 1, but when d gets larger and larger, the hypersurface can get more
and more mangled.
Σ = {(L,X) | L ⊆ X} ⊆ Gr(2, V )×P(Symd(V ∗)) ∼= the set of lines in P(v) times P(d+n

n )−1.
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Let G = Gr(2, V ) and m =
(
d+n
n

)
− 1. So Σ is a closed subset of G × Pm, hence it is a

projective variety.
Consider the projection: Σ

π- G. Compute π−1(L) :
π is surjective. Choose coordinates so that L = {[a : b : 0 : . . . : 0]} = V(x2, . . . , xn).
Let F = ΣaIxI . Then if:

X = V(F ) ⊇ L⇔ I(X) = (F ) ⊆ I(L), that is (F ) ⊆ (x2, . . . , xn)

⇔ there is no xd0, x
d−1
0 x1, . . . , x

d
n term appearing in F

⇔ aI = 0 when I is a coefficient only in x0, x1

So π−1(L) = V(a(d,0,...,0), . . . , a(0,d,0,...,0) ⊆ P(Symd(V ∗)) = PM . That is, fibers over any L
are irreducible and of the same dimension. So Σ is irreducible, of dimension M − (d+ 1) +
2(N − 1) = 2N

(
d+N
N

)
− d− 4.

Consider the projection Σ
π2- P(Symd(V ∗)). The image of this map is the closed set of

hypersurfaces containing a line! If dimΣ < dimP(Symd(v∗)), π2 is NOT surjective so the
general hypersurface of degree d contains NO line.
Σ is irreducible of dimension: m − (d + 1) + 2(n − 1). So for large d, we have NO line on
the general hypersurface!

Example 2.1.35. Case of P3: Σ is of dimension m + 3 − d. If d > 3, then dimΣ < m and
there are no lines on the general degree d surface in P3. If d = 1, X ∼= P2 which has lots of
lines. If d = 2, X = V(xy − wz) ⊆ P? which is a 1-dimensional family of lines. If d = 3,Σ
has dimension m (which is 19). The surface V(x3

0 − x1x2x3) ⊆ P3 contains only finitely
many lines. Note that V(x3

0 − x1x2x3) ∩ V(x0) has 3 lines.

Remark 2.1.36. All cubic surfaces in P3 contain at least 1 line and the general cubic surface
contains finitely many lines.

2.2. Tangent Spaces.

Lecture 19. “Extrinsic” Approach to Tangent Spaces

Goal: Determine the tangent space to a variety V at a point p ∈ V .

Example 2.2.1. p = (0, 0) ∈ V = V(y − x2) ⊆ A2 Let l = {(ta, tb) | t ∈ k}. Then consider
V ∩ l:
Solve for t⇒ t(b− a2t) = 0⇒ t = 0 or t = b

a2 . We get two distinct points unless b = 0

Idea: Tangency is a local condition, near p, so we can assume that V ⊆ An is a Zariski-
closed set and p = 0 ∈ V . Then TpV ⊆ An: will consist of all points on all lines tangent to
V at p.

We need to address the following concerns:
(1) When is a line L tangent to V at p?
(2) Why is it a vector space?
(3) Why is it intrinsic to p?

Definition 2.2.2. Let p = 0 ∈ V ⊆ An with I(V ) = (F1, . . . , Fm) and a line L such that
p ∈ L = {t(a1, . . . , an) = ta | a 6= 0}. The intersection multiplicity of L ∩ V at p is the
highest power of t dividing the gcd(F1(ta), . . . , Fm(ta)) ∈ k[t].

Definition 2.2.3. The line L is tangent to V at p if the intersection multiplicity of L
and V at p, (L · V )p, is greater than or equal to two.
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Definition 2.2.4. The tangent space to V at p, denoted TpV , is the set of all points lie
on a line tangent to V at p. In particular,

TpV = {(x1, . . . , xn) ∈ An | (x1, . . . , xn) ∈ L, where L is a line tangent to V at p}

Let’s analyze these definitions:
Consider p = 0 where p ∈ V = V(F1, . . . , Fm). Then Fi(p) = 0 and we can write each Fi as
the sum of a linear polynomial, Li, and a polynomial with higher order terms, Gi so that
Fi = Li +Gi.

Fi(ta1, . . . , tan) = tLi(a1, . . . , an)+t2Hi(t), for some polynomial such that t2Hi(t) = Gi(t).

The line L is tangent to V at p if and only if t2 divides Fi(ta)∀i if and only if Li(a) = 0 ∀ i.
Therefore TpV = V(L1, . . . , Lm) ⊆ An where Li is the linear part of Fi.

Remark 2.2.5. The tangent space is the linear variety most closely approximating V at the
point p.

Definition 2.2.6. The differential of F at p = (λ1, . . . , λn), denoted by dpF , is :
Σnj=1

∂Fi
∂xj
|p(xj − λj).

Now consider p = (λ1, . . . , λn) where p ∈ V(F1, . . . , Fm). We can write each Fi in terms of
Li, linear polynomials in (x1 − λ1), . . . , (xn − λn), and Gi, polynomials of degree at least 2
in (x1 − λ1), . . . , (xn − λn).
We can approximate the Fi by using their Taylor expansions:

Fi = Σnj=1

∂Fi
∂xj
|p(xj − λj) + higher-order terms in (x1 − λ1), . . . , (xn − λn)

Hence, TpV = V(dpF1, . . . , dpFm) ⊆ Am, where the Fi’s generate I(V ).

Example 2.2.7. Let p = 0 ∈ V = V(y − x2), dp(y − x2) = 2x|p(x − 0) + 1|p(y − 0) = y ⇒
TpV = V(y).

Example 2.2.8. Let p = (0, 0, 1) ∈ V(x2 + y2 + z2 − 1) ⊆ A3.
TpV = V(dp(x2 + y2 + z2 − 1)) = V(2z|p(z − 1)) = V(z − 1), if the characteristic is not 2.

Example 2.2.9. Let p = (0, 0, 0) ∈ V(x2 + y2 − z2) ⊆ A3

TpV = V(dp(x2 + y2 − z2)) = V(0) = A3. since p is a singularity.

Properties of Differentials:
Let F ∈ k[x1, . . . , xn] and p = (λ1, . . . , λn)

(1) dpF = Σni=1
∂F
∂xi
|p(xi − λi)

(2) dp(F +G) = dpF + dpG
(3) dp(λF ) = λdpF , where λ ∈ R
(4) Leibniz Rule: dp(FG) = F (p)dpG+G(p)dpF

Lecture 20. “Intrinsic” Approach to Tangent Spaces

Concern: What if we have an isomorphism between varieties, V
ϕ

∼=
- W sending p 7→ q. Is

there an isomorphism of varieties, TpV
Tp(ϕ)

∼=
- TqW , that preserves the vector space structure?

Goal: We want a more intrinsic way to define and think about tangent space that depends
only on p ∈ V

The map k[x1, . . . , xn]
dp- { linear polynomials taking p = (λ1, . . . , λn)→ 0} is k-linear.

This map descends to a map on coordinate rings:
k[V ]

dp- (TpV )∗ mapping f = F |V 7→ dpf = dpF |TpV .
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We need to check that dp is well-defined. It suffices to show that if F |V = 0, then dpF |TpV =
0.
Say F ∈ I(V )⇒ F = H1F1 + . . .+HmFm. Note that fi(p) = 0
dpF = Σni=1dp(HiFi) = Σni=1Hi(p)dpFi + Fi(p)dpHi = 0 by Leibniz rule. Therefore this
map is well-defined.
Restrict to mp = functions regular at p ⊆ k[V ].
Note that dp(f) = dp(f − f(p)) since f(p) = 0.
Let mp

- (TpV )∗
Claim: This is a surjective k-vector space morphism with kernel m2

p.

Therefore, dp induces an isomorphism mp/m
2
p

∼=- (TpV )∗. So mp/m
2
p is intrinsic vector

space associated to p ∈ V , isomorphic to co-tangent space (TpV )∗.

Proof. (Of Claim) mp is the maximal ideal of regular functions vanishing at p,
so mp = (x1 − λ1, . . . , xn − λn). To see that this map is surjective, (TpV )∗ is spanned
by the restrictions of xi − λi. dp(xi − λi) = xi − λi ⇒ surjective.
Check that m2

p ⊆ kerdp :
dp(fg) = f(p)dpg + g(p)dpf = 0 since f(p) = g(p) = 0.
Now check that m2

p ⊇ kerdp :
Take g = G|V ∈ kerdp. G = G(p) + Σ ∂G

∂xi
(xi − λi) + Σ ∂2G

∂i∂xj
(xi − λi)(xj − λj)+ higher-

order terms.
G(p) = 0,Σ ∂G

∂xi
(xi−λi) = dpG = 0 since we took G ∈ kerdp, and Σ ∂2G

∂i∂xj
(xi−λi)(xj −

λj) ∈ m2
p ⇒

G|V = g ∈ m2
p. Therefore kerdp = m2

p. �

Definition 2.2.10. The Zariski tangent space to a point p on a quasi-projective variety
V will be defined (mp/m

2
p)
∗, where mp ⊆ OV,p is the maximal ideal of regular functions

vanishing at p.

Recall: If p ∈ V quasi-projective variety then we can define

OV,p = the local ring of V at p
= all functions that are regular at p
= the ring of regular functions on some unspecified neighborhood U of p

= {ϕ : U → k |ϕ regular functions on open U 3 p}/[(ϕ : U → k) ∼ (ϕ′ : U ′ → k) ifϕ|W = ϕ′|W for W ⊆ U ∩ U ′ open.]

= lim
p∈U
- OV (U) =

{f
g
| f, g ∈ k[U ] = OV (U) for some affine U 3 p, g(p) 6= 0

}
=
{f
g
| f, g ∈ k[U ], g /∈ mp

}
= k[U ]mp

Example 2.2.11. P = (0, 0) ∈ Uf = A2−V(f) ⊆ A2 such that f(p) 6= 0.OA2(Uf ) = k[x, y, 1
f ].

So, OA2(U(x−1)) = k[x, y, 1
x−1 ] and OA2(U(x−1)(x−2)) = k[x, y, 1

x−1 ,
1
y−1 ]

Let V
ϕ- W be a morphism of varieties that sends p 7→ q.

ϕ induces a k-vector space map: TpV
dpϕ- TqW .

Assume, without loss of generality, that V and W are affine. Then we get the pull-back:
k[V ] �

ϕ∗

k[W ]
Note that the pull-back satisfies the conditions: ϕ∗(m2

q) ⊆ m2
p and ϕ∗(mq) ⊆ mp. This gives

us an induced map: mp/m
2
p
�ϕ
∗

mq/m
2
q
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By dualizing we get: (mp/m
2
p)
∗ dpϕ- (mq/m

2
q)
∗

Suppose that An (F1,...,Fm)- Am, where V ⊆ An and W ⊆ Am.
Suppose V

ϕ- W by sending p 7→ q. Then TpV
dpϕ- TqW , where dpϕ =

(
∂Fi
∂xj
|p
)
i,j

.

2.3. Smoothness.

Lecture 21.

Remark 2.3.1. The Zariski tangent space is finite dimensional.

Definition 2.3.2. The embedding dimension of V at p is the dimension of m/m2.

Remark 2.3.3. If there is an open neighborhood of p ∈ V that is isomorphic to a closed
subset of An, then dimTpV ≤ n.

Remark 2.3.4. We can do this much more generally (in terms of schemes)! p ∈ SpecR,Rp =
local ring at p. Then Tp(SpecR) = (PRp/(PRp)2)∗ is the Zariski tangent space (dual over
Rp/(PRp)).

Definition 2.3.5. A point p on a quasi-projective variety V is a smooth point of V if
dimTpV = dimpV . Otherwise, p is a singular point.

Example 2.3.6. V(xy, xz) ⊆ A3: is a line (V(y, z)) sticking out of the yz-plane (V(x)). A
point p on V(y, z) has dimTpV = 1 = dimpV . A point q on V(x) − V(y, z) has dimTqV =
2 = dimqV . The point in the intersection, 0, has dim0V = 2, while dimT0V = 3.

Example 2.3.7. Let V = V(f) ⊆ An, without loss of generality assume that f has no
repeated factors and is nonconstant. I(V ) = Rad(f) = (f). For any point p = (λ1, . . . , λn) ∈
V, dimpV = n−1. TpV = V(dpf) = V(Σi ∂f∂xi |p(xi−λi)) ⊆ A

n. dimTpV ≥ n−1 with equality
unless all the partial derivatives vanish. Singularities of V = SingV = V ∩V({ ∂f∂xi }), which
is closed! SingV is a proper closed set because not all ∂f

∂xi
can vanish on V . If ∂f

∂xi
vanishes

on V, ∂f∂xi ∈ I(V ) = (f). Let f = amx
m
i + am−1x

m−1
i + . . . + a0, ai ∈ k[x1, . . . , x̂i, . . . , xn].

Note that the degree of ∂f
∂xi

in xi ≤ the degree of f in xi. This is a contradiction unless

all of the ∂f
∂xi

are zero polynomials. In particular, f = ΣaIxIp = (Σ(ai)
1
pxI)p), which is

contrary to our assumption that f has no repeated roots. Therefore SingV is proper.

Remark 2.3.8. In characteristic p, we prefer that our fields be algebraically closed and perfect
(i.e. every element has a p-th root)

Theorem 2.3.9. Every irreducible quasi-projective variety V has a (non-empty) open affine
subset isomorphic to a hypersurface in some An

Lemma 2.3.10. Let V be a quasi-projective variety with irreducible components V1, . . . , vt
so that V = V1 ∪ . . . ∪ Vt. Then SingV = SingV1 ∪ . . . SingVt ∪ (∪i,j(Vi ∩ Vj))).

Theorem 2.3.11. Let V be a quasi-projective variety. Then the locus of smooth points
p ∈ V is a dense open set. Its complement, SingV , consists of points p, where dimpV <
dimTpV .

Proof. By the preceding lemma, we can reduce to the case where V is irreducible.
Furthermore, we can reduce to the affine case by taking an affine open cover of V .
Take a point p = (λ1, . . . , λn) ∈ V ⊆ An, where V is closed. For some F1, . . . , Fm ∈
k[x1, . . . , xn], I(V ) = (F1, . . . , Fm). Then TpV = V(dpF1, . . . , dpFm) = Σnj=1(∂Fi∂xj

|p(xj−
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xi)) ⊆ An. We can express TpV as the common zero set of the m equations given by
the rows of the following matrix:

∂F1
∂x1

· · · ∂F1
∂xn

...
. . .

...
∂Fm
∂x1

· · · ∂Fm
∂xn


x1 − λ1

...
xn − λn


The dimension of the linear space TpV = n− rank(

(
∂Fi
∂xj
|p
)
i,j

). Define Hr as follows:

Hr ≡ {p ∈ V | dimTpV ≥ r}
= {p ∈ V | codimTpV ≤ n− r}

= {p ∈ V | rank(
(∂Fi
∂xj
|p
)
i,j

) ≤ n− r}

= V
(
(n− r + 1)-minors of

(∂Fi
∂xj

)
i,j

)
∩ V

So Hr is a closed set of V and Hd+1 ⊆ Hd ⊆ Hd−1 ⊆ . . . ⊆ V , where d is the dimension
of V . Therefore Hd = Hi for all i < d. By the preceding theorem, there is a dense
set of points p ∈ V such that dimTpV = dimV . So Hd is dense in V and since Hd is
closed, Hd = V . �

Example 2.3.12. An irreducible variety can have singular points. Consider V(x2 +y2−z2) ⊆
A3.

Remark 2.3.13. The dimpV is never greater than dimTpV .

Lecture 22. Rational Maps and Birational Equivalence

Let k ⊂ - K be a finitely generated field extension, k = k (or k perfect). Then there exists
a transcendence basis x1, . . . , xd for K/k such that k(x1, . . . , xd) ⊂ - K is separable (a
separating transcendent basis).
If L ⊆ K is a finite separable extension of fields, then K ∼= L(θ) ∼= L[Y ] for some θ ∈ K
and where Y satisfies the equation Y n + a1Y

n−1 + . . .+ an for ai ∈ L.

Definition 2.3.14. A rational map V .........
ϕ
- W is a regular map on some (unspecified)

dense open subset U of V such that U
ϕ- W .

Example 2.3.15. A2 ........- A2 sending (x, y) 7→ ( 1
x ,

1
y ) is regular on U = A2 − V(x, y).

Definition 2.3.16. A rational map of quasi-projective varieties V .........
F
- W is an

equivalence class of regular maps {U ϕ- W | U ⊆ V dense open} where the equivalence

relation is defined by {U ϕ- W} ∼ {U ′ ϕ′- W} if ϕ|U∩U ′ = ϕ′|U∩U ′ .

Example 2.3.17. Projection from p = [1 : 0 : . . . : 0], where Pn .........
π
- Pn−1 by [x0 : . . . :

xn] 7→ [x1
x0

: . . . : xnx0
]. As we have since this map is regular on Pn \ {p} and it is a rational

map.

Definition 2.3.18. Given a rational map V ........
F
- W , the locus of indeterminacy of F

is the set of points at which F is not regular (i.e. undefined).

Remark 2.3.19. The set of points where F is regular (i.e. defined) is open and it’s comple-
ment, the locus of indeterminacy of F, is necessarily a proper, closed set.
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CAUTION: Rational maps are not actually maps because they are not defined at every
point, so one needs to be careful when restricting or composing them. For instance one
cannot restrict a rational map to something in its locus of indeterminacy. Rational maps
can be composed if the image of the first one is dense.

Remark 2.3.20. Let V
ϕ- W be a regular map between quasi-projective varieties. If we

think of V and W as subsets of Pn and Pm, respectively, then ϕ : x 7→ [ϕ0(x) : . . . : ϕm(x)],
where each ϕi ∈ OV (U) for some open, dense U ⊆ V . We can write each ϕi as Fi

Gi
, Fi, Gi

where they have the same degree. So we can think of ϕ as [H0(x) : . . . : Hm(x)], where the
Hi are all homogeneous polynomials of the same degree. Hence, every rational map of quasi-
projective varieties can be expressed this way. We do not have to worry if all the Hi share
a common zero, because then that point will be contained in the locus of indeterminacy, a
proper, closed set.

Definition 2.3.21. Irreducible varieties V and W are birationally equivalent, denoted

V ∼ W , if there are dominant rational maps V .........
F
- W and W .........

G
- V such that F ◦ G

and G ◦ F are the identity rational maps on W and V , respectively.

Example 2.3.22. Let A2 ⊂
F- P2 and P2 ⊂

G- A2 be given by F (t1, t2) = [1 : t1 : t2] and
G([x0 : x1 : x2]) = (x1

x0
, x2
x0

). F ◦G = Id and G ◦ F = Id, so A2 ∼ P2.

Example 2.3.23. If U ⊆ V both irreducible, U open, nonempty and dense ⇒ U ∼ V .

Proposition 2.3.24. Fix V,W irreducible varieties. The following are equivalent:
(1) V ∼W
(2) ∃U ⊆ V,U ′ ⊆W both open and dense, with U ∼= U ′

(3) k(V ) ∼= k(W ) as extensions of k.

Proof. 1⇒ 2⇒ 3 is clear.
(3 ⇒ 1): Without loss of generality, V ⊆ An affine. k[V ] ∼= k[x1, . . . , xn]/I(V ) and
k[W ] ∼= k[y1, . . . , ym]/I(W ). k(W )

∼=- k(V ) by gi 7→ fi
gi

, where fi, gi ∈ k[V ], gi 6= 0.

We can now define a map from V to W : (x1, . . . , xn) ∈ V - ( f1(x)
g1(x) , . . . ,

fm(x)
gm(x) ) ∈W .

This is a rational map. �

Theorem 2.3.25. Every irreducible quasi-projective variety V contains a dense open set,
U , with U ∼= V(G) ⊆ An+1 for some polynomial G ∈ k[x1, . . . , xn].

Proof. K = k(V ) ⊇ k(x1, . . . , xn) is separable. K = L[Y ]/(yd + a1y
d−1 + . . . + ad),

where ai ∈ L.
We can convert yd + a1y

d−1 + . . . + ad to G ≡ b0y
d + b1y

d−1 + . . . + bd where bi ∈
k[x1, . . . , xd].
So K = fraction field of

(
k[x1, . . . , xd, y]/(b0yd + . . .+ bd)

)
�

2.4. Desingularizing Varieties.

Lecture 23. Smoothness in Families

Definition 2.4.1. A family of varieties is a surjective morphism X
π- B of varieties.

The fibers are the members of the family. The base, B, parametrizes the members of
the family, {π−1(b)}b∈B
Example 2.4.2. X = V(xy − z) ⊆ A3, where π(x, y, λ) = λ, gives the hyperbola family
(equivalently the family is: {V(xy − λ) ⊆ A2}λ∈A1 . Note that this family could also be
describe by this map: (x, y) 7→ xy.

General Principle:
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(1) Nearly every “family” (in the loose sense) that we encounter in algebraic geometry
is a family in the technical sense.

(2) Good properties (i.e. smoothness) tend to be open in families (and often that open
set is non-empty so most members of the family have this good property).

The next two lemmas and one theorem are proven in Shaf. I (page 141):
Assume that k has characteristic 0, X is smooth, and X

π-- B is a family of varieties.

Lemma 2.4.3. The fiber π−1(y) is nonsingular if TxX
dxπ- TyY is surjective ∀x ∈ π−1(y).

Lemma 2.4.4. There exists a nonempty open subset V ⊂ X such that dxπ is surjective
∀x ∈ V .

Theorem 2.4.5. Assume that k has characteristic 0. If X
π-- B is a family of varieties

where X is smooth, then the set {b ∈ B | π−1(b) is smooth } is an open dense set of B.

Example 2.4.6. if V = V(xy − z) ⊆ A3, SingV = V(xy − z) ∩ V(y, x,−1) = ∅, so V is
smooth. V

π-- A1, A1 is irreducible so by the theorem, {a ∈ A1 | π−1(b) is smooth }.
Example 2.4.7. Fix X ⊆ Pn = P(V ) irreducible, projective variety. {X ∩ H}H∈P(V ∗) is a
family in the loose sense and in the technical sense. This is called the hyperplane section
family. Locus of smooth hyperplane sections is open in P(V ∗). So if one member is smooth,
this locus is non-empty and hence most members are smooth. Why is this a family in the
technical sense?
Let X = {(p,H) | p ∈ H ∩X} ⊆ P(V )× P(V ∗) . Then X -- P(V ∗).

Theorem 2.4.8. (Bertini’s) If X ⊆ Pn is smooth then the general hyperplane section of X
is smooth.

The most useful kinds of families are (flat) the ones where the members ”vary continuously.”

Definition 2.4.9. A family X π-- B is flat if there is an affine cover {Ui} of B and an

affine cover {Vi,j} of each π−1(Ui) such that the induced map of affine varieties Vi,j
π|Vi,j-- Ui

induces a flat map of algebras OB(Ui) - OX(Vi,j).

Definition 2.4.10. A
f- B is a flat map of rings if for all short exact sequences of

A-modules, 0→M1 →M2 →M3 → 0, the induced sequence 0→ B⊗AM1 → B⊗AM2 →
B ⊗AM3 → 0, is exact.

Theorem 2.4.11. (Hironaka Fields Medal) Every algebraic variety (over a field of char-
acteristic 0) can be desingularized. More precisely, if V is a variety over a field k of char-
acteristic 0, then there exists a smooth variety X and a projective birational morphism
X -- V .

Remarks on Hironaka’s Theorem:
(1) The original proof is very hard - it took up two volumes of the Annals of Math.

Now there is a “simple” proof that would only take about 6 weeks to teach in this
class.

(2) The question is still open in characteristic p > 0.
(3) Hironaka’s Theorem actually gives the resolution as a composition of easily under-

standable steps ”blowing up along smooth subvarieties.”

Definition 2.4.12. A projective morphismX - V is one that factors asX ⊂
closed- V×

Pn π1- V

Recall that a birational morphism is one that is an isomorphism on a dense open set.
In fact, X \ π−1(SingV )

π

∼=
- V \ SingV .
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Example 2.4.13. Let V = V(x2+y2−1) ⊆ A3 and W = V(x2+y2−z2) ⊆ A3. Let V
f- W

by sending (x, y, z) 7→ (xz, yz, z). This map sends a cylinder to a “cylinder” pinched in the
middle (i.e. one singular point). So V is the desingularized version of W .

Lecture 24. A Beginner’s Guide to Blow-ups

Remark 2.4.14. A smooth variety is similar to a manifold. In fact, if X is smooth over C,
then it is a complex manifold of the same dimension and a real (smooth) manifold of twice
the dimension.

Theorem 2.4.15. Let X
f-- Y be a morphism of smooth varieties over a field of char-

acteristic 0.
The set {y ∈ Y | f−1(y) is not a smooth variety } is a closed, proper subset of Y .

Remark 2.4.16. This theorem is the analogue to Sard’s Theorem in differential topology.

Theorem 2.4.17. (Sard’s) If X
f-- Y is a smooth map of smooth manifolds, then the

set
{y ∈ Y | f−1(y) is not a manifold } has measure zero.

Theorem 2.4.18. (Hironaka) If V is a variety over a field of characteristic 0, then there
is a smooth variety X ⊆ V × Pn closed and the projection X

π1-- V is an isomorphism
X \ π−1(SingV )

π

∼=
- V \ SingV .

Remark 2.4.19. Hironaka constructs X by a sequence of nice projections called blowing up.

Blowing up a point p ∈ A2

Let p = (0, 0). Let the coordinates of A2 be x, y and of P1 be s : t.
Viewing P1 as the set of lines in A2 through p define:

BpA2 = {(x, l) | x ∈ l} ⊆ A2 × P1

= {
(
(x, y), [s : t]

)
| (x, y) = λ(s, t) for some λ ∈ k}

= V(xt− ys) ⊆ A2 × P1

Define the projection BpA2 π- A2 by sending ((x, y), l) 7→ (x, y). The fiber over any non-
zero point (x, y) is one point and the fiber over (0, 0) is π−1((0, 0)) = {((0, 0), l) | (0, 0) ∈
l} = {(0, 0)× P1}.
Look in an affine patch A2 × Us = A2 × A1 = A3, where Us = { ts = z}, so that BpA2 =
V(xz − y).
Define the map from BpA2 - A2 by (x, y, yx ) 7→ (x, y)

Definition 2.4.20. The blow-up of A2 along p ∈ A2 is the projection morphismBp
π- A2,

where P1 is the set of lines through p in A2.

Observations:

(1) BpA2 is a smooth, quasi-projective variety
(2) The projection morphism BpA2 - A2 is projective and birational. There is also

a map BpA2 � A2 \ {p} given by (x, y) 7→ {
(
(x, y), [x : y]

)
}.

Example 2.4.21. The curve V = V(y2 − x2 − x3) ⊆ A2 has a singularity only at the point
(0, 0, 0) and is called the ”alpha” curve because it looks like an α when graphed in R2. By
avoiding the singularity, we get an isomorphism, π−1(V \ (0, 0))

∼=- V \ {(0, 0)}.

Lecture 25. Blowing-Up Along Varieties



Sara W. Lapan 31

Blowing up a point p ∈ An
Let p = (0, . . . , 0) ∈ An. Let the coordinates of An be x1, . . . , xn and of Pn−1 be y1 : · · · : yn.
Viewing Pn−1 as the set of lines in An through p define:

Bp(An) = {((x1, . . . , xn), l) | (x1, . . . , xn) ∈ l}

= V
(
2× 2 minors of

(
x1 . . . xn
y1 . . . yn

))
⊆ An × Pn−1.

The projection morphism BpAn - An is projective and birational. There is also a map
BpAn � An \ {p} given by (x1, . . . , xn) 7→ {

(
(x1, . . . , xn), [x1 : · · · : xn]

)
}.

Easy Facts:
Let V

ϕ- Y be a regular map. Then the graph of ϕ: Γϕ = {(x, ϕ(x))} ⊆ V ×W is closed

and Γϕ
π−1
�-
π

V is an isomorphism.

These maps are mutually inverse regular maps by (x, ϕ(x))↔ x.

Now consider a rational map V ........
ϕ
- W where V and W are irreducible.

Definition 2.4.22. The graph of the rational map V ........
ϕ
- W is the closure in V ×W

of the graph of the regular map U
ϕ|U- W , where U ⊆ V is open and dense. In particular,

Γϕ = {(X,ϕ(x)) | x ∈ U} ⊆ V ×W .

Proposition 2.4.23. For any rational map V .......
ϕ
- W between irreducible varieties, Γϕ

π- V
is a birational morphism (i.e. it is an isomorphism over the domain of definition of ϕ).

Remark 2.4.24. We have no control over π−1(the locus of indeterminacy), it is some closed
set in V ×W .

Proof. V ×W ⊇ Γϕ
π- V . For U ⊆ V , Γ|ϕ|U = Γϕ ∩ (U ×W )

π

∼=
- U �

Think about blowing up a point in A2:

The map A2 ........
ϕ
- P1 sending (x, y) 7→ [x : y] is rational on A2 and regular on A2 \ {(0, 0)}.

Γϕ =
(
{(x, y), [x : y]

)
| (x, y) ∈ A2 \ (0, 0)} = V(xt− ys) ⊆ A2 × P1.

Note: If we let p = (λ1, λ2), then we can look at (x, y) 7→ [x−λ1 : y−λ2] to see the blow-up
at a point other than the origin. In this case we have Γϕ = V((x− λ1)t− (y − λ2)s).

Summary: The blow-up B0An - An can be interpreted as the graph of the rational map

An ........
ϕ
- Pn−1, where (x1, . . . , xn) 7→ [x1 : · · · : xn], together with projection onto the first

coordinate: B0An = Γϕ
π- An.

Definition 2.4.25. Let V be an affine variety, W ⊆ V a closed subvariety. Say I(W ) ⊆ k[V ]
has generators F0, . . . , Ft. The blow-up of V along W , BWV , is the graph of the rational
map V .........- Pt sending x 7→ [F0(x) : · · · : Ft(x)], together with projection onto the first
coordinate.

Remark 2.4.26. Up to isomorphism, this does not depend on our choice of generators
F0, . . . , Ft.

Now we have V × Pt ⊇ BWV
π -

�........ π−1V , where π is projection and V \W π−1
- BWV .
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In general, how BWV looks is completely mysterious (except that it contains an open set
isomorphic to V \W ). But when W is smooth, we do understand how BWV looks because
then V × Pt ⊇ BWV - V .

Definition 2.4.27. The blow-up of an affine variety, V , along an ideal I = (F0, . . . , Ft),
denoted by BIV , is the graph of the rational map V .......- Pt sending x 7→ [F0(x) : . . . : Ft(x)]
together with projection onto V .

Remark 2.4.28. This is a projective, birational, isomorphism over V \ V(F0, . . . , Ft).

Another statement of Hironaka’s Theorem:
Let V be an affine variety over a field k of characteristic 0. Let BIV be the graph of the
maps V ........- Pt sending x 7→ [F0(x) : · · · : Ft(x)]. Then ∃I = (F0, . . . , Ft) ⊆ k[V ] such that
BIV - V is a resolution of singularities of V . So BIV is smooth!

And yet another version:
Let V be a variety over a field k of characteristic 0. Then there exists a sequence of blowings
up along smooth subvarieties which eventually terminates in a resolution of singular varieties
of V . (We are presumably blowing up along a subvariety of SingV at each step.

Lecture 26. Local Parameters

Lemma 2.4.29. (Nakayama’s) Let M be a finitely generated module over a local (Noe-
therian) ring R (with max ideal m). Then m1, . . . ,mt ∈ M generate M ⇔ their images,
m1, . . . ,mt span the R/m-vector space M/mM . In particular, they are a minimal generating
set ⇔ m1, . . . ,mt are a basis.

Developing the idea of ”local coordinates” at a smooth point p ∈ X variety. Since X already
has local coordinates inherited from affine space, we will call these ”local coordinates”,
”parameters at p” instead.
Note that smooth, non-singular and simple are all equivalent.

Example 2.4.30. p = (λ1, . . . , λn) ∈ An: local parameters at p are u1 = x1 − λ1, . . . , un =
xn − λn

Note:
(1) The u1, . . . , un are n regular functions at p and dimpX = n
(2) The ui all vanish at p and they cut out precisely p (in a neighborhood of p)
(3) The max ideal in the local ring, OX,p is generated by (the images of) (u1, . . . , un)
(4) The images, u1, . . . , un, in m/m2 are a basis for the cotangent space since p is a

smooth point implies that the dimension of the cotangent space is n. We can think
of m/m2 as a k-vector space (where k ⊂ R = OX,p), a R/m-vector space, or an
R-module.

Definition 2.4.31. Let p be a smooth point on a variety X of dimension n (at p). Let
u1, . . . , un be regular functions at p that vanish at p. (Note: ui ∈ OX,p). Then u1, . . . , un
are parameters at p if their images in m/m2 are a basis for this cotangent space, where
m is the maximal ideal of OX,p.

Equivalently, u1, . . . , un are a minimal generating set for the m ∈ OX,p.

Remark 2.4.32. OX,p is the local ring of X at p, so it is the ring of functions on X that are
regular at p.

Example 2.4.33. LetX = V(x2+y2−1) ⊆ A2 and p = (0, 1). So k[X] = k[x, y]/(x2+y2−1) ⊇
mp = (x, y − 1). Note that we get mp from the local parameters at p, which are x, y − 1.
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Then

OX,p = (k[x, y]/(x2 + y2 − 1))(x, y − 1)

=
k[x, y]

x2 + y2 − 1
[
(
OX,p \ (x, y − 1)

)−1]

Here we are inverting the non-zero set.
Claim: The max ideal of OX,p is generated by x:
(y − 1)(y + 1) = y2 − 1 = −x2 in k[X]mp ⇒ y − 1 = x( −xy+1 ) ∈ (x) ∈ OX,p
So m = (x, y − 1) = (x)⇒ x is a parameter at p.
Counting multiplicities, any line intersects X at two points, so p has multiplicity 2.

Remark 2.4.34. R[U−1] ≡ { rv | r ∈ R, v ∈ U}. Let U = {1, f, f2, . . .} = (f). Then
R[U−1] = R[ 1

f ].
Let P ⊂ R prime ideal and U = R− P . Then the standard notation for R[U−1] is Rp.

Theorem 2.4.35. Local statement: Let u1, . . . , un be parameters at a smooth point p ∈ X.
Then the subvariety of X cut out by any subset of the u′is is smooth at p. More precisely:
There exists an open neighborhood U ⊆ X of p where u1, . . . , un are all regular and p ∈ V ≡
V(ui1 , . . . , uic) ∩ U ⊆ U ⊆ X so that V smooth at p.

Proof. Without loss of generality, replace X by an open set. Let V = V(u1, . . . , uc)
for some 1 ≤ c ≤ n and take any point p ∈ V that is a smooth point of X. Then
OV,p �� OX,p by restriction. Since OX,p is generated by u1, . . . , un, OV,p is generated
by u1|V , . . . , un|V ⇒ OV,p is generated by uc, . . . , un. Therefore:

n− c ≤ dimpV ≤ dim(mV,p/(mV,p)2) = dim(cotangent space to V at p) ≤ n− c
Hence dimpV = n− c and p is smooth of V . �
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3. Rational Maps, Regular Maps, and Divisors Thereof

Lecture 27. Local Defining Equations

Goal: Study rational and regular maps from a variety to a projective space.

Set-up: Let X be an irreducible variety and X ..........
ϕ
- Pn a rational map sending x 7→

[ϕ0(x) : · · · : ϕn(x)], where ϕi ∈ k(X). Each ϕ = fi
gi

where fi, gi are regular at p. By
clearing denominators, we can assume that all of the ϕi are regular at p ∈ X.

Example 3.0.36. The map A2 ........- P1 that sends (x, y) 7→ [x : y] is rational with domain of
definition A2 − {(0, 0)} and locus of indeterminacy the point (0, 0).

Example 3.0.37. Let V = V(x2 + y2 − z2) ⊂ P2 and V ..........
ϕ
- P1 by sending [x : y :

z] 7→ [x : y − z](= [xz : y
z − 1] on Uz). For [x : y : z] ∈ V , [x : y − z] = [x(y + z) :

(y−z)(y+z)] = [x(y+z) : −x2] = [y+z : −x]. We obtain ϕ by stereographically projecting
from [0 : 1 : 1] = V(x, y − z). When we write ϕ as ϕ([x : y : z]) = [xz : yz − 1], ϕ is regular
on X \ [0 : 1 : 1].

Theorem 3.0.38. Thm 1 Let X be a smooth irreducible variety and X ..........
ϕ
- Pn be a

rational map sending x 7→ [ϕ0(x) : · · · : ϕn(x)]. Then the locus of indeterminacy has
codimension at least 2.

Remark 3.0.39. For instance, if X has dimension 2, then there are at most finitely many
points where ϕ is not regular. This is because the locus of indeterminacy has dimension 0
by the theorem.

Corollary 3.0.40. If X is a smooth curve, every rational map X ........
ϕ
- Pn is regular at all

points.

Corollary 3.0.41. For smooth projective curves, birational equivalence is the same as iso-
morphism.

Remark 3.0.42. This is false in higher dimensions. For instance, P2 ∼ P1×P1 ∼ BpP2 ∼ . . .
etc.

Definition 3.0.43. f1, . . . , ft ∈ OX,p are local defining equations for closed Y ( X
containing the point p if ∃U ⊆ X affine open neighborhood of p where f1, . . . , ft are
regular and I(Y ∩ U) ⊆ OX(U) is generated by the f1, . . . , ft. Equivalently, if {g ∈
OX,p | g vanishes in Y on an open neighborhood of p} = I(V )p = OX,p is generated by
f1, . . . , ft.

Example 3.0.44. Let f = x2 + y2 − z2 and Y = V(f) ⊆ P2. At p = [0 : 1 : 1], f is a local
defining equation for Y ∩ Uz at every point of Uz (refer to example of this earlier to see
this).

Recall: If Y ⊆ An has (pure) codimension 1, then I(Y ) = (f) for some f ∈ k[x1, . . . , xn].
So f is a local defining equation for Y at all points of An.
Question: If Y ⊆ X is closed with pure codimension 1, does Y always have one local defining
equation? No.

Example 3.0.45. Let Y = V(x, y) and X = V(xz − y2) so that Y ⊆ X ⊆ A3. Then
(x, y) = I(Y ) ⊆ k[X] = k[x,y,z]

(xz−y2) , which implies that x = y2

z and so (x, y) = (y) in OX(Uz).
Hence y is a local defining equation in Uz (and Ux by symmetry). But at p = (0, 0, 0), we
need both x and y to generate I(Y ) in OX,p.
I(Y ) cannot be generated by one element: Take any u, v ∈ k[x,y,z]

(xz−y2) where v has a non-zero
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constant term, such that (x, y) = (uv ) in k[x,y,z]
(xz−y2) (x, y, z) = OX,p (that is, invert everything

that is outside of (x, y, z)).
Lifting to k[x, y, z] we get that xv − u ∈ (xz − y2) and yv − u ∈ (xz − y2).
Restricting to the terms of degree 1: xv0 − u1 ∈ (xz − y2) ⇒ xv0 = u1 and, likewise,
yv0 = u1. Therefore xv0 = yv0 = u1. This is a contradiction since x 6= y.

Theorem 3.0.46. Thm 2: If Y ⊆ X is a closed subset of X of codimension 1 and p ∈ X
is a smooth point, then Y has a local defining equation at p.

In particular, there exists an open affine set U ⊂ X containing p such that I(Y ) is prin-
cipal on U . More precisely, if Y ∩ U ⊆ U is a closed subset of an affine variety, then
I(Y ∩ U) ⊆ OX(U) is principal or, equivalently, I(Y ) is principal near any smooth point
p ∈ X.

The main algebraic fact underlying Thm 1 is:

Theorem 3.0.47. Thm 3 The local ring OX,p of a smooth point p on a variety X is a
UFD.

The idea behind the proof thm 3 is: OX,p ⊂ - σ̂X,p = { completion of OX,p at its maximal
ideal } = k[[u1, . . . , us]], where ui are parameters at p. So any regular function at p can be
written as a power series.

Lecture 28.

Example 3.0.48. Let An .........
ϕ
- Pt be given by x 7→ [F0(x) : · · · : Ft(x)]. We may assume

that the Fi are polynomials with no common factors by clearing denominators and using
the property that k[x1, . . . , xn] is a UFD to discard all common factors. Since ϕ is defined
on (at least) An − V(F0, . . . , Fn),(

locus of indeterminacy of ϕ
)
⊆ V(F0, . . . , Ft) and

codim
(
locus of indeterminacy of ϕ

)
≥ codim(V(F0, . . . , Ft))

Claim: codimV(F0, . . . , Ft) ≥ 2.
Suppose not. Then there is an irreducible variety Y of codimension 1 with Y ⊆ V(F0, . . . , Ft)
and I(Y ) = (g) for some irreducible polynomial. Therefore g divides all the Fi, which is a
contradiction.
Note: Suppose I(Y ) = (g1, . . . , gs). I(Y ) is a prime ideal and so some irreducible factor g
of g1 is in I(Y ). Then (g) ⊆ I(Y ), An ) V(g) ⊇ Y , and Y has codimension 1. Therefore
I(Y ) = I(V(g)) = I(g).

Thm 1 ⇒ Thm 3:

Proof. Use the fact that height one ideals in a UFD are principal. �

Thm 3 ⇒ Thm 2:

Proof. Without loss of generality, we can assume that X is affine. Take Y ⊆ X and
p ∈ X satisfying the conditions for Thm 2. Look at I(Y ) = (g1, . . . , gs) ⊆ k[X], which
has codimension c in OX,p. Then I(Y )p ⊆ OX,p is a UFD by theorem 3. We have 2
cases:
Case 1 Y is irreducible:
Then (g1, . . . , gs) factors into irreducibles and is prime ⇒ we may assume that the
g′is are all irreducible. (g1) ⊆ (g1, . . . , gs) ⇒ V(g1) ⊆ V(g1, . . . , gs) and the latter has
codimension one ⇒ V(g1) = V(g1, . . . , gs).
Case 2 Y = Y1 ∪ . . . ∪ Yr, where each Yi is irreducible:



36 Sara W. Lapan

By case 1, I(Yi) = (gi) near p⇒ I(Y ) = (g1, . . . , gr) near p. This is radical because the
gi are all distinct and irreducible in a UFD. �

Thm 1:

Proof. X ........
ϕ
- Pt where x 7→ [ϕ0(x) : · · · : ϕt(x)] and ϕi ∈ k(X). Let Y be the locus

of indeterminacy of ϕ. Suppose, by way of contradiction, that Y has a component of
codimension one.
Pick p on such a component and consider ϕ near p. Clear denominators so that we map
assume that ϕi ∈ OX,p Cancel to get that the ϕi’s have no common factors in OX,p.
Our codimension 1 component defined by one equation ψ near p. ϕ defined outside of
V(ϕ0, . . . , ϕt) ⇒ our component is a subset of V(ϕ0, . . . , ϕt) ⇒ I( our component)=
(ψ) ⊇ (ϕ0, . . . , ϕt)⇒ ψ divides each of the ϕ0, . . . , ϕt.
This is a contradiction. Note that this proof is very similar to the proof of our earlier
example. �

Convenient Notation:
For a variety X, we have the structure sheaf, OX
OX  U ⊆ X,OX(U) = rational functions regular on U
If we have Y ⊆ X a closed subvariety, then:
I(Y ) I(Y )(U) = the set of functions in OX(U) that vanish on Y ∩ U
OX is a sheaf and I(Y ) is the sheaf of ideals of Y .

Remark 3.0.49. What theorem 2 really says is that the sheaf of ideals of a codimension one
subvariety on a smooth variety is locally principal.

3.1. Divisors.

Lecture 29. Introducing Divisors

Algebra Blackbox:

Corollary 3.1.1. If R is a Noetherian doman, I ( R ideal, then ∩tIt = 0

For today, fix X irreducible variety over k

Definition 3.1.2. A prime divisor of X is an irreducible codimension 1 (closed) subva-
riety.

Definition 3.1.3. A divisor D on X is a finite formal Z-linear combination of prime
divisors: D = ΣiniYi, where ni ∈ Z and Yi is irreducible of codimension 1 in X.

Definition 3.1.4. Div(X) is the free abelian group generated by prime divisors on X

Example 3.1.5. Let X = A1, a point [λ] where λ ∈ k is a prime divisor. A divisor on A1 is
Σti=1ni[λi].

Example 3.1.6. Let X = P2, a prime divisor is an irreducible curve V(f), where f is irre-
ducible and homogeneous in x, y, z. For example, L = V(linear) and C = V(x2 + y2 − z2).
A divisor would be a finite sum of irreducible curves. For example, 2L− C.

Example 3.1.7. Let X ⊆ Pn be irreducible and not contained in any hyperplane. Then
X ∩H has codimension 1 for any hyperplane H. For example, let X = V(x2 +y2−z2) ⊆ P2

- note that on this curve, some points have multiplicity 2.

Example 3.1.8. Let f = g
h ∈ k(An), where g, h ∈ k[x1, . . . , xn]. There is a divisor “of zero’s

and poles” of f . If g
h = g

a1
1 ...garr

h
b1
1 ...hbss

where gi, hj ∈ k[x1, . . . , xn] are irreducible, then:

div(f) = div( gh ) = the divisor of zeros of ΣaiV(gi)− the divisors of poles ΣbiV(hi).
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Example 3.1.9. Let X
ϕ-- P1 be a regular map. Then ϕ has fibers of codimension 1, so

V(ϕ) is a divisor on X. In particular, any regular map is a divisor in this scenario.

Remark 3.1.10. Regular and rational maps to projective space are governed by families of
divisors.

Definition 3.1.11. Let U ⊂ X be an open affine set and let g ∈ OX(U). Let Y ⊆ V(g) be
irreducible. The order of vanishing of g along Y is t ∈ N such that g ∈ (πi)t − (πi)t+1.
Notation: t = νYi(g) = ordYi(g).

Goal: Given any non-zero rational function f ∈ k(X), we want div(f) to be the “domain of
zeros and poles.” First assume that X is smooth and take an open affine set U ⊆ X. Then
f = g

h , where g, h ∈ OX(U ′). for some open affine set U ′ ⊆ U . Note that we need to choose
a large enough open set U such that it is not the complement of a divisor. For instance, we
can assume that codim(X − U) ≥ 2.

V(g) is a codimension 1 subvariety that equals Y1 ∪ · · · ∪ Yt, where the Yi are irreducible

V(h) is a codimension 1 subvariety that equals Z1 ∪ · · · ∪ Zs, where the Zi are irreducible
We know that div(f) = ΣaiYi − ΣbjZj , but how do we find ai, bj?
Consider g, Shrink U if necessary so that Yi is principal on U . Then g ∈ I(Yi ∩U) = (πi) ⊆
OX(U).
Define div(f) = ΣaiYi − ΣbiZi, where ai = ordYi(g) and bi = ordZi(h).
We need to check that this definition is:

(1) Independent of our original choice of U and the way we wrote f as g
h

(2) Independent of the smaller neighborhood, U ′, that we took to make the components
locally principal

(3) Independent of our choice of generator π

Example 3.1.12. Rational functions f = F
G , where F,G are homogeneous degree d polyno-

mials in P2.
Let F = F a1

1 . . . F arr and G = Gb11 . . . Gbss , where the Fi, Gi are irreducible and homogeneous.
Then, div(f) = ΣaiV(Fi)− ΣbiV(Gi).

Example 3.1.13. Let f = x2

x2+y2−z2 . On the affine patch Uz we can replace x by x
z , y by y

z ,

and z by 1 so that f = ( xz )2

( xz )2+( yz )2−1 where the numerator is F and the denominator is G, each
of which is regular in OP2(Uz). Then: div(f) = aV((xz )2)− bV((xz )2 + (yz )2 − 1) = aL− bC
for some a, b ∈ Z
I(L ∩ Uz) = (xz ) and (xz )2 ∈ (xz )2 \ (xz )3 ⇒ νL((xz ) = 2⇒ a = 2.
I(C ∩ Uz) = (xz )2 + (yz )2 − 1)⇒ νC(xz )2 + (yz )2 − 1) = 1⇒ b = 1.

k(X)∗
div- Div(X) by: f 7→ div(f) and f1f2 7→ div(f1f2) = div(f1) + div(f2) is a group

homomorphism.

Definition 3.1.14. The group of principal divisors of X, P (X), is the image of the
above map.

Definition 3.1.15. The divisor class group of (an irreducible variety) X, Cl(X), is the
group Div(X)/P (X)).

So k(X)∗ - Div(X) -- Cl(X) is an exact sequence.

Example 3.1.16. Cl(An) = 0: The irreducible codimension 1 subvarieties of An are of the
form V(fi), where fi is an irreducible polynomial. So any element D ∈ Div(An) is of the
form:

D = ΣniV(fi)− ΣmiV(gi) = div(
fn1

1 . . . fntt
gm1

1 . . . gmss
) ∈ P (X)

.
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Example 3.1.17. Cl(Pn) ∼= Z: Any f ∈ k(Pn)∗ can be written as f = F
a1
1 ...Farr

G
b1
1 ...Gbss

, where

Fi, Gj ∈ k[x] and Gj non-zero. Then div(f) = ΣaiV(Fi) − ΣbjV(Gj). Since f ∈ k(Pn)∗,
ΣaidegFi = ΣbidegGi. Then Div(Pn) - Z is given by the degree so that ΣniV(Hi) 7→
Σnideg(Hi). The kernel of this map is P (X). This gives us a short exact sequence:

0 - k(Pn)∗
div- Div(Pn)

degree-- Z - 0⇒ Cl(Pn) ∼= Z

.

Remark 3.1.18. Cl(X) is an invariant: X ∼= Y ⇒ Cl(Y ) = Cl(X).

Lecture 30.

Algebra Blackbox:

Definition 3.1.19. A domain R is normal if it is integrally closed in its fraction field.

Remark 3.1.20. R is normal ⇔ Rp is normal ∀p ∈ SpecR⇔ Rm normal ∀m ∈ maxSpecR.

Proposition 3.1.21. The following are equivalent for any one dimensional local Noetherian
domain (R,m):

(1) R is normal
(2) m/m2 is a one dimensional R/m vector space
(3) m is principal, say m = (π)
(4) Every element of R can be written (unit)(π)t for some (uniquely determined ) t ∈ N.

Note that ν(f) = t where f =(unit)πt.

Definition 3.1.22. Such a domain is called a discrete valuation ring (DVR).

For today, X is an irreducible variety over k.

Definition 3.1.23. Let D = Σti=1niYi be a divisor where ni 6= 0 and Yi is a pure codimen-
sion one subvariety of X. The support of D, SuppD, is Y1 ∪ · · · ∪ Yt.

Definition 3.1.24. A divisor D = ΣiniYi of X is effective if all of the ni ≥ 0.

Let X be a variety with SingX of codimension atleast two. Then every prime divisor Y
must intersect the smooth locus, X \SingX. Take an open affine U ⊆ X \SingX such that
I(U ∩ Y ) = (π) ⊆ OX(U). Let f ∈ OX(U). Then νY (f) = t where f ∈ (πt) \ (πt+1).

Why is ΣY νY (f)Y ), where all of the Y are prime divisors, a finite sum?
Choose an open affine set U on which f is regular. Suppose U ∩ Y 6= ∅, then:
νY (f) ≥ 0 on U and νY (f) > 0 ⇔ f vanishes along Y ⇔ Y ⊆ V(f) = Y1 ∪ · · · ∪ Yt on U
where each of the Yi has codimension 1 and so V(f) has codimension 1 ⇒ Y is one of these
finitely many Yi.
Now suppose U ∩ Y = ∅ ⇒ Y ⊆ X − U = Z1 ∪ · · · ∪ Zt ⇒ Y ⊆ Zi ⇒ Y is one of the Zi.
Since there are only finitely many irreducible components, the sum must be finite.

Notation: Let X be a variety and Y ⊆ X irreducible. Then IY (U) = I(Y ∩ U), where
U ⊂ X open affine set.
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Definition 3.1.25. Let Z ⊆ X be any irreducible closed subvariety of X. The local ring
of X along Z is:

OX,Z = {ϕ ∈ k(X) | ϕ is regular at some point of Z}
= {ϕ ∈ k(X) | the domain of definition of(ϕ) ∩ Z 6= ∅}
= {ϕ ∈ k(X) | ϕ is regular on a non-empty open set of Z}
= lim−→
U∩Z 6=∅

OX(U)

= OX(U)[f−1 | f /∈ I(Z ∩ U)]

= OX(U)I(Z∩U)

We are allowing rational functions whose denominator does not vanish completely along Z.
In the last three equalities we passed to any open affine U ⊆ X,U ∩ Z 6= ∅.

Example 3.1.26. If Z = {x},OX,Z = OX,x = local ring at x.

Suppose Z = Y ⊆ X is codimension 1 and irreducible. Then 0 ( IZ ⊆ OX , 0 is the only
prime ideal contained in IZ . Note that it does not matter what open affine set we choose
so we can write OX instead of OX(U). So IZ has height 1. OX,IZ has 2 prime ideals: (0)
and IZOX,Z . So OX,Z is one dimensional.
If codimension of SingX is atleast 2, then there is an open affine set U where U ∩ Z 6= 0
and IZ(U ∩ Z) is principal.
If SingX has codimension atleast 2 (if you prefer, you can think of X as being smooth),
then OX,Y is a discrete valuation ring (in k(X)) for all prime divisors, Y . Now, given
f ∈ k(X)∗, νY (f) = the valuation of f thinking of it as an element of the fraction field of
OX,Y , which is a discrete valuation ring.

Definition 3.1.27. A variety X is normal if ∃{Uλ} open affine cover of X such that
OX(Uλ) is normal.

Note that in this definition we are still assuming that X is irreducible. Equivalently we
could define this as:

Definition 3.1.28. A variety X is normal if OX,x is normal ∀x ∈ X.

This second definition makes it clear that normality does not depend on the affine cover we
choose.

Lecture 31. Locally Principal Divisors

Algebra Blackbox:

Proposition 3.1.29. Every UFD is normal.

Theorem 3.1.30. Let A be a normal domain, then A = ∩ΛAp, where Λ = {P ⊂ A prime
ideal of height 1}

Corollary 3.1.31. Every smooth variety is normal.

Proof. X is smooth ⇒ OX,x is a UFD ∀x ∈ X ⇒ OX,x is normal ⇒ X is normal. �

“Pop Quiz”
On Pn, find four different divisors all representing the same class in Cl(Pn) but satisfying
the four conditions:

(1) SuppD has 1 irreducible component and its coefficient is 1:
D = V(Fd) where Fd is any irreducible degree d homogeneous polynomial
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(2) SuppD has d irreducible components:
D = H1 + · · ·+Hd, where the Hi are all distinct hyperplanes.

(3) SuppD is a hyperplane:
D = H, where H is a hyperplane

(4) D is not effective:
V(Fd) +H1 −H2

Given f ∈ k(X)∗, how can we tell in terms of div(f) whether or not f is regular?

Proposition 3.1.32. Let X be normal, f ∈ k(X)∗. Then f is regular on X ⇔ divf ≥ 0
(i.e. divf is effective).

Proof. (⇒) Suppose f is regular ⇒ divf ≥ 0. Let Y be a prime divisor. To compute
νY (f), take any open affine set U ⊆ X such that U ∩ Y 6= ∅, f ∈ OX(U)  f ∈
OX,Y ⇒ νY (f) ≥ 0.
(⇐) Suppose div(f) ≥ 0 ⇒ νY (f) ≥ 0∀Y prime divisors. To show f is regular, check
f |U is regular ∀U ⊆ X affine open. So div(f) = ΣY νY (f)Y, f ∈ OX,Y (U) ⇒ f ∈
∩Y ∩U 6=∅OX,Y = OX(U). Therefore f is regular on each U ⇒ f is regular on X. �

What is the kernel of k(X)∗
div- Div(X)?

Proposition 3.1.33. Ker(div) = {f ∈ k(X)∗ | f, f−1 ∈ OX(X)}=O∗X(X) = the subgroup
of invertible elements of OX(X). This is because elements of Ker(div) have no poles and
no zeros.

Example 3.1.34. If X = A1 \ {0}, then 1
x ∈ O

∗
A1(X).

Locally Principal Divisors: Let X be irreducible and normal.

Definition 3.1.35. Let D = Σti=1niYi where the Yi are prime. Then D ∈ Div(X) is
locally principal if the ideal IYi ⊆ OX is locally principal. In particular, if there exists an
open affine cover {Uλ} of X such that I(Yi ∩ Uλ) ⊆ OX(Uλ) is principal.

Remark 3.1.36. If X is smooth, then every divisor is locally principal.

Example 3.1.37. Let X = V(xz − y2) ⊆ A3 and L = V(x, y) ⊆ X. Then X is normal and
L is a prime divisor that is not locally principal. For some a ∈ Z, div(X) = aL. Since
OX,L = k[x,y,z]

(xz−y2) (x, y), OX,L has z as a unit and (y) as a maximal ideal. Now x ∈ (y2) \ (y3)
so a = νL(x) = 2 and, therefore, div(X) = 2L.

Say that D is a locally principal divisor, D = Σti=1niYi. There is an open cover {Uλ} such
that I(Yi ∩Uλ) = V(πiλ). On Uλ  D ∩Uλ = div(πn1

1λ . . . π
nt
tλ ≡ fλ), where fλ ∈ k(X)∗. We

can think of a locally principal divisor D as data {(Uλ, fλ)}λ where fλ ∈ k(X)∗ and when
{Uλ} is an open cover of X. div(fλ∩Uλ′) = (D∩Uλ)∩Uλ′ = (D∩U ′λ)∩Uλ = div(fλ′ ∩Uλ).
So div(fλf−1

λ ) = divfλ − divfλ′ = 0 on Uλ ∩ Uλ′ .
Therefore the fλ satisfy fλf−1

λ′ ∈ O∗X(Uλ ∩ Uλ′).

Lecture 32.

For this lecture, let X be a normal, irreducible variety.
Div(X) is the free abelian group on irreducible codimension 1 subvarieties.
Div(X) ⊇ CDiv(X) is the subgroup of locally principal divisors (i.e. Cartier diviors).
CDiv(X) ⊇ P (X) is the subgroup of principal divisors {div(f)}f∈k(X)∗ .

Example 3.1.38. LetX = Pn andD = V(Fd), where Fd is an irreducible homogeneous degree
d > 0 polynomial. Ui = X − Hi, where Hi = V(xi). Then D ∩ Ui = div(Fd

xdi
) = div(fi),

where fi is a rational function on Pn that agrees with Fd
xdi

. This is an example of a locally
principal but not principal divisor.
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Note that CDiv(X) is a group since if we take D1 = {Ui, divfi} and D2 = {Vj , divgj} then
D1 +D2 = {Ui ∩ Vj , div(figj)}i,j .

Definition 3.1.39. A Cartier divisor D on X is equivalent to the data {Uλ, fλ} where:

(1) {Uλ} is an open cover of X
(2) fλ ∈ k(X)∗

(3) fλ
fη
∈ O∗X(Uλ ∩ Uη), invertible regular functons on Uλ ∩ Uη

Remark 3.1.40. This definition of Cartier divisor is the type that you find in textbooks
because it makes sense “even if you are not normal.” Whereas the typical definition that
geometers use depends on being normal.

Two collections {Uλ, fλ} and {Vµ, gµ} define the same divisor ⇔ fλ · g−1
µ ∈ O∗X(Uλ ∩ Vµ).

Definition 3.1.41. The Picard group of X is the quotient CDiv(X)
P (X) ≡ Pic(X).

Note that Pic(X) = CDiv(X)
P (X) ⊆ Div(X)

P (X) = Cl(X). ifX is smooth, all divisors are locally prin-
cipal, so Div(X) = CDiv(X) and Cl(X) = Pic(X). For example, Pic(Pn) = Cl(Pn) = Z.

Let X
ϕ- Y be a regular map of irreducible varieties. Is there an induced map of class

groups? Is there an induced map of Picard groups?
The Picard group defines a type of invariance between varieties.
Given a regular mapX

ϕ- Y , we want to define the pull-back of ϕ on divisors: Div(Y )
ϕ∗- Div(X)

by sending D = ΣniYi 7→ ϕ∗(D) = Σniϕ∗(Yi). But what is this map?

Example 3.1.42. Let X = V(x2 + y2 − 1) ⊆ A2 where X
π- A1 by projection onto the

first coordinate, where the coordinate on A1 is t. An element D ∈ Div(A1) is of the form
D = Σnipi where pi is a point in A1. Then π∗(D) = Σniπ∗(pi). 0 ∈ Div(A1) 7→ π∗(0), but
what is this? Since 0 is defined by div(t), π∗(0) should be defined by π∗(t) = x ∈ k[x,y]

x2+y2−1 .
π∗(div(t)) = div(π∗(t)) = div(x), since π is defined by (x, y) 7→ x.

supp(div(x)) = V(x) ⊆ X = V(x2+y2−1)⇒ supp(div(x)) = V(x, x2+y2−1) = V(x, (y+1)(y−1))

In addition, π∗(div(t− 1)) = div(π∗(t− 1)) = div(x− 1) on X.

supp(div(x−1)) = V(x−1) ⊆ X ⇒⇒ supp(div(x−1)) = V(x−1, x2+y2−1) = V(x−1, y2) = {(1, 0)} ≡ Q

Note that k[x,y]
x2+y2−1 (x− 1, y) 3 x− 1 = −y2

x+1 , so k[x,y]
x2+y2−1 (x− 1, y) has maximal ideal (y).

Since x− 1 is generated by y2, νQ(x− 1) = 2.

Definition 3.1.43. Let X
ϕ- Y be a dominant morphism of irreducible varieties. If

D ∈ CDiv(Y ) is given by the data {Uλ, fλ}, then the pull-back of D, denoted ϕ∗D, is
given by data {ϕ−1(Uλ), ϕ∗(fλ)}.

Remark 3.1.44. The pull-back of fλ makes sense because the map X
ϕ- Y is a dominant

morphism so k(Y ) ⊂ - k(X) and OX(Y ) ⊂
ϕ∗- OY (V ) is injective.

Note that ϕ∗fλ·(ϕ∗fµ)−1 = ϕ∗(fλ·f−1
µ ) ∈ σ∗X(ϕ−1(Uλ)∩ϕ−1(Uµ)) = ϕ−1(Uλ∩Uµ). This fol-

lows since fλ ·f−1
µ ∈ O∗X(Uλ∩Uµ). So we can pull-back Cartier divisors under dominant mor-

phisms. Again D is given by {Uλ, divUλfλ} and ϕ∗D is given by {ϕ−1(Uλ), divϕ−1(Uλ)ϕ
∗fλ}.

Proposition 3.1.45. If X
ϕ- Y is a morphism of irreducible varieties, D ∈ CDiv(Y )

such that ϕ(X) * suppD then we can define ϕ∗(D) exactly as for the dominant case.
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Conclusion: If X
ϕ- Y is a morphism of irreducible varieities, there is no map of groups

DivY
ϕ∗- DivX in general, but there is a map PicY

ϕ∗- PicX.
CAUTION: One cannot pull-back a Weil Divisors (an element of DivX) that is not locally
principal in any reasonable way, even on a normal variety.

Lecture 33. Pulling-back Divisors

Pulling Back Cartier Divisors:
Let X

ϕ- Y be a morphism of irreducible varieties.

Remark 3.1.46. With a normal variety, we can localize at mp and discuss the “divisors of
zeros and poles” of f , since f has an order of vanishing.

Given a locally principal divisor D ∈ CDiv(Y ), we want ϕ∗D ∈ CDiv(X) (ϕ∗D should
take principal divisors to principal divisors).
If D is defined by fλ on Uλ ⊂ Y open affine, we want ϕ∗D to be defined by ϕ∗fλ on
ϕ−1(Uλ) ⊆ X.

Example 3.1.47. Let X = V(x2+y2−1) ⊂ A3 and define X
ϕ- A2 by ϕ : (x, y, z) 7→ (x, y).

Given a divisor D = ΣniCi ∈ CDiv(A2) = Div(A2), we want ϕ∗D = Σniϕ∗(Ci). If Ci =
V(fi), where fi is irreducible, then Ci = div(fi) and so ϕ∗(Ci) = ϕ∗(div(f)) = div(ϕ∗fi).
Let L = V(x) ⊆ A2. Then ϕ∗L = divX(ϕ∗x) = divXx

supp(divX(x)) = V(x) ⊆ X ⇒ supp(divX(x)) = V(x)∩X = V(x, y2−1) = V(x, y−1)∪V(x, y+1)

Let L1 = V(x, y+1) and L2 = V(x, y−1), so that div(x) = a1L1 +a2L2 for some a1, a2 ∈ k.
It is easy to see that a1 = a2 = 1.

Example 3.1.48. Let L′ = V(y − 1). Then ϕ∗L′ = ϕ∗(div(y − 1)) = div(ϕ∗(y − 1)) =
div(y − 1) = aL2.

supp(div(y−1)) = V(y−1) ⊆ X = V(y−1, x2+y2−1)⇒ supp(div(y−1)) = V(y−1, x2) = L2

Therefore a = 2. A curve in A2 pulls back to the line in A3 over the points where the
curve intersects the circle. Let C = V(x2 + y2 − 1). Then ϕ∗C = ϕ∗(div(x2 + y2 − 1)) =
div(ϕ∗(x2 + y2 − 1)) = div(0). Now Imϕ ⊆ C and so ϕ∗(f) = f ◦ ϕ = 0. We do not want
Imϕ to be contained in any divisor, since pulling back that divisor would give us something
that is undefined. We conclude that in order to define ϕ∗ on all of CDiv(Y ), we require
that ϕ∗ must be dominant.

Recall: Given D ∈ CDiv(Y ) (locally principle), we define ϕ∗D ∈ CDiv(X) when ϕ(X) *
SuppD.
Represent D by {Uλ, fλ}, where fλ ∈ k(X)∗. Without loss of generality we can assume that
the Uλ are affine and fλ = gλ

hλ
, where gλ, hλ ∈ OX(Uλ) \ {0}.

Then ϕ∗D ≡ {ϕ−1(Uλ), ϕ
∗gλ

ϕ∗hλ
}, is well-defined.

Proof. The point is that we need both ϕ∗gλ and ϕ∗hλ to be nonzero.
Supp(D ∩ Uλ) = Supp(divfλ) on Uλ, which equals V(gλ) ∪ V(hλ) assuming that gλ
and hλ do not share any common factors. Assume that ϕ(X) * SuppD, so that
ϕ(X) ∩ Uλ * SuppD ∩ Uλ = V(gλ) ∪ V(hλ)
Then we need ϕ∗gλ 6= 0 since if ϕ∗gλ = 0, then ϕ∗gλ = 0 on ϕ−1(Uλ).
There, ϕ∗g = 0⇒ g ◦ϕ = 0⇒ ∀x ∈ X, g ◦ϕ(x) = 0⇒ ∀x ∈ X,ϕ(x) ∈ V(g)⇒ Imϕ ⊆
V(g). This contradicts our assumption. �

Lemma 3.1.49 (Moving Lemma). Fix a Cartier divisor D in an irreducible variety Y and
fix a finite number of points y1, . . . , yt. Then there exists a divisor D′ such that D′ ∼ D and
yi /∈ SuppD′∀i.
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Proof. We will do the one point case, y ∈ Y , and assume that Y is normal. If D is not
effective then D = D1 −D2 where D1, D2 are both effective divisors. Take D1 ∼ D′1
and D2 ∼ D′2 missing y, then set D′ = D′1 −D′2. Therefore we can assume that D is
effective. We can write D as {Uλ, fλ}, where fλ ∈ OX(Uλ)∗. Since D is effective, fλ
has no poles. Pick Uλ containing y and set D′ = D − div(fλ). Then D′ ∼ D since
D − D′ = div(fλ). On Uλ, D ∩ Uλ = div(fλ), so D′ ∩ Uλ = D ∩ Uλ − divUλfλ = 0.
Thus SuppD′ ∩ Uλ = ∅ so y /∈ SuppD′. �

Theorem 3.1.50. If X
ϕ- Y is a morphism of irreducible varieties, there is an induced

(functorial) homomorphism:
PicY

ϕ∗- PicX that sends [D] 7→ [ϕ∗D], where D is chosen so that ϕ(X) * SuppD.

Proof. Fix [D] ∈ PicY . We need to find D′ representing [D] such that Imϕ * SuppD′.
Choose y ∈ Imϕ. By the above lemma, we canfind D′ ∼ D with y /∈ SuppD′. �

Cool Fact: Say that X = V(F3) ⊆ P2, where F3 is a smooth curve of degree 3. Then PicX
can be identified with an infinitely disjoint union of X, itself indexed by Z, so Picard groups
are not always discrete.

3.2. Determining the Relationship between Divisors and Rational Mappings.

3.3. Linear System of Divisors.

Lecture 34.

Definition 3.3.1. A discrete valuation, ν, on a field, K, is a group map K∗ - νZ
satisfying ν(f + g) ≥ min{ν(f), ν(g)}.

The corresponding valuation ring is Rν = {f ∈ K∗ | ν(f) ≥ 0} ∪ {0} ⊇ mν = {f ∈
K∗ | ν(f) > 0} ∪ {0}. Rν is local with maximal ideal mν .

Let X be irreducible and normal

Definition 3.3.2. Divisors D,D′ on any X are linearly equivalent, denoted D ∼ D′, if
they represent the same class in Cl(X). Equivalently, if ∃f ∈ k(X)∗ such thatD = D′+divf .

Example 3.3.3. Let X
ϕ- Pn be a regular map where ϕ(X) * H = Pn−1 ⊂ Pn = P(V ).

We have a linear system of divisors on Pn, namely the hyperplane system {H}H∈P(V ∗)

Consider the linear system of pull-backs of hyperplanes: L = {ϕ∗H}H∈P(V ∗). This is the
quintessential linear system. If ϕ is a closed embedding, then L is the linear system of all
hyperplane sections.

Note:
(1) The elements of L are all effective divisors on X, because they are pull-backs by a

regular map of effective divisors.
(2) The elements of L are linearly equivalently to each other

Proof. Check: Di = ϕ∗Hi ∈ L. Say Hi = V(li) where li is a linear polynomial.
D1 −D2 = ϕ∗(H1 −H2) = ϕ∗div( l1l2 ) = div

(
ϕ∗l1
ϕ∗l2

)
= div(ϕ∗

(
l1
l2

)
) �

Basically, a linear system on X will be a collection of effective divisors all linearly
equivalent to each other (with one other condition).

Definition 3.3.4. Fix a divisor D on an irreducible, normal variety X. The Riemann-
Roch space is L(D) = {f ∈ k(X)∗ | divf +D ≥ 0} ∪ {0}.

Note that there are many different notatons for this.
Examples:
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(1) D = 0,L(D) = {f ∈ k(X)∗ | divf ≥ 0} ∪ {0} is precisely OX(X) because the only
globally regular functions on projective space are constant.

(2) Special case: X is projective and D = 0, then L(D) = k
(3) There’s a map of sets L(D)\{0} -- |D| ⊆ Div(X) sending f 7→ div(f)+D whose

image is the set of effective divisors linearly equivalent to D
(4) IfX is projective, L(D) is finite dimensional, and the induced map P(L(D)) - |D|

is a bijection.
(5) X = P1, D = N{∞} = N [0 : 1], f(t) = f ∈ k(P1) where t = y

x on Ux or f(t) =
F (x,y)
G(x,y) where F,G are homogeneous polynomials of the same degree.

divf + n{∞} ≥ 0⇔ Σpνp(f)p+ n{∞} ≥ 0

When p 6=∞, νp(f) ≥ 0⇒ f is regular on Ux. So f can be written as a polynomial
in t, f = F

G = F
xt , where F is homogeneous of degree t. When p =∞: ν∞(f) ≥ −n,

i.e. f has a pole of order at most n at ∞. So F
xt can be written F

xn where F is
homogeneous of degree n. Then L(D) = {F (x,y)

Xn | F homogeneous of degree n} ∼=
Symn(V ∗), as a k-vector space, has dimension n+ 1.

Basic Properties of L(D), where X is irreducible and normal, D is any divisor.

Proposition 3.3.5. L(D) is a k-vector space in k(X) and it is finite dimensional if X is
projective.

Proof. f ∈ L(D)⇒ λf ∈ L(D), λ ∈ k∗ since div(λf) +D = div(f) +D ≥ 0
f, g ∈ L(D)⇒ f + g ∈ L(D)
divf +D ≥ 0, divg +D ≥ 0 then:

νY (f) + coef. of Y inD ≥ 0, νY (g) + coef of Y in D ≥ 0⇒ νY (f + g) + coef of Y in D ≥ 0

The proof that if X is projective then L(D) is finite dimensional can be found in Shaf.
I (on page 173). �

Proposition 3.3.6. There is a map of sets from L(D) − {0} - Div(X) that sends
f 7→ divf + D whose image is the set of effective divisors linearly equivalent to D (by
definition) - denote this set by |D|. Moreover, if X is projective, this identifies the set |D|
with P(L(D)).

Proof. Need divf +D = divg +D (both effective) ⇔ ∃λ ∈ k∗ such that f = λg.
divf+D = divg+D ⇔ divf = divg ⇔ divf−divg = 0⇔ div( fg ) = 0⇒ f

g = λ 6= 0 �

Lecture 35. Linear Systems

For this lecture, fix X as an irreducible normal variety.

Example 3.3.7. Let X = P2, C = V(x2 + y2 − z2) irreducible cone. Then:
L(C) = {F (x,y,z)

G(x,y,z) | divf + C ≥ 0} = { F
(x2+y2−z2) | F is homogeneous of degree 2}

This is a vector space with basis { x2

x2+y2−z2 , . . . ,
yz

x2+y2−z2 ,
z2

x2+y2−z2 }
There is a one to one correspondence between the following:
P(L(C))↔ {F | F is degree 2 over k∗} ↔ {V(F ) ⊆ P2}F∈Sym(P2)

If instead we used C ′ = V(xy) or any V(G), where G is a homogeneous degree 2 polynomial,
we could have:
L(C ′) = {FG | degF = 2} ∼= L(C).

Proposition 3.3.8. If D ∼ D′, then L(D) ∼= L(D′) as a k-vector space.

Proof. Say D−D′ = divg for some g ∈ k(X)∗. L(D) - L(D′), multiplication by g,
sends f 7→ gf . The inverse of this map is multiplication by g−1. Check: divf + D ≥
0⇒ div(gf) +D′ ≥ 0. �
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Definition 3.3.9. A complete linear system, |D|, is a complete set of all effective
divisors linearly equivalent to D. Equivalently, |D| is the image of L(D)

ψ- Div(X),
where f 7→ div(f) +D.

Definition 3.3.10. A linear system on X is a collection of effective linearly equivalent
divisors corresponding to some vector subspace of L(D).

Example 3.3.11. On Pn, |H| = {H}H∈(Pn)∗ . FixH0 = V(x0) so that L(H0) = { l
x0
| l homogeneous of degree 1} ⊆

k(Pn). This has basis {x0
x0
, . . . , xnx0

}. Consider the vector subspace, W , spanned by {x1
x0
, . . . , xnx0

}.

L(H0) -- |H0| by sending
l

x0
7→ div(

l

x0
) +H0 = V(l)

An element a1x1+···+anxn
x0

∈W is sent to
div(a1x1+···+anxn

x0
) +H0 = V(a1x1 + · · ·+ anxn), the hyperplane through p = [1 : 0 · · · : 0].

This is a quintessential example of a (non-complete) linear system:hyperplane in Pn passing
through p.

Connection between linear systems and maps to Pn
Fix a linear system |W | on X, so |W | = image of W (this is a subspace) ⊆ L(D) under the
map ψ.

Fix a basis ϕ0, . . . , ϕn for W in L(D). This gives a map X ........
ϕ|W |
- Pn that sends x 7→ [ϕ0(x) :

· · · : ϕn(X)]. This is the rational map associated to W .

Example 3.3.12. Let |W | = Hyperplanes in Pn through p = [1 : 0 : · · · : 0] (note that
the standard notation for W is |Hp|). |W | has a basis x0

x0
, . . . , xnx0

(|W | inside L(H0) where
H0 = V(x0))

Pn ........
ϕ|W |
- Pn−1 sending [x0 : · · · : xn] 7→ [x1 : · · · : xn] is projection from p!

Example 3.3.13. |C| on P2, P2 ........
ϕ|C|
- P5 sends [x : y : z] 7→ [x2 : · · · : z2] is the Veronese map

ν2.

Example 3.3.14. Let W = span{x
2

G ,
xy
G } ⊆ L(C). Then we have a map P2 ........- P1 where

[x : y : z] 7→ [x
2

G : xyG ] = [x : y]. So |W | = {div(ax
2+bxy
G ) +V(G)} = V(x)∪V(ax+ by) in P2.

Definition 3.3.15. A prime divisor Y is a fixed component of a linear system |W | if
Y ⊆ Supp(D)∀D ∈ |W |.

Remark 3.3.16. If |W | has a fixed component Y , then |W | and |W−Y | = {D−Y | D ∈ |W |}
determine the same map, ϕ|W | and ϕ|W−Y |, to Pn (up to a linear change of coordinates in
the target projective space).

Lecture 36.

Theorem 3.3.17. If X is normal and irreducible over k, then there is a one-to-one corre-
spondence:

{Non-degen. rational maps X ..........
ϕ
- Pn} ↔ {n-dim. linear systems of divisors with no

fixed components} Where ϕ 7→ {ϕ∗(|H|}H∈(Pn)∗ . Furthermore, the locus of indeterminacy
of ϕ = ϕ|W | is precisely ∩D∈|W |SuppD = ∩H∈(Pn)∗Supp(ϕ∗H).

Proof. (Sketch) Let Z ⊆ X be the locus of indeterminacy, so Z is closed of codimension
at least 2. Let U = X\Z. In general, DivX

∼=- DivU sendingD = ΣmiYi 7→ D∩U =
Σmi(Yi ∩ U) and D = ΣmiYi � ΣmiYi = D.
It is easy to check that:

(1) Given ϕ : X ........- Pn, we get |W | = {ϕ∗(H)}H∈(Pn)∗ and ϕ|W | = ϕ
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(2) Given |W |, choose D basis f0, . . . , fn for W ⊆ L(D) and get a map X .........
ϕ|W |
- Pn

where
x 7→ [f0 : · · · : fn]. and {ϕ∗|W |(|H|)} = |W |.

Check the statement about the locus of indeterminacy and refer to Shaf III §1.5 for
the other direction. �

Definition 3.3.18. The base locus of a linear system |W |, denoted Bs|W |, is the inter-
section of SuppD for D ∈ |W |. Bs|W | = ∩D∈|W |SuppD. Equivalently, Bs|W | = the locus
of indeterminacy of ϕ|W | (if |W | has no fixed components.)

Definition 3.3.19. A base point free linear system |W | is one where the base locus is
empty (i.e. ϕ|W | is regular).

Definition 3.3.20. A very ample linear system |W | is one where ϕ|W | is an embedding.

Definition 3.3.21. A divisor D is ample if ∃n > 0 such that |nD| is very ample.

Example 3.3.22. If |C| = linear system of all conics on P2, then Bs|C| = ∅. This is given by
the Veronese map ν2 : P2 - P5. This is a base point free linear system and very ample.

Example 3.3.23. |Hp| = linear system of hyperplanes through the point p. Then Bs|Hp| =
{p}. This is not base point free nor very ample.

Philosophical Problem: We need a canonical way to find a linear system on a (normal
projective) variety X. We can do this by using differential forms.
Fix a variety X over k. At each point p ∈ X, we have a tangent space (i.e. k-vector space)
TpX and a cotangent space (TpX)∗

Definition 3.3.24. A (completely arbitrary) differential form is an assignment ∀p ∈ X,ωp ∈
(TpX)∗.

Example 3.3.25. Let X = An and f ∈ k[An] = k[x1, . . . , xn] and df is a differential form
that assigns to p = (λ1, . . . , λn) ∈ An, the linear functional dpf = Σni=1

∂f
∂xi
|p(xi − λi)

linear function on TpAn. In particular, dx is a differential form at p = (λ1, . . . , λn)  
dpxi = xi − λi. So dx1, . . . , dxn are a basis for (TpAn)∗ at each point p. So, equivalently,
df = Σni=1

∂f
∂xi

dxi. Note that w1, w2 are differental forms, then so are w1 + w2 and fw1,
where f is any function in k[x1, . . . , xn]. In particular, ΩX(U) = { differential forms on U}
is a module over OX(U).

Example 3.3.26. (Quintessential) On An, every regular (i.e. polynomial) differential form
can be written uniquely, as g1dx1 + · · ·+ gndxn, where the gi are regular on An.

Definition 3.3.27. A regular differential form on a variety X over k is a differential
form w with the property that there exists an open affine cover {Uλ} of X such that w|Uλ
agrees with the differential form g1df1 + . . . gtdft for some gi, fj ∈ OX(Uλ).

Definition 3.3.28. If X is a smooth projective curve the genus of X is dimx(Ωx(X)).

Lecture 37. Differential Forms

If M is a free R-module of rank n, then ΛpM is a free R-module of rank
(
n
p

)
.

If u1, . . . , un is a free basis for M , then {ui1 ∧ · · · ∧ uip}i1<i2<···<ip is a free basis for ΛpM .
If u‘1, . . . , u‘n is a different basis, with u‘ = Σnj=1hijuj (i.e. (hij) is the change of basis
matrix), then
u‘1 ∧ · · · ∧ u‘n = det(hij)u1 ∧ · · · ∧ un.

Let X be an irreducible variety over k
A differential form on X is an assignent ω taking each point p to ωp ∈ (TpX)∗
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If X is affine we say that ω is a regular differential form if it agrees with Σti=1fidgi, where
fi, gi ∈ Ox(X).

Remark 3.3.29. If X ⊆ An is a closed set and fi, gi ∈ k[X] = k[x1,...,xn]
I(X) . Each dg =

Σni=1
∂g
∂xi

dxi,
so ω = Σni=1hidxi, where hi ∈ k[X].

Definition 3.3.30. For U ⊆ X open, ΩX(U) = {ω | ω is a regular differential form on U}.
So ΩX(U) is a ΩX(U)-module. ΩX is a sheaf of ΩX -modules.

Remark 3.3.31. Unless stated otherwise, our differential forms are assumed regular since
that’s our category.

We have an additive map: OX
d- ΩX where f 7→ df .

Example 3.3.32. Consider the global differential forms on An, ΩAn(An) = free k[x1, . . . , xn]-
module on dx1, . . . , dxn.

Theorem 3.3.33. Let X be a smooth variety of dimension n. Then ΩX is a locally free
sheaf of OX modules of dimension n (since the cotangent space is of dimension n). In
particular, if u1, . . . , un are parameters at p, then du1, . . . , dun are a free basis for ΩX in a
neighborhood of p.

Proof. Can be found in Shaf. I, in the section on differentials. “If this were a year long
course, I would prove this for you. But the proof is not too hard. Just follow your
nose.” �

Example 3.3.34. Let X = P1 have coordinates x, y. Since x, y are not regular functions, we
cannot write dx, dy. Let s = y

x on Ux and t = x
y on Uy so that on the intersection, t = 1

s .

ΩX(Ux) ∼= ΩA1(A1) = k[t]dt

ΩX(Uy) ∼= ΩA1(A1) = k[s]ds

Say ω ∈ ΩP1(P1). Write ω = P (t)dt in Ux and ω = Q(s)ds in Uy. On Ux ∩ Uy,
dt = d( 1

s ) = −ds
s2 ⇒ P (t)dt = P ( 1

s )−dss2 = Q(s)ds⇒ Q(s) = P ( 1
s )−1

s2 ⇒ −s
2Q(s) = P ( 1

s )⇒
P = Q = 0. Therefore there are no global regular differential forms on P1.

Example 3.3.35. Let X = V(x3 + y3 + z3) ⊆ P2, which is a smooth curve. Let U1 = X ∩Ux
and U2 = X ∩ Uy.
On U1, X = V(1 + ( yx )3 + ( zx )3) ⊆ A2, let s = y

x and t = z
x .

Then ΩX(U1) is generated by ds, dt as an ΩX(U1) = k[s,t]
s3+t3+1 since:

s3 + t3 + 1 = 0⇒ 3s2ds+ 3t2dt = 0⇒ ds = −t2
s2 dt on U1 ∩ Uy and dt = −s2

t2 ds on U1 ∩ Uz
So ΩX(U1 ∩ Uy) = OX(U1 ∩ Uy)dt and ΩX(U1 ∩ Uz) = OX(U1 ∩ Uz)ds.

Definition 3.3.36. A differential p-form on X is an assignment ω to each q ∈ X,
ωq ∈ Λp((TqX)∗).

Definition 3.3.37. A regular differential p-form is an assigment ω which, locally on
affine charts, looks like Σgi1,...,ipdfi1 ∧dfi2 ∧· · ·∧dfip where fi, gi1,...,ip are regular functions.

For U ⊆ X open, ΩpX(U) denotes the set of all regular p-forms on U,ΩX(U)-module. So
ΩpX is a sheaf of ΩX -modules.

Corollary 3.3.38. If X is smooth, then ΩpX is a locally free OX-module of rank
(
n
p

)
.
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The most important of these is ΩnX , locally free of rank 1, called the canonical module. It
is also denoted by ωX .
Rational Differential Forms:
Loosely, a rational differential form is a regular differential form ω on some non-empty open
set. Precisely,

Definition 3.3.39. A rational differential p-form is an equivalence class (U, ω) where
U ⊆ X is a non-empty open set and ω is a regular p-form on U . Then (U, ω) ∼ (U ‘, ω‘)⇔
ω|U∩U ‘ = ω‘|U∩U ‘.

Just as we defined before, div(f) for f ∈ k(X)∗, we will define div(ω) for ω rational n-form.
The different div(ω) as ω ranges through all rational differential n-forms on the smooth
variety X of dimension n produce linearly equivalent divisors, that class they give is KX

the canonical class. So there is a special divisor class (besides 0) in the divisor class group.
So any element in KX can be written as divω for some rational differential n-form on X,
when dimX = n.

Lecture 38.

Let X be an irreducible, smooth (this is optional, but easier to imagine) variety over k of
dimension n
ΩX is a sheaf of regular differential forms of locally free OX -modules of rank n
ωX is the canonical sheaf (n-forms, Λn(ΩX)), locally free OX -modules of rank 1
Fix a point p and parameters u1, . . . , un parameters at p
du1, . . . , dun are generators of OX -modules in a neighborhood of p
du1 ∧ · · · ∧ du− n are generators of OX -module in a neighborhood of p

Proposition 3.3.40. Fix any non-empty open U ⊆ X such that ωX(u) = OX(U)du1 ∧
· · · ∧ dun for some choice of u1, . . . , un. Given any rational n-form ω, there is a unique
representation as ω = gdu1 ∧ · · · ∧ dun, where g ∈ k(X). In particular, the set of rational
n-forms on X forms a 1-dimensional k(X)-vector space.

Proof. Take any rational n-form, say represented by (U ′, ω). Instead we can represent
it by (U ∩U ′, ω) and ω = gdu1 ∧ · · · ∧ dun so g is regular on U ∩U ′ and g ∈ k(X). �

Example 3.3.41. P1 with coordinates x, y and t = y
x , s = x

y . On Ux ∼= A1, dtp = (t − λ),
where p = (λ), is a linear function on TpA1 = A1 with the origin located at p. On Uy,
dt = −dss2 , which has a pole of order 2. So div(dt) = −2 at ∞.

Divisor of a rational differeintial n-form on the smooth n-dimensional variety X:
First: Fix an open cover of X, say {Uλ} such that ωX(Uλ) = OX(Uλ)duλ1 ∧ · · · ∧ duλn.
Given a rational form ω, represented as ω = gλdu

λ
1 ∧ · · · ∧ duλn on Uλ. Consider the data

{(Uλ, gλ)}λ, where g ∈ k(X). This defines a well-defined divisor on X.
Note: This is a well-defined divisor because gλ · g−1

µ ∈ O∗X(Uλ ∩ Uµ). This holds since:

ω = gλdu
λ
1 ∧ · · · ∧ duλn = gµdu

µ
1 ∧ · · · ∧ duµn

Also, duλ1 ∧ · · · ∧ duλn and duµ1 ∧ · · · ∧ duµn generate ωX(Uλ ∩ Uµ) ∼= OX(Uλ ∩ Uµ). There
exists an invertible element h ∈ OX(Uλ ∩Uµ) such that duλ1 ∧ · · · ∧ duλn = hduµ1 ∧ · · · ∧ duµn.

Definition 3.3.42. A canonical divisor is any divisor of the form div(ω), where ω is a
rational n-form on X.

Proposition 3.3.43. All canonical divisors form a linear equivalence class.

Proof. Since the set of all such rational forms is 1-dimensional over k(x). Fix any
non-zero ω, any other will be of the form gω for some g ∈ k(X). �
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Example 3.3.44. Compute the canonical class of P2, with coordiates x : y : z. Let s =
x
z , t = y

z which are rational functions on Uz. Choose ω = ds ∧ dt. On Uz, (gλ = 1) so
div(ω) ∩ Uz = 0. Let L = V(z). Then div(ω) = dL for some d. Let’s find d: On Uy, we
have coordinates u = x

y , v = z
y so that t = 1

v , s = u
v .

ds ∧ dt = d(
u

v
) ∧ d(

1
v

)

= (
vdu− udv

v2
) ∧ (

−dv
v2

)

=
−vdu ∧ dv

v4

=
−du ∧ dv

v3

div(ω) ∩ Uy = −3V(v) = −3L⇒ div(ω) = −3L.
On Pn the canonical class is −(n+ 1)H

Exercise: Let X ⊆ Pn be a smooth hypersurface of degree d, then KX = (d − n − 1)HX ,
where HX is a hypersurface class on X ({H ∩X}H∈(Pn)∗)
Recall: There is a bijection between:
{ rational maps to projective space, up to a linear change of coordinates} and { linear sys-
tems of divisors }

|W | ⊆ |D|,W ⊆ L(D). OX(D)(U) = {f ∈ k(X) | divf + D ≥ 0 on U} is a locally free
sheaf.

Definition 3.3.45. A line bundle on X is a surjective regular map L
π-- X with

the property that X has an open cover Uλ such that: if π−1(Uλ)
ϕλ
∼=
- Uλ × k and

π−1(Uµ)
ϕµ

∼=
- Uµ × k, then

π−1(Uλ ∩ Uµ)
ϕλ
∼=
- (Uλ ∩ Iµ)× k

(Uλ ∩ Uµ)× k

ϕµ · ϕ−1
λ

?

ϕ
µ

-

where ϕµ · ϕ−1
λ : (x, λ) 7→ (x, g(x)λ) for g ∈ O∗X(Uλ ∩ Uµ)

Definition 3.3.46. A section of a line bundle L
π- X over U ⊆ X is a (regular) map

U
s- L such that π ◦ s = id|U . These form a sheaf L(U) = sections on U .

{line bundles on X} and {locally free rank 1 OX -modules}/ ∼= correspond bijectively by the
map:
{L π- X} −→ L

Lecture 39. Questions Yet to be Answered

Big Questions:
What kinds of varieties are there and how do they relate to each other?

(1) Classify varieties up to birational equivalence
(2) Classify up to isomorphism, find moduli space whose points are in one-to-one core-

spondence with isomporphism classes of varieties.
(3) Find a parametric space whose point parametrizes the closed subschemes of PN
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Definition 3.3.47. Fix a closed subvariety (or subscheme) X ⊆ Pn. I(X) ⊆ kx0, . . . , xn  
S = kx0,...,xn

I(X) is a “homogeneous coordinate ring of X ⊆ Pn” and it is an N-graded ring.
The Hilbert function t 7→ dimk[S]t = elements of S of pure degree t.

Theorem 3.3.48. For t >> 0, this agrees with a polynomial PX(t), called the Hilbert
polynomial.

Example 3.3.49. X = Pn, S = kx0, . . . , xn then PPn(t) =
(
n+t
n

)
= tn

n! + loc t.

Example 3.3.50. V(Fd) ⊆ Pn, S = kx0,...,xn
(Fd) . We can determine [S]t by looking at the exact

sequence:
[S]t−d

Fd- [S]t - [S/(Fd)]t - 0 so dim[S/(Fd)]t = dim[S]t − dim[S]t−d =
(
n+t
n

)
−(

n+t−d
n

)
So PX(t) = dtn−1

(n−1)! + loct.

Remark 3.3.51. The leading degree of PX(t) equals the dimension of X.

Theorem 3.3.52. Fix a Hilbert polynomial P (t), then there is a scheme over k, Hp whose
closed points are in one-to-one correspondence with the set of closed subschemes of Pn with
Hilbert polynomial P (t).

Proof. The proof of this is long and complicated - good summer reading. �

Example 3.3.53. Let P (t) =
(
n+t
n

)
−
(
n+t−d
n

)
. Then Hp is the set of hypersurfaces in Pn of

degree d, which is P(Symd(kn+1)∗).

Classification of Curves:
In this case, birational equivalence is the same as an isomorphism for smooth projective
curves. There is a unique smooth projective representative for each birational class.

Definition 3.3.54. The genus of X, denoted by g(x), is the dimension over k of the space
of global differential forms.

Example 3.3.55. Fix a space X and find the genus, g, of X:
• g = 0⇔ P1

• g = 1⇔ X ⊆ P2 (embedded), X = V(F3) are elliptic curves

• g = 2 ⇔ L(KX) has basis ϕ0, ϕ1, so X
ϕ|KX |- P1 sending x 7→ [ϕ0(x) : ϕ1(x)]. A

genus 2 curve admits a 2 : 1 cover of P1.
• g ≥ 3, L(KX) has dimension g: ϕ0, . . . , ϕg−1 is a basis for L(X) and determines the

map:

X
ϕkX- Pg, There are two possibilities:

(1) ϕKX is an embedding
(2) ϕKX is not an embedding. In this case, the images is isomorphic to P1 and the

map is 2:1. This is called the hyperelliptic curve.

Construct the moduli space of smooth projective curves of genus g ≥ 2.

Theorem 3.3.56. 2KX is very ample when g ≥ 2. The formula for the dimension of L(D)
is given by the Riemann-Roch formula.

Corollary 3.3.57. Every curve of genus g ≥ 2 embeds X ⊂
ϕ2KX- P3g−4 of degree (2g − 2).

(1) To build a parametric space of curves of genus g, look at the Hilbert scheme
H(2g−2)t−g

(2) Linear change of coordinates, PGL(3g − 3) acts on Hp. We need to construct a
quotient variety Hp/PGL(3g − 3) = Mg.
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4. Glossary

Definition 4.0.58. An affine algebraic set is the common zero set of a collection of
polynomials {Fλ}λ∈Λ, where Fλ ∈ k[x1, ..., xn] and k is any field. This is denoted by
V({Fλ}λ∈Λ).

Definition 4.0.59. Let k ↪→ L be a field extension. Then x ∈ L is algebraic over k if it
satisfies xn + a1x

n−1 + . . .+ an = 0 where ai ∈ k. Otherwise k is transcendental

Definition 4.0.60. Given a projective algebraic variety V = V({Fλ}λ∈Λ) ⊆ Pnk , the affine
cone over V is the affine algebraic set in An+1 defined by the same polynomials.

Definition 4.0.61. Let k be a field. Affine n-space, Ank , is a vector space of dimension n
over k.

Definition 4.0.62. An algebraic variety is a geometric object that looks locally like the
zero set of a collection of polynomials.

Definition 4.0.63. Elements x1, . . . , xd ∈ L are algebraically independent over k if
they satisfy no (non-zero) polynomial F (u1, . . . , ud) ∈ k[u1, . . . , ud]

Definition 4.0.64. A divisor D is ample if ∃n > 0 such that |nD| is very ample.

Definition 4.0.65. The base locus of a linear system |W |, denoted Bs|W |, is the inter-
section of SuppD for D ∈ |W |. Bs|W | = ∩D∈|W |SuppD. Equivalently, Bs|W | = the locus
of indeterminacy of ϕ|W | (if |W | has no fixed components.)

Definition 4.0.66. A base point free linear system |W | is one where the base locus is
empty (i.e. ϕ|W | is regular).

Definition 4.0.67. A polynomial, F (x0, . . . , xn, y0, . . . , ym) is bihomogeneous if it is
homogeneous in the xi’s and homogeneous in the yi’s.

Definition 4.0.68. Irreducible varieties V and W are birationally equivalent, denoted

V ∼ W , if there are dominant rational maps V .........
F
- W and W .........

G
- V such that F ◦ G

and G ◦ F are the identity rational maps on W and V , respectively.

Definition 4.0.69. The blow-up of A2 along p ∈ A2 is the projection morphismBp
π- A2,

where P1 is the set of lines through p in A2.

Definition 4.0.70. Let V be an affine variety, W ⊆ V a closed subvariety. Say I(W ) ⊆ k[V ]
has generators F0, . . . , Ft. The blow-up of V along W , BWV , is the graph of the rational
map V .........- Pt sending x 7→ [F0(x) : · · · : Ft(x)], together with projection onto the first
coordinate.

Definition 4.0.71. The blow-up of an affine variety, V , along an ideal I = (F0, . . . , Ft),
denoted by BIV , is the graph of the rational map V .......- Pt sending x 7→ [F0(x) : . . . : Ft(x)]
together with projection onto V .

Definition 4.0.72. A canonical divisor is any divisor of the form div(ω), where ω is a
rational n-form on X.

Definition 4.0.73. A Cartier divisor D on X is equivalent to the data {Uλ, fλ} where:
(1) {Uλ} is an open cover of X
(2) fλ ∈ k(X)∗

(3) fλ
fη
∈ O∗X(Uλ ∩ Uη), invertible regular functons on Uλ ∩ Uη

Definition 4.0.74. A complete linear system, |D|, is a complete set of all effective
divisors linearly equivalent to D. Equivalently, |D| is the image of L(D)

ψ- Div(X),
where f 7→ div(f) +D.
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Definition 4.0.75. A conic is a degree two hypersurface in P2.

Definition 4.0.76. The coordinate ring of V , k[V ], is the set of regular functions in V ,
considered with the obvious pointwise addition and multiplication of functions.

Definition 4.0.77. If F ∈ k[x0, . . . , xn] is homogeneous of degree t, we de-homogenize
(with respect to x0) F by setting f(x1, . . . , xn) = F (1, x1, . . . , xn).

Definition 4.0.78. A differential p-form on X is an assignment ω to each q ∈ X,
ωq ∈ Λp((TqX)∗).

Definition 4.0.79. The dimension of an irreducible quasi-projective variety V is the
transcendence degree of k(V ) over k.

Definition 4.0.80. The dimension of a (non-irreducible) quasi-projective variety is the
maximal dimension of its irreducible components

Definition 4.0.81. A discrete valuation, ν, on a field, K, is a group map K∗ - νZ
satisfying ν(f + g) ≥ min{ν(f), ν(g)}.

Definition 4.0.82. Such a domain is called a discrete valuation ring (DVR).

Definition 4.0.83. A divisor D on X is a finite formal Z-linear combination of prime
divisors: D = ΣiniYi, where ni ∈ Z and Yi is irreducible of codimension 1 in X.

Definition 4.0.84. Div(X) is the free abelian group generated by prime divisors on X

Definition 4.0.85. The divisor class group of (an irreducible variety) X, Cl(X), is the
group Div(X)/P (X)).

Definition 4.0.86. The locus of points where ϕ ∈ k(V ) is regular is the domain of
definition of ϕ.

Definition 4.0.87. X
ϕ- Y is dominant if ϕ(X) is dense in Y .

Definition 4.0.88. A divisor D = ΣiniYi of X is effective if all of the ni ≥ 0.

Definition 4.0.89. The embedding dimension of V at p is the dimension of m/m2.

Definition 4.0.90. Let R ↪→ S be an (injective) extension of rings. An element s ∈ S is
integral over R if it satisfies a monic polynomial with coefficients in R

Definition 4.0.91. A family of varieties is a surjective morphism X
π- B of varieties.

The fibers are the members of the family. The base, B, parametrizes the members of
the family, {π−1(b)}b∈B

Definition 4.0.92. A morphism of affine varieties, X
ϕ- Y , is finite if it is dominant

and the corresponding map of coordinate rings k[Y ]
ϕ∗- k[X] is integral.

Definition 4.0.93. A morphism of quasi-projective varieties, X
ϕ- Y , is finite if ϕ is

dominant and ∀y ∈ Y there is an open affine neighborhood U of y such that ϕ−1(U) is affine
and ϕ−1(U)

ϕ- U is finite (equivalently, OY (U)
ϕ∗- OX(ϕ−1(U)) is integral).

Definition 4.0.94. A prime divisor Y is a fixed component of a linear system |W | if
Y ⊆ Supp(D)∀D ∈ |W |.

Definition 4.0.95. A family X π-- B is flat if there is an affine cover {Ui} of B and an

affine cover {Vi,j} of each π−1(Ui) such that the induced map of affine varieties Vi,j
π|Vi,j-- Ui

induces a flat map of algebras OB(Ui) - OX(Vi,j).
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Definition 4.0.96. A
f- B is a flat map of rings if for all short exact sequences of

A-modules, 0→M1 →M2 →M3 → 0, the induced sequence 0→ B⊗AM1 → B⊗AM2 →
B ⊗AM3 → 0, is exact.

Definition 4.0.97. The function field of V (or the field of rational functions of V ) is the
quotient field k(V ) of k[V ].

Definition 4.0.98. Let V be an irreducible quasi-projective variety. Define the function
field of V , denoted k(V ), to be the function field of any (dense) open affine subset of V .

Definition 4.0.99. The genus of X, denoted by g(x), is the dimension over k of the space
of global differential forms.

Definition 4.0.100. If X is a smooth projective curve the genus of X is dimx(Ωx(X)).

Definition 4.0.101. Let V,W be irreducible. The graph of the rational map V .......
ϕ
- W

is the closure in V ×W of the graph of the regular map U
ϕ|U- W , where U ⊆ V is open

and dense. In particular, Γϕ = {(X,ϕ(x)) | x ∈ U} ⊆ V ×W .

Definition 4.0.102. The homogeneous coordinate ring V ⊆ Pn, k[V ] = k[x0, . . . , xn]/I(V ),
where I(V ) is the ideal generated by homogeneous polynomials vanishing on V .

Definition 4.0.103. If f ∈ k[x1, . . . , xn], write f = fd + fd+1 + · · ·+ fd+t where the degree
of fi is i and fi 6= 0. The homogenization of degree d+ t of f is f̃ ∈ k[x0, . . . , xn], where
f̃ = xt0fd + · · ·+ x0fd+t−1 + fd+t.

Definition 4.0.104. A hypersurface of degree d in Pn is the zeroset of a single degree
d, homogeneous polynomial in (n+ 1)-variables.

Definition 4.0.105. Let p = 0 ∈ V ⊆ An with I(V ) = (F1, . . . , Fm) and a line L such that
p ∈ L = {t(a1, . . . , an) = ta | a 6= 0}. The intersection multiplicity of L ∩ V at p is the
highest power of t dividing the gcd(F1(ta), . . . , Fm(ta)) ∈ k[t].

Definition 4.0.106. A topological space V is irreducible if whenever V = V1 ∪V2, where
V1, V2 ⊂ V closed, then V = V1 or V = V2.

Definition 4.0.107. An isomorphism of affine algebraic sets are morphism V
f-�
g

W

such that their composition is the identity, f ◦ g = 1, g ◦ f = 1.

Definition 4.0.108. An isomorphism of quasi-projective varieties is a morphism ϕ :
X → Y that admits a (regular morphism) inverse ψ : Y → X such that ϕ◦ψ : Y → Y = 1Y
and ψ ◦ φ = 1X .

Definition 4.0.109. The Krull dimension of a commutative ring R is the length of the
longest chain of prime ideals of R.

Definition 4.0.110. A line bundle on X is a surjective regular map L
π-- X with the

property that X has an open cover Uλ such that:
π−1(Uλ)

ϕλ
∼=
- Uλ × k and π−1(Uµ)

ϕµ

∼=
- Uµ × k, then

π−1(Uλ ∩ Uµ)
ϕλ
∼=
- (Uλ ∩ Iµ)× k

(Uλ ∩ Uµ)× k

ϕµ · ϕ−1
λ

?

ϕ
µ

-

where ϕµ · ϕ−1
λ : (x, λ) 7→ (x, g(x)λ) for g ∈ O∗X(Uλ ∩ Uµ)
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Definition 4.0.111. A linear system on X is a collection of effective linearly equivalent
divisors corresponding to some vector subspace of L(D).

Definition 4.0.112. Divisors D,D′ on any X are linearly equivalent, denoted D ∼ D′, if
they represent the same class in Cl(X). Equivalently, if ∃f ∈ k(X)∗ such thatD = D′+divf .

Definition 4.0.113. f1, . . . , ft ∈ OX,p are local defining equations for closed Y ( X
if ∃U ⊆ X affine open neighborhood of p where fi are regular and I(Y ∩U) ⊆ OX(U) is gener-
ated by the f ′is. Equivalently, if {g ∈ OX,p | g vanishes in Y on an open neighborhood of p} =
I(V )p = OX,p is generated by f1, . . . , ft.

Definition 4.0.114. Let Z ⊆ X be any irreducible closed subvariety of X. The local ring
of X along Z is:

OX,Z = {ϕ ∈ k(X) | ϕ is regular at some point of Z}
= {ϕ ∈ k(X) | the domain of definition of(ϕ) ∩ Z 6= ∅}
= {ϕ ∈ k(X) | ϕ is regular on a non-empty open set of Z}
= lim−→
U∩Z 6=∅

OX(U)

= OX(U)[f−1 | f /∈ I(Z ∩ U)]

= OX(U)I(Z∩U)

We are allowing rational functions whose denominator does not vanish completely along Z.
In the last three equalities we passed to any open affine U ⊆ X,U ∩ Z 6= ∅.

Definition 4.0.115. A subset, V , of a topological space is locally closed in X if V = U∩C
where U ⊂ X is open and C ⊂ X is closed.

Definition 4.0.116. Given a rational map V ........
F
- W , the locus of indeterminacy of F

is the set of points at which F is not regular (i.e. undefined).

Definition 4.0.117. A morphism (or regular map) between affine algebraic sets V
f- W

is simply a mapping (that is the restriction of) a polynomial map on the ambient affine
spaces.

Definition 4.0.118. A morphism (regular map) ϕ : X ⊂ PN → Y ⊂ PM of quasi-
projective varieties is a map of sets which is locally given by regular functions on affine
charts. More precisely, ∀x ∈ X,∃open U ⊆ X containing x such that ϕ(U) ⊆ Ui and on
U , ϕ : p ∈ U → (ϕ1(p), . . . , ϕM (p)) ∈ Y ∩ Ui ⊆ Ui = AM , where ϕi ∈ OX(U) are regular
functions on U .

Definition 4.0.119. If F and G are presheaves on X, a morphism of abelian groups
ϕ(U) : F(U) - G(U) for each open set U , such that whenever V ⊆ U is an inclusion,
the following diagram commutes:

F(U)
ϕ(U)- G(U)

F(V )

ρUV

? ϕ(V )- G(V )

ρ′UV

?

Definition 4.0.120. A ring is Noetherian if every ideal is finitely generated

Definition 4.0.121. A domain R is normal if it is integrally closed in its fraction field.
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Definition 4.0.122. An irreducible variety X is normal if ∃{Uλ} open affine cover of X
such that OX(Uλ) is normal. Equivalently, a variety X is normal if OX,x is normal ∀x ∈ X.

Definition 4.0.123. Let D = Σti=1niYi where the Yi are prime. Then D ∈ Div(X) is
locally principal if the ideal IYi ⊆ OX is locally principal. In particular, if there exists an
open affine cover {Uλ} of X such that I(Yi ∩ Uλ) ⊆ X (Uλ) is principal.

Definition 4.0.124. Let U ⊂ X be an open affine set and let g ∈ OX(U). Let Y ⊆ V(g)
be irreducible. The order of vanishing of g along Y is t ∈ N such that g ∈ (πi)t− (πi)t+1.
Notation: t = νYi(g) = ordYi(g).

Definition 4.0.125. Let p be a smooth point on a variety X of dimension n (at p). Let
u1, . . . , un be regular functions at p that vanish at p. (Note: ui ∈ OX,p). Then u1, . . . , un
are parameters at p if their images in m/m2 are a basis for this cotangent space, where
m is the maximal ideal of OX,p.

Definition 4.0.126. The Picard group of X is the quotient CDiv(X)
P (X) ≡ Pic(X).

Definition 4.0.127. Let X be a topological space. A presheaf, F , of abelian groups on
X consists of data:

• For every open subset U ⊆ X, an abelian group F(U), and
• For every inclusion V ⊆ U of open subsets of X, a morphism of abelian groups
ρUV : F(U) - F(V )

subject to the conditions:
(1) F(∅) = 0
(2) ρUU is the identity map F(U) - F(U), and
(3) If W ⊆ V ⊆ U are three open subsets, then ρUW = ρVW ◦ ρUV

Definition 4.0.128. A presheaf of rings (or groups, etc), F , on a topological space X
is a contravariant functor from the category of open sets of X to the category of rings (or
groups, etc.).

Definition 4.0.129. An ideal P ⊆ R is prime if xy ∈ P ⇒ x ∈ P or y ∈ P . Equivalently,
P is prime ⇔ R/P is a domain.

Definition 4.0.130. A prime divisor of X is an irreducible codimension 1 (closed) sub-
variety.

Definition 4.0.131. A projective algebraic set (projective variety) V ⊆ Pnk is the com-
mon zero set of an arbitrary collection {Fλ}λ∈Λ of homogeneous polynomials in k[x0, . . . , xn], V =
V({Fλ}λ∈Λ) ⊆ Pnk .

Definition 4.0.132. If V ⊆ An is an affine algebraic set in An, then its projective closure
V is its Zariski-closure, in Pn, under the embedding: An ⊂ - Pn by (x1, . . . , xn) 7→ [1 : x1 :
· · · : xn].

Definition 4.0.133. A projective morphismX - V is one that factors asX ⊂
closed- V×

Pn π1- V

Definition 4.0.134. For any vector space V over k, the projective space of V , denoted
P(V ), is the set of all 1-dimensional subspaces Pnk = P(kn+1).

Definition 4.0.135. Let X
ϕ- Y be a dominant morphism of irreducible varieties. If

D ∈ CDiv(Y ) is given by the data {Uλ, fλ}, then the pull-back of D, denoted ϕ∗D, is
given by data {ϕ−1(Uλ), ϕ∗(fλ)}.

Definition 4.0.136. A quasi-projective variety is a locally closed subset of Pnk .
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Definition 4.0.137. The radical of I is defined as: RadI ≡ {f ∈ R | fn ∈ I for some n}
Definition 4.0.138. A rational differential p-form is an equivalence class (U, ω) where
U ⊆ X is a non-empty open set and ω is a regular p-form on U . Then (U, ω) ∼ (U ‘, ω‘)⇔
ω|U∩U ‘ = ω‘|U∩U ‘.

Definition 4.0.139. A rational function ϕ is regular at p ∈ V if ∃f, g ∈ k[V ] such that
g(p) 6= 0 and ϕ = f

g .

Definition 4.0.140. A rational map V ........
ϕ
- W is a regular map on some (unspecified)

dense open subset U of V such that U
ϕ- W .

Definition 4.0.141. A rational map of quasi-projective varieties V .........
F
- W is an

equivalence class of regular maps {U ϕ- W | U ⊆ V dense open} where the equivalence

relation is defined by {U ϕ- W} ∼ {U ′ ϕ′- W} if ϕ|U∩U ′ = ϕ′|U∩U ′ .
Definition 4.0.142. A regular function g : V → k is a function that agrees with the
restriction of a polynomial.

Definition 4.0.143. A regular map (or morphism) between affine algebraic sets V
f- W

is simply a mapping (that is the restriction of) a polynomial map on the ambient affine
spaces.

Definition 4.0.144. Let W ⊆ Pn be a quasi-projective variety. A function ϕ : W → k is
regular on W if for all points p ∈ W , there exists Fp, Gp ∈ k[x0, . . . , xn] homogeneous of
the same degree such that ϕ agrees with the function Fp

Gp
on some neighborhood of p.

Definition 4.0.145. A regular differential form on a variety X over k is a differential
form w with the property that there exists an open affine cover {Uλ} of X such that w|Uλ
agrees with the differential form g1df1 + . . . gtdft for some gi, fj ∈ OX(Uλ).

Definition 4.0.146. A regular differential p-form is an assigment ω which, locally on
affine charts, looks like Σgi1,...,ipdfi1 ∧dfi2 ∧· · ·∧dfip where fi, gi1,...,ip are regular functions.

Definition 4.0.147. Fix a divisor D on an irreducible, normal variety X. The Riemann-
Roch space is L(D) = {f ∈ k(X)∗ | divf +D ≥ 0} ∪ {0}.

Definition 4.0.148. Fix V ⊆ An irreducible affine algebraic set of over k = k and take an
open set U ⊆ V . The ring of regular functions on U is the ring of all rationals functions
that are regular on U . This is denoted by OV (U) = {ϕ ∈ k(V ) | ϕ is regular at each p ∈ U}.
Definition 4.0.149. A projective variety, V ⊆ Pn, is a scheme theoretic complete
intersection if I(V ) ⊆ k[x0, . . . , xn] is generated by N − dimV polynomials.

Definition 4.0.150. A section of a line bundle L
π- X over U ⊆ X is a (regular) map

U
s- L such that π ◦ s = id|U . These form a sheaf L(U) = sections on U .

Definition 4.0.151. A projective variety V ⊆ Pn is a (set-theoretic) complete inter-
section if it has codimension r and it is defined by r homogeneous equations.

Definition 4.0.152. A presheaf F on a topological space X is a sheaf if it satisfies the
following conditions:

(1) If U is an open set, {Vi} is an open covering of U , and if s ∈ F(U) is an element
such that s|Vi = 0∀i, then s = 0. (Note that this condition implies that s is unique)

(2) If U is an open set, {Vi} is an open covering of U , and if we have elements si ∈
F(Vi)∀i, with the property that for each i, j we have si|Vi∩Vj = sj |Vi∩Vj , then there
is an element s ∈ F(U) such that s|Vi = si∀i.
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Definition 4.0.153. A point p on a quasi-projective variety V is a smooth point of V if
dimTpV = dimpV . Otherwise, p is a singular point.

Definition 4.0.154. If F is a presheaf on X, and if P is a point of X, we define the stalk
Fp of F at P to be the direct limit of the groups F(U) for all open sets U containing P via
the restriction maps ρ.

Definition 4.0.155. Let D = Σti=1niYi be a divisor where ni 6= 0 and Yi is a pure codi-
mension one subvariety of X. The support of D, SuppD, is Y1 ∪ · · · ∪ Yt.

Definition 4.0.156. The line L is tangent to V at p if the intersection multiplicity of L
and V at p, (L · V )p, is greater than or equal to two.

Definition 4.0.157. The tangent space to V at p, denoted TpV , is the set of all points
lie on a line tangent to V at p.
In particular, TpV = {(x1, . . . , xn) ∈ An | (x1, . . . , xn) ∈ L, where L is a line tangent to V
at p}

Definition 4.0.158. A maximal set of algebraically independent elements of L/k is a
transcendence basis for L/k. The cardinality of any 2 transcendence basis is the same,
it is called the transcendence degree.

Definition 4.0.159. A very ample linear system |W | is one where ϕ|W | is an embedding.

Definition 4.0.160. The Zariski tangent space to a point p on a quasi-projective variety
V will be defined (mp/m

2
p)
∗, where mp ⊆ OV,p is the maximal ideal of regular functions

vanishing at p.
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