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2 Sara W. Lapan

Part 1. Introduction to Schemes

1. Modernizing Classical Algebraic Geometry

Lecture 1. January 8, 2009

Read Shaf. II: V 1.1-1.3, Exercises p15: 1,3,4,5 (due Tuesday)
Books for the course: Hartshorne, Shaf. II, and Geometry of Schemes

Classical Algebraic Geometry:
The main object of study is an algebraic variety over a fixed algebraically closed field.
An algebraic variety, X:

• is a topological space with a cover of open sets that are affine algebraic varieties
• comes with a sheaf of rings: on each open set U , OX(U) =the ring of regular

functions on U

A scheme, X:

• is a topological space with a cover of open sets, each of which is an affine scheme
• comes with a sheaf of rings OX

An affine scheme is of the form (Spec A, Ã), where Ã is the same ring as A but it is viewed as
all functions on Spec A. A scheme need not be defined over anything, whereas an algebraic
variety is defined over a fixed algebraically closed field. However, one often assumes that
the scheme is over a fixed algebraically closed field. A scheme can also be defined over a
ring, such as Z.

Local Picture of Classical Algebraic Geometry
Fix k = k. X = V({Fλ}λ∈Λ) ⊆ kn is an affine variety (without loss of generality) we can
assume that Λ is finite and that {Fλ}λ∈Λ generates a radical ideal.

Definition 1.1. A morphism between affine algebraic varieties X
ϕ- Y is a map that

agrees with the restriction of some polynomial map on the ambient spaces at each point.

Definition 1.2. Given an affine algebraic variety X ⊆ kn, the coordinate ring of X,
denoted OXX, is the ring of regular functions on X, which in this case is simpy functions
X

ϕ- k that agree with the restriction of some polynomial on kn.

Theorem 1.3 (Hilbert’s Nullstellensatz or The Fundamental Theorem of Elementary Clas-
sical Algebraic Geometry). The assignment X  OX(X) defines an anti-equivalence (i.e.
a contravariant functor) of categories:

{Affine varieties over k} - {Reduced, finitely-generated k-algebras}
V(I) ⊂ kn - A = k[x1, . . . , xn]/I

X � k[X]/I(X)

Since k[x1, . . . , xn] -- OX(X) has kernel I(X) = {g ∈ k[x1, . . . , xn] | g|X = 0}. The
functor is just the pull-back map:

{X ϕ- Y } ⇐⇒ {OX(X) �
ϕ∗ OY (Y ), g ◦ ϕ � g}

The category on the right looks rather specific, so in scheme theory we want to remove some
of those “arbitrary” restrictions.

Remark 1.4. In this class, a ring is always a commutative ring with identity.
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{Affine varieties over k}←→ {Reduced, finitely-generated k-algebras}

{Affine schemes over k}

⊆

?
←→ {k − algebras}

⊆

?

{Affine Schemes}

⊆

?
←→ {Rings}

⊆

?

Definition 1.5. Fix A, a commutative ring with identity. As a set, Spec A is the set of
prime ideas of A. We consider it as a topological space with the Zariski topology. The
closed sets are: V({Fλ}λ∈Λ) = {p ∈ Spec A | p ⊇ {Fλ}λ∈Λ}. Without loss of generality
we can replace {Fλ}λ∈Λ} by any collection of elements generating the same ideal or even
generating any ideal with the same radical.

Example 1.6 (Spec Z). The closed points are the maximal ideals, so they are (p), where p
is a prime number. The closure of the point (0) is Spec Z. Since Z is a PID, all of the
closed sets will be of the form V(n) = {(p1), . . . , (pr)}, where n = pa1

1 . . . parr . Note that the
topology on Spec Z is not the finite complement topology since it contains a dense point,
so we look at the maximal ideals for the open topology.

Example 1.7. Let A = k[x1,...,xn]
(F1,...,Fr) be reduced, where k = k. The maximal ideals of A

are (x1 − a1, . . . , xn − an), where (a1, . . . , an) ∈ V(F1, . . . , Fr) ⊆ kn. Since closed points
of Spec A are in one-to-one correspondence with maximal ideals of A, the closed points
of Spec A are the points of the affine variety V(F1, . . . , Fr). Due to the bijection between
prime ideals in A and irreducible subvarieties, the points of Spec A correspond to irreducible
(closed) subvarieties of V(F1, . . . , Fr).

Proposition 1.8. If N ⊆ A is the ideal of nilpotent elements, then Spec A ∼=homeo
Spec A/N as a topological space (but different scheme unless N = 0).

Example 1.9. Spec k[x]
(x2) is a topological space with one point (x).

Example 1.10. Now let’s consider Spec (k ⊕ kx). Since k ⊕ kx ∼=v.s k[x]
(x2) , this is the same

topological space as the previous example but not the same scheme.

Let R = k[x]
(x2) and S = k[x]

(x) . The map R
ϕ-- S is given by killing x. Since k[x]

(x2)
∼= k ⊕ kx

and k[x]
(x
∼= k, k[x] - k[x]

(x2) is given by restriction:

f = a0 + a1x+ a2x
2 + . . . 7→ f mod x2 = a0 + a1x, where a0 = f(0), a1 =

∂f

∂x
(0)

Spec k[x]
(x2) intuitively is the origin in A1 together with a “first-order neighborhood.”

Lecture 2. January 13, 2009

Exercise 1.11. Due Tuesday: Shaf. §1: 6,7,8 and §2:1. Read up on sheaves in Hartshorne
Main Starting Point for Scheme Theory:

{Rings} contravariant functor- {Topological Spaces}

Proposition 1.12. If A
ϕ- B is a ring homomorphism, then Spec B

aϕ- Spec A sending
p 7→ ϕ−1(p) is a continuous map of topological spaces.
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Proof. We need the preimage of a closed set V(I) ∈ Spec A to be closed.

p ∈ (aϕ)−1(V(I))⇔a ϕ(p) ∈ V(I)(1)

⇔ ϕ−1(p) ∈ V(I)(2)

⇔ ϕ−1(p) ⊇ I(3)

⇔ p ⊇ ϕ(I)(4)

⇔ p ∈ V(ϕ(I)) = V(ϕ(I)B)(5)

Where (2)⇔ (3) since V(I) = {p ∈ Spec A | I ⊆ p}. �

Corollary 1.13. (aϕ)−1(V(I)) = V(ϕ(I)B) =the ideal generated by ϕ(I) ⊆ B.

Crucial Example 1:
The quotient homomorphism A -- A/I induces a homeomorphism Spec A/I

∼=- V(I) ⊆
Spec A. This is a quintessential example of a closed embedding of schemes.
Crucial Example 2:
The homomorphism A - A[ 1

f ] = A localized at the multiplicative system {1, f, f2, . . .}
induces a homeomorphism Spec A[ 1

f ] - D(f) = {p ∈ Spec A | f /∈ p} = Spec A−V(f).
This is a quintessential example of an open embedding of schemes.

Proposition 1.14. The open sets {D(f)}f∈A form a basis for the Zariski-topology on
Spec A.

Proof. Take an arbitrary open set U . For some ideal I ⊆ A:

U = Spec A− V(I)

= {p | p + I}
= {p | ∃f ∈ I, f /∈ p}
= ∪f∈ID(f)

�

Facts/Exercises:

(1) If A is Noetherian, every open set of Spec A is a compact topological space. Even
if A is not Noetherian, Spec A is compact.

(2) Spec A is irreducible as a topological space ⇔ A/Nil(A) is a domain ⇔ Nil(A) =
{f |fn = 0} is prime

(3) Spec A is disconnected ⇔ A ∼= A1 ×A2, where A1, A2 6= ∅
Next we want to define the structure sheaf of an affine scheme Spec A. Given X = Spec A,
we want a sheaf of rings, OX , on X. In particular, for any open set U ⊆ X we want OX(U)
to be a ring where for any open set V ⊆ U , the map OX(U) - OX(V ) is a ring homo-
morphism given by restriction.

Classical Algebraic Geometry:
Let X ⊆ An be an affine algebraic variety over k. Then k[X] is the coordinate ring of X.
Let U ⊆ X be an open set. Then OX(U) = {ϕ : U - k | ϕ is regular at each point of
U} and for an open set V ⊆ U , OX(V ) � OX(U) by ϕ|V � ϕ.
Main Features of OX :

• OX(X) = k[X]
• D(f) = X − V(f) ⊆ X  OX(D(f)) = k[X][ 1

f ]
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• Restriction looks like localization: D(f) ⊆ X, then

k[X][
1
f

] = OX(D(f)) � OX(X) = k[X] by
ϕ

1
� ϕ.

• In practice, we only need to consider OX(U) for U in a basis of X.
Modern Algebraic Geometry:
Let X = Spec A. We want OX to have the same features as in classical algebraic geometry:

• OX(X) = A
• OX(D(f)) = A[ 1

f ].
• The inclusion D(f) ⊆ X induces

OX(X)
restriction- OX(D(f))

A
localization- A

[ 1
f

]
a - a

1
• Let A be a finitely generated reduced k-algebra, where k = k. For an open set
U ⊆ Spec A, OX(U) is the ring of regular functions on Ũ = U∩maxSpecA from
classical geometry. Note that Ũ ⊆maxSpecA because in classical algebraic geometry
we only consider maximal ideals.

If X ⊆ An is an irreducible affine variety over k, then k[X] is a domain and

OX(U) = {ϕ : U → k|∀p ∈ U∃f, g ∈ k[X] with g(p) 6= 0 and ϕ =
f

g
in a neighborhood of p}

Constructing OX :
First Case: Let X = Spec A, where A is a domain with fraction field L, and U ⊂ X open.
Consider:

OX(U) = {ϕ|∀p ∈ U∃f, g ∈ A such that ϕ has a representative
f

g
with g(p) 6= 0} ⊆ L

What does it mean for g(p) 6= 0?
We need to interpret elements of A as functions on Spec A.
In the classical case:
For g ∈ k[X] and p = (λ1, . . . , λn) ∈ X, g(p) was the image of g under the natural map
k[X] - k given by evaluation at p. This map has kernel the maximal ideal mp = {f ∈
k[X] | f(p) = 0}. So g(p) = g mod mp ∈ k[X]

mp
∼= k.

Definition 1.15. The value of a ∈ A at p ∈ Spec A is a(p) = image of a under the natural
map:

A - k(p) =
Ap
pAp

= fraction field of A/p = residue field of p

Remark 1.16. If mp is the maximal ideal of a point p on an affine variety A = k[X], then
this definition agrees with evaluation at a point. Oddly, the values of a live in different fields
as p varies.

Now we can define OX(U) more precisely:

OX(U) = {ϕ|∀p ∈ U ⊆ Spec A∃ representative ϕ =
f

g
with g /∈ p}

= {ϕ|∀p ∈ U ⊆ Spec A∃ representative ϕ =
f

g
with f, g ∈ A and g(p) 6= 0}
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Proposition 1.17. If A is a domain and OX(U) is given as above, then OX(X) = A.

Proof. Let A - OX(X) by a 7→ a
1 . Take any ϕ ∈ OX(X) and at p, write ϕ = ap

bp
so

that bp /∈ p. Then the ideal ({bp}p∈Spec A) is not contained in any prime/maximal ideal,
hence it must be the unit ideal. Therefore we can write 1 as 1 = r1bp1 + . . .+ rtbpt and so
ϕ = ap1r1 + . . .+ aptrt ∈ A. Similarly, OX(D(f)) = A[ 1

f ]. �

Lecture 3. January 14, 2009

Remark 1.18. For an arbitrary A, if a ∈ A satisfies a(p) = 0∀p ∈ Spec A then a ∈ Nil(A).

A sheaf needs local information. An example of a pre-sheaf that is not a sheaf is all integrable
functions on R, whereas the corresponding sheaf would be all locally integrable functions.

Definition 1.19. A presheaf F on a topological space X is a sheaf if it satisfies the sheaf
axiom:
Given U = ∪λ∈ΛUλ, and sections sλ ∈ F(Uλ) which have the property that for sλ ∈ F(Uλ
and sµ ∈ F(Uµ), sλ|Uλ∩Uµ = sµ|Uλ∩Uµ ∈ F(Uλ ∩ Uµ), then there exists a unique s ∈ F(U)
such that s|Uλ = sλ and s|Uµ = sµ.

Definition 1.20. Let X be a topological space and OX be a sheaf of rings on X. Then
(X,OX) is a ringed space.

Remark 1.21. Let X = Spec A. With the above definition of OX , (X,OX) is a ringed space.

Digression on Limits: Fix a partially ordered index set I. Typically, we assume that I
is directed so that ∀i, j ∈ I∃k such that k ≥ i, j.

Definition 1.22. A direct limit system (of rings or of objects in any category) is given
by a collection of objects {Ai}i∈I and morphisms Aj

ϕ- Ai for i ≥ j. These morphism
satisfy the property that if i ≥ j ≥ k, then we have maps Aj - Ai, Ak - Aj and
Ak - Ai, where the latter is given by composition.

Definition 1.23. The direct limit (if it exists) is tAi/ ∼ where for ai ∈ Ai and aj ∈ Aj ,
ai ∼ aj if ∃k ≥ i, j and ai, aj both map to the same element in Ak.

Examples:
• If the Ai are open sets of a topological space and the ordering is given by inclusion,

then direct limit: lim−→Ai = ∪Ai
• If Ai = k[x1, . . . , xi], take A1 ⊆ A2 ⊆ A3 ⊆ . . . , then the direct limit of Ai’s is
k[x1, . . . , xi, . . .].

• Let X ⊆ An be an affine algebraic variety over k = k and p ∈ X. Then OX,p =
lim−→p∈U OX(U).

• Let U ⊆ A be a multiplicative system and S(U) be the elements in k[X] that do
not vanish on U . Then lim−→f∈U A[ 1

f ] = A[S(U)−1]

Elements of a direct limit lim−→i
Ai are represented by (Ai, ai) where (Ai, ai) ∼ (Aj , aj) if ai

and aj eventually map to the same element in some Ak, k >> 0.

Definition 1.24. An inverse limit system (or projective or indirect) is a collection of
objects {Ai}i∈I and morphisms Ai - Aj whenever i ≥ j.

Definition 1.25. The inverse limit (if it exists), lim←−Ai is the subobject of
∏
i∈I Ai con-

sisting of elements (ai)i∈I where ai 7→ aj whenever i ≥ j.

Examples:
• If {Ui}i∈I is a collection of open sets in a topological space X and {Xi}i∈I ⊆

∏
Ui,

U2 ⊆ U1, X2 7→ X1. So if the inverse limit exists, then lim←−Ui = ∩i∈IUi
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• Consider A1 = k[X]/(X) �� A2 = k[X]/(X2) �� . . . , then lim←−Ai = k[[X]].
The Universal Property of Projective Limits: The inverse limit, if it exists, is the one
object from which everything maps. For instance, suppose C maps (functorally) to all Ai
in a limit system, then C maps through lim←−Ai.

Defining OX for an arbitrary ring:

Lemma 1.26. Let A be a ring. D(f) ⊆ D(g)⇔ fn = gh for some n > 0, h ∈ A.

Proof.

D(f) ⊆ D(g)⇔ V(f) ⊇ V(g)

⇔ (f) ∈ Rad(g)

⇔ fn ∈ (g)

⇔ fn = gh for some h

�

Corollary 1.27. Whenever D(f) ⊆ D(g), there’s a natural ring map A[ 1
g ] - A[ 1

f ].

Proof. Universal property of localization: g is invertible in A[ 1
f ] (since gh = fn), so by the

universal property we have the map A[ 1
g ] - A[ 1

f ]. �

This produces a limit system: {D(g)} {A[ 1
g ]}, which is a map from a direct limit system

of open sets to an inverse limit system.

Define: OX(U) = lim←−
D(g)⊆U

A[
1
g

]

Remark 1.28. When A is a domain, A ⊆ L =fraction field, then:

OX(U) = {ϕ|∀p ∈ U ⊆ Spec A∃ representative ϕ =
f

g
with g /∈ p}

= ∩D(g)⊆UOX(D(g))

= ∩A[ 1
g ]⊆UOX(A[

1
g

])

So these different definitions agree with each other.

Using this definition, we should verify:

OX(D(f)) = A[
1
f

] and OX(Spec A) = OX(D(1)) = A

If U = D(f) and we consider {D(g)}D(g)⊆D(f), then A[ 1
f ] maps to all of the objects in the

inverse limit system so that lim←−A[ 1
g ] = A[ 1

f ].

Summary: For any commutative ring A and X = Spec A, (X,OX) is a ringed space.

Definition 1.29. Given a sheaf F on a topological space X and p ∈ X, the stalk of F at
p, denoted by Fp, is lim−→U3p F(U).

Let X = Spec A and take any p ∈ X. Then:

OX,p = lim−→
p∈U
OX(U) = lim−→

p∈D(f)

OX(D(f)) = lim−→
f /∈p

A[
1
f

] = A[(A− p)−1] = Ap

Definition 1.30. A locally ringed space is a ringed space (X,OX) in which OX,p is a
local ring ∀p ∈ X.
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Lecture 4. January 20, 2009

Exercise 1.31. Hartshorne II: 1.4,1.6,1.14,1.15,1.17,2.7,2.9,2.11. Due Tuesday on 1/27/2009.
Read the more thorough explanation of f−1, f∗, and f∗ posted on Karen’s website.

Example 1.32. Let X = Spec Z. The closed sets are: {p1, . . . , pt},∅, X while the open sets
are: D(N) = X \ V(N).
The open sets containing p are: {U 3 p open } = {D(N) 3 p} = {D(N) | N /∈ p} so that

OX,p = lim−→
U3p
OX(U) = lim−→

D(N)3p
OX(D(N)) = lim−→

N /∈(p)

Z[
1
N

] = Z(p)

Example 1.33. Let R = k[[t]] and X = Spec R. Every element in R can be written as a
unit times some power of t so that the points are {(0), (t)}. The closed sets are: (t), X,∅,
the open sets are: (0),∅, X, and the dense point is: (0). Note that (0) = D(t) since it is
the only prime ideal not containing (t).

OX(∅) = 0 OX(X) = R OX((0)) = OX(D(t)) = R[
1
t
] = k[[t]][

1
t
] = k((t))

Stalks:

OX,(0) = lim−→
U3(0)

OX(U) = OX((0)) = k((t))

OX,(t) = lim−→
U3(t)

OX(U) = OX(X) = k[[t]]

Fix a topological space X.

Definition 1.34. A morphism of sheaves of rings (or objects in any category) F ϕ- G
is a collection of maps of rings (or morphisms in the category) given for each open set
U ⊆ X (i.e. F(U)

ϕ(U)- G(U)) that is compatible with restriction (i.e. whenever we have
an inclusion of open sets V ⊆ U , we have aa commutative diagram:

F(U)
ϕ(U)- G(U)

F(V )
?

- G(V )
?

An isomorphism of sheaves is a morphism F - G and F � G that when composed
gives the identity.

Example 1.35. Let X = Rn with the Euclidean topology. C∞Rn is a sheaf of C∞-functions
(or a sheaf of rings, of R-algebras, of abelian groups, or of R-vector spaces).

C∞Rn

∂
∂x1- C∞Rn

f 7→ ∂

∂x
f

is a morphism of sheaves of R-vector spaces but not a morphism of sheaves of rings since
differentiation does not preserve multiplication.
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Example 1.36. Let X = AnC so that X is an algebraic variety in the classical sense.

C(U) = { locally constant C-valued functions U - C} - OX

C(U) - OX(U) is given by λ 7→ λ

is a morphism of sheaves of C-algebras.

Remark 1.37. The constant sheaf refers to the sheaf of locally constant functions.

Proposition 1.38. A morphism of sheaves of rings F - G on a topological space induces
a morphism of stalks Fp - Gp∀p ∈ X.

Proof. lim←−p∈U F(U) = Fp and lim←−p∈U G(U) = Gp

F(U) - G(U)

F(U ′)
?

- (U ′)
?

Fp
?

................ ϕp - Gp
?

................

�

Remark 1.39. If your category (i.e. rings) admits direct limits, then stalks are in that
category and the morphism of stalks is a morphism in that category.

Definition 1.40. If X
f- Y is a continuous map of topological spaces and F is a sheaf

(i.e. of rings) on X, the direct image sheaf f∗F is a sheaf (i.e. of rings) on Y defined as:
Let U ⊆ Y be open and f∗F(U) = F(f−1(U)). If V ⊆ U is open, then f−1(V ) ⊆ f−1(U)
and so with the obvious restrictions:

f∗F(U) =F(f−1(U))

f∗F(V )
?

=F(f−1(V ))
?

Example 1.41 (“Skyscraper Sheaf”). Let X be a topological space, p ∈ X, G a sheaf of
abelian groups on {p} and {p} f- X.

f∗G(U) =

{
G(f−1(U)) = 0 if p /∈ U
G if p ∈ U

Stalks:

(f∗G)x = lim−→
U3x

f∗G(U) = lim−→
U3x

G(f−1(U)) =


G if x = p

0 if x /∈ p
G if x ∈ p

This is related to exercise 1.17 in Hartshorne.
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Definition 1.42. A morphism of ringed spaces (X,OX)
(f,f#)- (Y,OY ) is a contin-

uous map of topological spaces X
f- Y together with a morphism of sheaves of rings

OY
f#
- f∗OX .

Remark 1.43. In practice, f# is usually a pullback, but it need not be a pullback.

Example 1.44. Let R2 f- R by (x, s) 7→ x (where R2 has the Euclidean topology).
We are looking at the ringed spaces: (R2, C0

R2) and (R, C0
R). There is a map of sheaves:

C0
R(U) - f∗C

0
R2(U) = C0

R2(U × R) given by g 7→ g ◦ f . The morphism of ringed spaces

is: (R2, C0
R2)

(f,f#)- (R, C0
R), where f# is the “pull-back” of f .

Example 1.45. Let X
f- Y be a morphism of algebraic varieties over an algebraically

closed field k This always induces a morphim of ringed spaces:

(X,OX)
(f,f#)- (Y,OY )

via a pullback of regular functions:

OY - f∗OX
OY (U) - f∗OX(U) = OX(f−1(U))

g 7→ f∗g = g ◦ f
Check that restriction commutes with pullback. One can check that this is a morphism of
ringed spaces and a morphism of locally ringed spaces.

Definition 1.46. A morphism of locally ringed spaces (X,OX)
f- (Y,OY ) is a

morphism of ringed spaces with the property that whenever p ∈ X with f(p) = q ∈ Y ,

the induced map of stalks OY,q
fp- OX,p is a local homomorphism of local rings (so that

fp(mOY,q ) ⊆ mOX,p).

Remark 1.47. It is possible to have multiple points in X that map to the same point in Y ,
in which case there will be multiple induced maps of stalks.

Remark 1.48. If (X,OX)
f- (Y,OY ) is a morphism of ringed spaces and for p ∈ X,

f(p) = q ∈ Y , then there is an induced map of stalks:

OY
f#
- f∗OX

OY,q - (f∗OX)

OY,q = lim−→
q∈U
OY (U)

f#
- lim−→

q∈U
OX(f−1(U)) - lim−→

p∈V
OX(V ) = OX,p

where U and V are open sets.

2. Introducing Schemes

Definition 2.1. An affine scheme is a locally ringed space (X,OX) which is isomorphic
(as a locally ringed space) to (Spec A, Ã) for some commutative ring A.

Lecture 5. January 21, 2009

We want to generalize abstract (non-embedded) algebraic varieties over an algebraically
closed field to schemes, which allow nilpotents.
A Brief timeline: Riemann (in 1860) “knew” about manifolds, algebraic varieties, and
Mg (although these terms may not have been completely defined). Weyl (in 1913) defined
manifolds through equivalence classes of atlases, Mumford (in 1965) proved that Mg exists,
and Weil (in 1945) gave a definition of abstract algebraic varieties.
If (X,OX) is a ringed space and U ⊂ X is open, we have a ringed space (U,OX |U ).
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Example 2.2. Let D ⊂ Cn be open (in the classical topology) and X ⊂ D be a set of zeros
of a finite number of C-analytic functions on D. Then for U ⊂ X open:

OX(U) = {f : U → C | ∀p ∈ U∃p ∈ N ⊆ U and g on N such that f |N = g}

Definition 2.3. A C analytic space is a ringed space (X,OX) such that every point has
a neighborhood U such that (U,OX(U)) is isomorphic as a ringed space to one of these.

This definition can be modified slightly for defining other spaces like C∞-manifolds and
R-manifolds.
We have a sheaf OX where for any open set U ⊂ X, OX(U) is:

{f : U → k|∀p ∈ U∃N 3 p and g, h ∈ k[x1, . . . , xn], h(q) 6= 0 and f(q) =
g(q)
h(q)
∀q ∈ N}

Definition 2.4. A (Serre) algebraic variety, not necessarily irreducible, is a ringed space
(X,OX) locally isomorphic to an affine algebraic set with the Zariski topology.

Example 2.5. Let A be a commutative ring with unit, X = Spec A and U ⊂ X open. Then
OX(U) is:

{(fp ∈ Ap)p∈U | ∀p ∈ U∃N 3 p and g, h ∈ A such that ∀q ∈ N,h /∈ q, g
h
7→ fq ∈ Aq∀q ∈ N}

Exercise 2.6. (X,OX) is a ringed space.

Definition 2.7. A scheme is a ringed space (X,OX) that is locally isomorphic to one of
these. An affine scheme is a scheme which is isomorphic to one of these.

More precisely,

Definition 2.8. An affine scheme is a locally ringed space (X,OX) that is isomorphic
as a locally ringed space to (Spec A, Ã) where A is a commutative ring with unit and
Ã = OSpec A.

Remark 2.9. We need not include “locally” in the above definiition since (Spec A, Ã) is a
locally ringed space, however we include it in the definition so that we stay in the category
of locally ringed spaces.

3. Gluing Construction

Let {(Xα,OXα)}α∈A be a collection of ringed spaces, where A is an index set. We want to
construct a topological space X from the Xα by gluing them together in some way. Suppose
that for all pairs α, β we have open subsets Uαβ of Xα (with induced ringed space structures
OUαβ = OXα |Uαβ ) with isomorphisms of ringed spaces:

(Uαβ ,OXα |Uαβ )
Oβα- (Uβα,OXβ |Uβα)

Assume that ∀α, β,Γ ∈ A:
• Uαα = Xα

• Oαα =Identity
• Oαβ = O−1

βα

• Uαβ ∩ UαΓ
Oβα
∼=
-- Uβα ∩ UβΓ

• OΓα = OΓβ ◦ Oβα on Uαβ ∩ UαΓ

Then one can construct a ringed space (X,OX) with an open covering {Uα} of X with
ringed space isomorphisms:

ϕα : Xα
∼- Uα that satisfy:

ϕα(Uαβ) = Uα ∩ Uβ and ϕβ ◦ Oβα = ϕα on Uαβ
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Uαβ ⊂ Xα
ϕα - X

Uβα ⊂ Xβ

Oβα

? ϕβ - X

This is unique up to canonical isomorphism. The topological space X is the quotient space
of tXα/ ∼ where the equivalence relation comes from the Oβα. Uα = image of Xα in X.
Construct OX so OX |Uα ∼= OXα . If each Xα is a Serre varieties/C-analytic space/scheme
then X is as well.

Example 3.1. Let X1 = A1 = X2, U12 = A1 − {0} = U21 and U12
O21- U21:

• If O21(x) = 1
x , then we construct X by identifying areas close to 0 in U12 with those

close to ∞ in U21 and vice-versa so that X ∼= P1.
• If O21(x) = x, then we get a “line with two origins” or the “bug-eyed-line.”

Example 3.2. Let S =
⊕

d≥0 Sd be a graded ring so that Sd · Se ⊆ Sd+e. As a set, define:

Proj (S) = { homogeneous prime ideals p | p + S+ = ⊕d>0Sd}

Let X = Proj S. Let A ⊆ S be a homogenous ideal and define the closed sets in X to be of
the form V (A) = {q ∈ X | q ⊇ A}. Given p ∈ X, we can localize S at the multiplicative set
of homogeneous elements not in p, the ring is graded by Z through the degree of elements
in S: deg( fg ) = deg(f)−deg(g). Let S(p) be set of elements in Sp of degree 0. For any open
set U ⊆ X we get a local ring where elements of the sheaf OX(U) are:

{(fp ∈ S(p))p∈U |∀p ∈ U∃N 3 p and d ∈ N, g, h ∈ Sd, h /∈ q∀q ∈ N and
g

h
7→ fq ∈ S(q)∀q ∈ N}

Lemma 3.3. (X,OX) is a scheme.

Proof. For f in Sd, let D(f) = {p ∈ X | f /∈ p}. Let S(f) ⊆ Sf be the subring of degree 0.
Claim: D(f) ∼= Spec (S(f)) as a ringed space. �

Lecture 6. January 27, 2009

Exercise 3.4. Hartshorne: §1:21 and §2: 3,5,7,8,9,10,12

Definition 3.5. Let (R,mR)
ϕ- (S,mS) be a ring homomorphism between the local rings

R and S. Then ϕ is a local ring homomorphism if either of the following equivalent
conditions hold:

(1) ϕ−1(mS) = mR

(2) ϕ(mR) ⊆ mS

Proposition 3.6. A map of rings A
ϕ- B induces a morphism of locally ringed spaces:

(Spec B, B̃)
(f,f#)- (Spec A, Ã)

Proof. The homomorphism A
ϕ- B induces the continuous map Spec B

f- Spec A
given by Q 7→ f(Q) = ϕ−1(Q). We need to extend this to a local morphism of sheaves of
rings Ã - f∗B̃. We want a map f∗ that is compatible with restrictions and such that
∀U ⊆ Spec A, Ã(U) - f∗B̃(U) = B̃(f−1(U)). It is sufficient to check this for some open
set in the basis D(g) ⊆ Spec A, where g ∈ A:

A[
1
g

] = Ã(D(g)) - B̃(f−1(D(g))) = B̃(D(ϕ(g)) = B[
1

ϕ(g)
]
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Ã(D(g)) 3 a

gt
7→ ϕ(a)

ϕ(gt)
=

ϕ(a)
(ϕ(g))t

∈ B̃(f−1(D(g))

Any principal open subset of D(g) is of the form D(gh) so this map is compatible with
restriction. Now we need to check that this map is local:
Say q ∈ Spec B, p = f(q). We need (Ã)p - (B̃)q to be local. Since A,B can be identified
with Ã, B̃, respectively, we can look at Ap - Bp instead. Now (Ap, p) and (Bq, q) are
local rings and ϕ(p) = ϕ(f(q)) = ϕ(ϕ−1(q)) ⊆ q, therefore this is a local map. �

Theorem 3.7. Every morphism of affine schemes, in the category of locally ringed spaces,

(X,OX)
(f,f#)- (Y,OY ),

where we identify X with Spec B and Y with Spec A, is induced by a unique map of rings
A

ϕ- B.

Caution: There are morphisms of ringed spaces (Spec B, B̃) - (Spec A, Ã) that are not
induced by a map A

ϕ- B (e.g. p40, exercise 11 in Shaf. II).

Proof. Given (Spec B, B̃)
(f,f#)- (Spec A, Ã), where X = Spec B and Y = Spec A, so set

A = OY (Y ) and B = OX(X). We need a map A - B. Ã - f∗B̃ by sending Ã(Y ) 7→
f∗B̃(X) = B̃(f−1(Y )) = B̃(X) = B. Now check that the induced map Spec B - Spec A
is given by Q 7→ ϕ−1(Q) = f(Q). In order to check this, we use the fact that this is a map

of locally ringed spaces. Whenever f(Q) = P , AP = OY,P
f#=ϕ- OX,Q = BQ is the local

map: check that ϕ−1(QBQ) = PAP Therefore ϕ−1(Q) = P = f(Q). �

Example 3.8. Z ⊂ - Z[x] gives us a map Spec Z[x]
f- Spec Z. Recall that the points

in Spec Z are the prime ideals and Spec Z has one dimension. The points of Spec Z[x]
are: (0), (p), (g), (p, f) where p is prime, g is irreducible, and f is irreducible mod p. For
instance over the point (p) ∈ Z we have closed points (p, f), where f is irreducible mod p,
and non-closed points (p) and (f).
Let Q = (2, x). Then f(Q) = (2) = Q ∩ Spec Z and when we localize at these ideals we get
a map Z(2)

- (Z[x])(2,x). However, in order to define this map we need to go through
f∗Z[x](2). We get the commutative diagram:

Z(2)
- (Z[x])(2,x)

f∗Z[x](2)

?

-

f∗Z[x](2) = lim−→
(2)∈U

Z̃[x](U)

= lim−→
(2)∈D(m)

Z̃[x](D(m))

= lim−→
(2)∈D(m)

Z[x][
1
m

]

= Z(2)[x]

Exercise 3.9. Explore Z - Z[i] with Spec Z[i] - Z.
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Example 3.10. Let X be a C-manifold and OanX its sheaf of analytic functions. Then:

OanX - (OanX )∗ by sending f 7→ e2πif

is a sheaf of abelian groups where the group on the left is additive and the sheaf on the
right is multiplicative. The kernel of this map is the locally constant sheaf ZX so that:

0 - ZX - OanX - (OanX )∗ by sending f 7→ e2πif is exact

Let X = C and U = C − {0}. On C, the logarithm can only be defined locally, but it
cannot be defined on all of U . Therefore on U the map OanX (U) - (OanX )∗(U) is not
surjective. Hence the cokernel presheaf is not zero. However, locally the exponential map
has an inverse, and so if we restrict to a neighborhood V ⊂ U on which the logarithm can
be defined, then the map OanX (V ) - (OanX )∗(V ) is surjective. Hence the cokernel sheaf
is zero.

Lecture 7. January 29, 2009

Definition 3.11. A scheme is a locally ringed space (X,OX) which admits an open cover
{(Ui,OX |Ui)} by affine schemes.

Fix an N-graded commutative ring with unit, S = S0 ⊕ S1 ⊕ S2 ⊕ . . . .
The irrelevant ideal of S is the ideal generated by positive degree, denote by S+.
Recall: As a set, Proj S = {p ∈ Spec S | p is homogeneous } \ V(S+). Its topology is
the Zariski topology induced by the subspace topology on Spec S. Closed sets all have the
form: V(I) where I is homogenous (excluding the points in V(S+)).

Example 3.12. Let S = k[x0, . . . , xn] = k ⊕ [k[x0, . . . , xn]]1 ⊕ . . . =
⊕

i≥0[[k[x0, . . . , xn]]i.

Then: S+ = (x0, . . . , xn) and Proj S = {p ⊂ k[x0, . . . , xn] homogeneous | (x0, . . . xn) * p}
Proj S is in 1-1 correspondence with the irreducible subvarieties of Pn:
The point [1 : 0 : · · · : 0] ∈ Pn corresponds to the maximal ideal (x1, . . . , xn) ∈ Proj S.
We get the following analogy, where A and P are viewed in classical algebraic geometry:
Ank corresponds to the closed points of Spec k[x1, . . . , xn] with the subspace topology.
Pnk corresponds to the closed points of Proj k[x0, . . . , xn] with the subspace topology.

Let S =
⊕

i≥0 Si. A basis of open sets for Proj S is given by sets of the form

D+(f) = {p ∈ Proj S | f /∈ p} = D(f) ∩ Proj S

, where f is a homogeneous polynomial of degree atleast 1 and D(f) ⊆ Spec S.
U = Proj S − V({gλ}λ∈Λ) = ∪λ∈ΛD+(gλ), where the gλ are homogeneous.

Example 3.13. X = Proj k[x0, . . . , kn] is covered by D+(x0) ∪ · · · ∪D+(xn).
OX(D+(xi)) = k[x0

xi
, . . . , xnxi ] = k[x0, . . . , xn][ 1

xi
]0.

Definition 3.14. Proj S has a sheaf of rings S̃ which has value

S̃(D+(f)) =
[
S[

1
f

]
]
0

= { S
f t
| degS = deg f t}

Let X = Proj S,OX = S̃. The definition is compatible with localization: D+(f) ⊇ D+(gf).

OX(D+(f))
restriction- OX(D+(gf))

(S
[ 1
f

]
)0

localization- (S
[ 1
fg

]
)0 = (S

[ 1
f

][1
g

]
)0

Pnk = Proj k[x0, . . . , xn]

OPnk (D+(xi)) - OPnk (D+(xixj))
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Localization at xj
xi

induces the map:

OPnk (D+(xi)) = k
[x0

xi
, . . . ,

xn
xi

]
= k[x0, . . . , xn]

[ 1
xi

]
0
-
(
k
[x0

xi
, . . . ,

xn
xi

][ 1
xj
xi

])
0

= k[x0, . . . , xn][
1

xixj
]0

Recall that D+(f) ⊇ D+(h)⇔ hn = gf for some n, g.

Stalks of OProj S :

Let (X,OX) = (Proj S, S̃). Take any p ∈ X.

OX,p = lim−→
U3p
OX(U) = lim−→

D+(f)3p
OX(D+(f)) = lim−→

f /∈p

[
S
[ 1
f

]]
0

= [S[T−1]]0 ≡ S<p>

Where all of the f ’s above are homogeneous and T ⊆ S is the multiplicatve system in S of
homogeneous elements not in p. Every element has the form a

ft where a ∈ S, f /∈ p and the
deg a = deg f t. Then a

ft ∈ unique maximal ideal ⇔ a ∈ p.

Let X = Proj k[x0, . . . , xn] 3 p = (x1, . . . , xn). All of the following f are homogeneous.

OX,p = lim−→
p∈D+(f)

OX(D+(f))

= lim−→
p∈D+(fx0)

OX(D+(fx0))

= lim−→
fx0 /∈p

k

[
x1

x0
, . . . ,

xn
x0

][
1(
f

xdeg f
0

)]

= k

[
x1

x0
, . . . ,

xn
x0

]
(
x1
x0
,..., xnx0

)

= OPnk ,p

Theorem 3.15. (Proj S,OProj S) = (Proj S, S̃) is a scheme.

Proof. Recall that Proj S is covered by open sets D+(f) where f ∈ S+.

(D+(f), S̃|D+(f))
ϕ,ϕ#
- (Spec (S

[ 1
f

]
0
) = A, Ã)

Check the details of this proof. �

Remark 3.16. Proj is not a functor from graded rings to schemes. For example consider
k[x, y] ⊂ - k[x, y, z]. Then the map on Proj would be: Proj k[x, y] � Proj k[x, y, z]
when (x, y) � (x, y), but (x, y) is not a point in Proj k[x, y] since it is contained in the
irrelevant ideal of k[x, y].

Properties of Schemes:
Topological: connected, irreducible
Ring Theoretic: reduced, integral, (locally) Noetherian, (locally) finite type, finite

Definition 3.17. A scheme is connected if its corresponding topological space is con-
nected.

Definition 3.18. A scheme (X,OX) is reduced (locally integral, locally Noether-
ian) if X has a cover Ui by open affine sets such that each OX(Ui) is reduced (domain,
Noetherian).

Proposition 3.19. Equivalently, every open affine set will have the property given by the
above definitions.
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Proposition 3.20. A scheme is integral ⇔ it is reduced and irreducible.

Remark 3.21. If a ring R is Noetherian, then Spec R is Noetherian. However if Spec R is
Noetherian, it need not be true that R is Noetherian. For instance, consider Z+ =integral
closure of Z in Q. Z+ is definitely not Noetherian since the chain (2) ⊂ (2

1
2 ) ⊂ (2

1
22 ) ⊂ . . .

does not terminate. Spec Z+ is not a Noetherian scheme, but as a topological space it is
Noetherian since every descending chain of closed sets stabilizes.

Lecture 8. February 3, 2009

Exercise 3.22. 2.4, 2.15, 2.18, 3.3, 3.6, 3.8, 3.10, 3.12. Read Hartshorne II §1,2,3 and
Shaf. V through 4.1.

Properties of Schemes:

Definition 3.23. An A-algebra is a a ring map A - B.

Definition 3.24. A scheme X is an S-scheme if there is a scheme map X - S. In this
case we say that “X is a scheme over S.”

Definition 3.25. An A-algebra B is of finite-type if it is finitely generated as an A-algebra.
Equivalently, B has a presentation B ∼= A[x1,...,xn]

∼ .

Definition 3.26. An A-algebra is finite (or module finite) if B is finitely generated as an
A-module.

Remark 3.27. Finite type and integral imply module finite.

Definition 3.28. An S-scheme X
f- S is of locally finite type if S has an open affine

cover S = ∪iVi such that each f−1(Vi) has an open affine cover ∪jUij such that the induced
map of affine schemes

Uij = Spec (Bij)
f |Uij- Vi = Spec Ai

comes from a finite type algebra Ai - Bij∀i, j. Furthermore, this S-scheme is of finite
type if the cover ∪jUij of each f−1(Vi) can be taken to be a finite cover.

Example 3.29. Spec k[x1, . . . , xn] - Spec k is given by the finite type map k ⊂ - k[x1, . . . , xn].

Example 3.30. Proj k[x0, . . . , xn]
f- Spec k has finite type:

D+(xi) = Spec k[x0
xi
, . . . , xnxi ] - Spec k is given by the map k ⊂ - k[x0

xi
, . . . , xnxi ].

Spec k = {(0)} so (0) is an open cover and f−1((0)) = Proj k[x0, . . . , x], which has a
finite cover given by {D+(xi)}i = 1n. Therefore f is of finite type.

Definition 3.31. An S-scheme is finite if S has an affine cover S = ∪iVi such that EACH
f−1(Vi) = Ui is affine, and the induced map Ui = Spec Bi - Vi = Spec Ai of affine
schemes corresponds to a finite map Ai - Bi.

Example 3.32. k[t] ⊂ - k[t,x]
(x2−t)

∼= k[t]⊕ xk[t] is a module finite map. This induces the map

Spec k[t,x]
(x2−t)

- Spec k[t] so that the point (x− λ, t− λ2) 7→ (t− λ2). This is a finite map
of schemes.

Example 3.33. Given k[t, s] ⊂ - k[t,s,x]
x2−ts , where s 7→ s and t 7→ t, is there an induced map:

Proj
k[t, s, x]
x2 − ts

f- Proj k[t, s] ?

Spec k[ ts ] = D+(s) and Spec k[ st ] = D+(t) in Proj k[t, s] so that

f−1(D+(s)) = D+(s) = Spec
k[ ts ,

x
s ]

(xs )2 − ( ts )

This is induced by the module finite map: k[ ts ] ⊂ - k[ ts ,
x
s ]

( xs )2−( ts )
.
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Definition 3.34. An open subscheme of a scheme X (i.e. (X,OX)) is an open set U ⊂ X
with the sheaf given by OX |U .

Definition 3.35. A closed subscheme of a scheme X is scheme (Y,OY ), where Y ⊆i X as
a closed set, together with a surjective map of sheaves of rings OX - i∗OY , i.e. ∀U ⊆ X,
OX(U) - OY (U ∩ Y ) = OY (i−1(U)) is surjective.

Example 3.36. Let X = Spec k[x, y] = A2
k

k[x, y] --
k[x, y]
x3

-- k[x, y]
x2

-- k[x, y]
x

-- k[x, y]
(x, y)

Induces maps on schemes:

A2
k = Spec k[x, y] � Spec

k[x, y]
x3

� Spec
k[x, y]
x2

� Spec
k[x, y]
x

� Spec
k[x, y]
(x, y)

where each is a map of closed subschemes.
Moral: There are usually many closed subschemes of a given scheme, and they can have
the same underlying topological space, but be different schemes. This is not true for open
subschemes.

Remark 3.37. There is a unique smallest closed subscheme of a given reduced scheme X
with support a given closed set. This is called the reduced subscheme of X supported at Y .
Subvarieties correspond to reduced subschemes of varieties. In the previous example, the
smallest closed subscheme is Spec k[x,y]

(x,y) .

4. Products

We want to generalize products from classical algebraic geometry: Amk ×k Ank = An+m
k .

Definition 4.1. Let X - S and Y - S be S-schemes. The product is an S-scheme
denoted X ×S Y together with morphisms pX : X ×S Y - X and pY : X ×S Y - Y
that satisfy the following universal property (in the category of S-schemes): Given Z such
that Z - X and Z - Y , there exists a unique map from Z to the product which
makes the diagram commute.

Z

X ×S Y
pY
-

.............∃! .............-
Y

-

X

pX

?
-

-

S
?

In the category of sets: Given X
f- S and Y

g- S, then the equivalent product in sets
(fibered product) would be:

X ×S Y = {(x, y) ∈ X × Y | f(x) = g(y)}

Remark 4.2. If you see X × Y without reference to a base scheme S, then we must rely
on the context to determine S. If there is no such context, then it could mean that every
scheme is a Spec Z-scheme in a unique way so X × Y could mean X ×Spec Z Y . More
often, X and Y are schemes over some unnamed base scheme. Also, sometimes people write
X ×k Y instead of X ×Spec k Y for short-hand.
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Theorem 4.3. Products exist for S-schemes.

Proof. Affine Case: X = Spec B - S = Spec T and Y = Spec A - S = Spec T ,
then X ×S Y = Spec (A⊗T B).
Suppose that Z = Spec R is a scheme and A - Z, B - Z. Then there exists a unique
map A⊗T B - Z such that the diagram commutes.

A⊗T B � B

A

6

� T

6

The property for schemes follows for affine Z immediately. By exercise 2.4 in Hartshorne,
to give a scheme map Z - Spec (A ⊗T B) is equivalent to giving a ring map A ⊗T
B - OZ(Z).
General Case: In general, X = ∪Spec Bik, Y = ∪Spec Aij and S = Spec Ti. Then define
Wikj = Spec (Aik ⊗Ti Bij). We can glue these together to get X ×S Y .
Read Hartshorne for more details. �

Recall: For a point p ∈ Y , k(p) is the residue field of p and Spec k(p) - Y .

Definition 4.4. Given a morphism X
f- Y of schemes, and a point p ∈ Y , the (scheme-

theoretic) fiber of f over p is the scheme: Spec k(p)×Y X.

This agrees with the definition of fiber for topological spaces, but it also has a scheme
structure

Example 4.5. k[t] ⊂ - k[t,x]
x2−t , where k is algebraically closed.

Spec
k[t, x]
x2 − t

- Spec (k[t])

Take the point p = (t− λ)

k[t] - k(p) =
k[t]
t− λ

so that Spec k(p) - Spec (k[t]).

The fiber over p is:

Spec (
k[t]
t− λ

⊗k[t]
k[t, x]
x2 − t

) = Spec
k[t]
t−λ [x]
x2 − t

= Spec
k[x]
x2 − λ

= Spec
k[x]

(x−
√
λ)(x+

√
λ)

= Spec
k[x]

x−
√
λ
⊕ k[x]
x+
√
λ

The fiber over (t) is: Spec k[x]
(x2) .

Lecture 9. February 5, 2009

New policy: Choose one problem of the assigned to do with one other person and turn
in one carefully written paper which is proofread by both. (In addition to other probems
written up individually).
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Example 4.6. Let X = Spec C[x] and Y = Spec C[y]. Then

X ×Spec C Y = Spec (C[x]⊗C C[y]) = Spec C[x, y]

Uses of the Product:

(1) Defining fibers of X
f- Y

(2) Base change
(3) Defining families of schemes or varieties
(4) Deformations of varieties or schemes
(5) Defining separatedness, a property of schemes analogous to the Hausdorff property

for topological spaces.

Definition 4.7. The (scheme-theoretic) fiber of a map X
f- Y over a point p ∈ Y is

Spec k(p)×Y X.

In the category of sets, this is literally the fiber.

Example 4.8. Given a map of affines schemes Spec B
f- Spec A, the corresponding map

on rings A
ϕ- B, and a point p ∈ Spec A, then:

f−1(p) = Spec
( Ap
pAp

⊗A B
)
⊆ Spec B

Let’s see why this is a subset of Spec B.

Ap
pAp

⊗A B = A
(
[A− p]−1 ⊗A

A

p

)
⊗A B

= A[(A− p)−1]⊗A
B

pB

=
B

pB
[[ϕ(A− p)]−1]

The prime ideals in B
pB [[ϕ(A − p)]−1] are in one-to-one correspondence with q ∈ Spec B

which satisfy q ⊇ pB and are disjoint from U . This is in one-to-one correspondence with
ϕ−1(q) ⊆ p and ϕ−1(q) = p which is in one to one correspondence with q ∈ Spec B satisfying
ϕ−1(q) = p.

Base Change:
Given a scheme X over S an a morphism S′ - S, there is a scheme X ′ over S′ which
people called the “S′-scheme obtained by base change,” S′ ×S X - S′.

Example 4.9. XR = Spec R[x,y]
x2+y2 is an affine, integral, finite type (but not finite) scheme of

dimension one (this is the Krull dimension). Base change from R to C:

XC = Spec C×Spec C XR = Spec
(
C⊗R

R[x, y]
x2 + y2

)
= Spec

C[x, y]
x2 + y2

= Spec
C[x, y]

(x+ iy)(x− iy)

This scheme still is of finite type and has dimension one, but it is not integral since x2 + y2

factors.

Finite type is preserved by base change,
Families:

Definition 4.10. A family of schemes parametrized by a scheme S is a morphism
X - S. Members of the family are the fibers: {Xp}p∈S , where Xp = Spec k(p)×S X.
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Example 4.11. Let k = k and k[t] ⊂ - k[t,x,y]
xy−t and so A1

k = Spec k[t] �
f

Spec k[t,x,y]
xy−t .

This is a family of hyperbolas parametrized by A1
k. The members of the family are: Take

any λ ∈ A1
k. Then

f−1((t− λ)) = Spec (
k[t]

(t− λ)
⊗k[t]

k[t, x, y]
xy − t

) = Spec (
k[x, y]
xy − λ

The generic fiber (over the generic point (0)) is:

f−1((0)) = Spec
(
k(t)⊗k[t]

k[t, x, y]
xy − t

)
Let L = k(t), then f−1((0)) = Spec

(L[x,y]
xy−t

)
.

Example 4.12. Consider Spec
( Q[x,y,z]
xn+yn−zn

)
. We want to study the family that comes out of

Z ⊂ - Z[x,y,z]
xn+yn−zn . The family is given by:

Spec
( Z[x, y, z]
xn + yn − zn

) f- Spec Z

Members of the family:
Closed fibers: f−1((p)) = Spec ( Z

pZ ⊗Z
Z[x,y,z]

xn+yn−zn ) = Spec
( Zp[x,y,z]
xn+yn−zn

)
.

The fiber over the generic point (0) is:

f−1((0)) = Spec
(
Q⊗Z

Z[x, y, z]
xn + yn − zn

)
= Spec

( Q[x, y, z]
xn + yn − zn

)

Part 2. Expanding our knowledge of Schemes

5. Properties of Schemes not derived from Rings

These properties come from the way in which the affine patches are glued together.
There are two main properties to consider:
separatedness: which corresponds to “Hausdorff” properties
properness: which corresponds to “compactness”

Examples of Separated morphisms of schemes X - S:

• Spec R is separated over Spec Z - so the morphism Spec R - Spec Z is separated
• Any map of affine schemes, Spec B - Spec A, is separated
• S = S0 ⊕ S1 ⊕ . . . , S0 is a subring and Proj S - Spec S0 is separated
• Quasi-projective varieties are separated over k

Non-separated scheme:
The “bug-eyed line” over k is not separated over k. Spec k[y, 1

y ] - Spec k[x, 1
x ] given by:

k[y, 1
y ] � k[x, 1

x ] where y � x.

Proposition 5.1. A topological space X is Hausdorff ⇔ the diagonal X - X ×X is a
closed embedding of topological space.

Definition 5.2. Given a scheme X over S, X - S, the diagonal morphism is the
unique map X

∆- X ×S X such that composition with projection onto X is the identity
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map.
X

X ×S Y
p1

-

∆

-

Y

.........................Id .........................-

X

p2

?
-

..........................Id ..........................-

S
?

Definition 5.3. X - S is separated if the diagonal morphism is a closed embedding
of schemes.

Example 5.4. Given Spec B - Spec A
B

B ⊗A B �1⊗ b← b

�

µ

B

�

Id

B

6

�

�

Id

A

6

Let Spec B
∆=Spec µ- Spec (B⊗AB) = Spec B×Spec A Spec B. This is obviously a closed

embedding since B ⊗A B
µ- B is surjective.

Lecture 10. February 10, 2009

Exercise 5.5. Hartshorne II: §1 8,10,12,13,15 and §4 1,3,5ab.

Remark 5.6. When Hartshorne uses the term variety, he is referring to an irreducible, quasi-
projective variety.

Definition 5.7. A morphism of schemes X
f- Y of finite type over C is proper if, in

the Euclidean topology induced by C, this map is proper (i.e. the preimage of a compact
set is compact).

Definition 5.8. A morphism of schemes X
f- Y is proper if it is finite type, separated,

and universally closed.

Example 5.9. Identity morphism, finite maps, closed embeddings, P1
k
- Spec k.

Definition 5.10. A map X - Y is universally closed if it is closed, and remains closed
under base change (i.e. given Y ′ - Y , the induced map X ×Y Y ′ - Y ′ is closed).

Theorem 5.11 (Theorem from 631). If X is a projective variety, then given any variety
Y ′, the map X × Y ′ - Y ′ is closed.

In scheme language this corresponds to: Let X - Spec k projective and Y ′ - Spec k,
then X ×Spec k Y

′ - Y ′ is closed.
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Example 5.12. Is A1
k = Spec k[y] - Spec k is proper? We would expect not, since A1

k

is not compact. This morphism is of finite type and separated, so if we are right then it
cannot be universally closed. Consider:

A2 π- A1 (λ, µ) 7→ λ Spec k[x, y] - Spec k[x] induced by x � x

The closed set V(xy−1) ⊆ A2 π-- A1−{0} and Spec k[x, y] ⊇ V(xy−1) -- (Spec k[x]−
(x)).

Spec k[y]×Spec k Spec k[x] - Spec k[x]

So this is not universally closed ⇒ not proper.

Valuation Rings (Review)

Definition 5.13. Fix an ordered abelian group G (usually G = Z). A G-valued valuation
on a field K (where K∗ = K \ {0}) is a group homomorphism ν : K∗ - G satisfying:

• ν(a) =∞⇔ a = 0
• ν(ab) = ν(a) + ν(b),∀a, b ∈ K∗
• ν(a+ b) ≥ min{ν(a), ν(b)},∀a, b ∈ K∗

The valuation ring of this valuation is Rν = {f ∈ K | ν(f) ≥ 0}. This is local with maximal
ideal mν = {f ∈ K | ν(f) > 0}.
Equivalently, R is a valuation ring inside its fraction field K ⇔ ∀x ∈ K, either x or
x−1 ∈ R.

Example 5.14. p-adic evaluations, the order of vanishing of a divisor

Definition 5.15. A valuation ring is a domain V which is the valuation ring for some
valuation ν on its fraction field.

Definition 5.16. The valuation is discrete if G = Z and in this case the valuation ring is
a discrete valuation ring (DVR).

Caution: Valuation rings are rarely Noetherian

Theorem 5.17. A Noetherian local domain is a DVR ⇔ one of the following equivalent
conditions hold:

• PID
• Normal of dimension 1
• The maximal ideal is principal

Fix a DVR V with fraction field k, what does Spec V look like? V has dimension one
and one maximal ideal m, so Spec V is a topological space with only two points: a closed
point (m) and a generic point {η} = Spec k = Spec V −{m}, which is an open set of Spec V .

5.0.1. Valuative Criterion for Separatedness/Properness:

Theorem 5.18. Let X
f- Spec k be a finite type scheme over k. Then f is separated if

and only if the following criterion holds:
Given any DVR V with fraction field K and a commutative diagram:

Spec K - X

Spec V
?

∩

-
.....

.....
.....

.....
.....

.....
..-

Spec k

f

?

there is at most one way to map Spec V - X and make the diagram commute.



Sara W. Lapan 23

Intuitively: a scheme over k is proper if and only if “it contains no bug-eyed lines.” If a
scheme over k contained a “bug-eyed line,” then there would be more than one way to give
a map Spec V - X.

Theorem 5.19. Let X
f- Spec k be a finite type scheme over k. Then f is proper if and

only if the following criterion holds:
Given any DVR V with fraction field K and a commutative diagram:

Spec K - X

Spec V
?

∩

-
.....

.....
.....

.....
.....

.....
..-

Spec k
?

there is exactly one way to map Spec V - X and make the diagram commute.

Intuitively, a scheme over k is proper if it “has no holes.”

Theorem 5.20. A morphism X
f- Y of finite type, with X and Y Noetherian, is

separated (respectively proper) if and only if given any discrete valuation ring V with fraction
field K and a diagram:

Spec K - X

Spec V
?

∩

-
.....

.....
.....

.....
.....

.....
..-

Y
?

there is at most (respectively, exactly one) map h filling in the diagram.

Proof. This is very difficult so we are not going to cover it, but it can be found in Hartshorne.
�

Intuitively, a scheme over k is separated if and only if it contain no “bug-eyed” lines.

Corollary 5.21. Assume that all schemes below are Noetherian:
(1) open and closed immersions are separated, closed immersions are proper
(2) compositions of separated (respectively proper) morphisms are separated (respectively

proper)
(3) separated (respectively proper) morphisms are stable under base change (i.e. X

f- Y
is separated and Y ′ - Y , then X ×Y Y ′ - Y ′ is separated)

(4) products of separated morphisms (respectively proper) are separated (respectively
proper)

(5) X
f- Y is separated (respectively proper) if Y has an open cover {Ui} and each

f−1(Ui) - Ui is separated (respectively proper)

Of (5).

Spec k - f−1(Ui) ⊂
⊆ - X

Spec V
?

∩

- Ui
?
⊂
⊆ - Y

?

�
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Lecture 11. February 12, 2009

Definition 5.22. Projective space over a scheme Y , denoted PnY , is Y ×Spec Z P
n
Z,

where PnZ = Proj Z[x0, . . . , xn].

Example 5.23. If Y = Spec A, then

PnY = Spec A×Spec Z Proj Z[x0, . . . , xn]

= ∪ni=0Spec A×Spec Z Spec Z[
x0

xi
, . . . ,

xn
xi

]

= ∪ni=0Spec (A⊗Z Z[
x0

xi
, . . . ,

xn
xi

]

= ∪ni=0D+(xi) ⊆ Proj A[x0, . . . , xn]

= PnA

Definition 5.24. A morphism of sheaves X
f- Y is projective if it factors as:

X ⊂
closed immersion- Y ×Z PnZ

πY- Y

Example 5.25. Let X = V(F0, . . . , Fc) ⊆ Proj A[x0, . . . , xn] - Spec A, where the Fi
are homogeneous polynomials in x0, . . . , xn with coefficients in A. Then the morphism
X - Spec A is projective.

Example 5.26. Let A = C[t0, t1]. X = V(t0x1− t1x0) ⊆ Proj A[x0, x1] - Spec C[t0, t1] =
A2

C

Proj A[x0, x1] = Spec A×Spec C Proj C[x0, x1] = Spec A×Spec C Proj C[x0, x1]

So that X ⊆ A2
C × P1

C, where A2
C has coordinates t0, t1 and P1

C has coordinates x0 : x1.
Look in the affine patch A2

C ×D+(x0).

V(t0
x1

x0
− t1) ⊆ Spec C[t0, t1]⊗ Spec C[

x1

x0
] = Spec k[t0, t1,

x1

x0
] - Spec C[t0, t1]

where the map is given by inclusion of rings. Note that V(t0 x1
x0
− t1) = Spec

C[t0,t1,
x1
x0

]

(t0
x1
x0
−t1)

and

this has closed points:
• (t0 − λ0, t1 − λ1,

x1
x0
− µ), where λ0µ = λ1

• (λ0, λ1,
λ1
λ0

) if λ0 6= 0
• (0, 0, µ)

The map given by inclusion sends:
(t0 − λ0, t1 − λ1,

x1
x0
− µ) 7→ (t0 − λ0, t1 − λ1)

(λ0, λ1,
λ1
λ0

) 7→ (λ0, λ1)
(0, 0, µ) 7→ (0, 0)
This is the schemified version of the classic blow-up at the origin.

Remark 5.27. Note that C[t]⊗Z Z[x] = C[t]⊗C C[x]

Theorem 5.28. Projective morphisms are proper.

Proof. Let X ⊂
closed embedding- Y × PnZ

πY- Y be a projective morphism, f .
Since closed embeddings are proper and compositions of proper morphisms are proper,
it suffices to show that πY is proper. The map Y × PnZ

πY- Y is a base change from
PnZ - Spec Z. Since properness is preserved by base change, it suffices to show that
PnZ - Spec Z is proper. Instead of doing a base change we could do this by covering Y
by affine sets {Ui} and showing that the map Ui × PnZ - Ui is proper - this allows us to
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assume that Y is affine.
Use the valuative criterion for properness:
PnZ - Spec Z is of finite type since PnZ has affine open covers given by D+(xi) =
Spec Z[x0

xi
, . . . , xnxi ] and the map from any open set in the cover to Spec Z has finite type.

Take any valuative ring V and fraction field K with valuation ν.

Spec K - PnZ

Spec V
?

-
.....

.....
.....

.....
.....

.....

∃!
-

Spec Z
?

Let η be the image of the dense point (0) ∈ Spec K in PnZ. Without loss of generality,
we can assume that η ∈ ∩ni=0D+(xi) since otherwise we would have that η ∈ V(xi) =
Pn−1

Z ⊆ PnZ and we are doing an induction proof. The base case of this induction proof is:
P0

Z = Proj Z[x0] = Spec Z. The corresponding ring diagram for the above diagram is:

K � Z[
x0

xi
, . . . ,

xn
xi

]

V

6

�
�....

.....
.....

.....
.....

.....

∃!

Z

6

Let fji ∈ K be the image of xj
xi

in K (think about why they do not map to 0). Let
gi = ν(fi0), where i = 1, . . . , n. This is ordered by the valuation, so suppose that gk is
minimal. Now fik = fijfjk and fjk · fkj = 1 since xi

xk
= xi

xj

xj
xk

. Then

ν(fik)s = ν(fij) + ν(fjk) = ν(fij)− ν(fkj) = ν(fi0)− ν(fk0) ≥ 0

Since ν(fik) ≥ 0, the image of xi
xj

lies in V . Therefore the map Z[x0
xi
, . . . , xnxi ] - V exists.

Uniqueness is an exercise. �

6. Quasi-Coherent Sheaves on Schemes

Local General
Commutative Algebra Scheme Theory

R (X,OX) scheme
R-module M M̃ quasi-coherent sheaf

finitely presented module coherent sheaf

Remark 6.1. A finitely generated, Noetherian module is finitely presented. A finitely pre-
sented module is a finitely generated module with finitely many relations.

Definition 6.2. If (X,OX) is a ringed space, an OX -module is a sheaf F of abelian groups
such that for all open U ⊆ X,F(U) is an OX(U)-module that is compatible with restriction:
For U ′ ⊆ U open, m ∈ F(U), r ∈ OX(U) r ·m ∈ F(U).
Then m|U ′ ∈ F(U ′), r|U ′ ∈ OX(U ′) r ·m|U ′ = r|U ′ ·m|U ′ .

Given a ring R and an R-module M , how do I get a sheaf of OX-modules on the scheme
Spec R = X?

Let R be a ring, X be Spec R, M be an R-module, and M̃ be a sheaf of OX -modules. For
all open U ⊆ X, we want M̃(U) to be an OX(U)-module. Let U = D(f) ⊆ Spec R. Then
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OX(U) = R[ 1
f ]. Define:

M̃(D(f)) = M ⊗R R[
1
f

] = M [
1
f

] = {m
f t
| m ∈M, t ∈ Z},

with the usual equivalence. Since D(fg) ⊆ D(f), we get a map:

M̃(D(fg)) = M [
1
fg

] � M̃(D(f)) = M [
1
f

].

Now that we have defined M̃ on all of the basic open sets, we can extend this to all open
sets of X as follows:

∀U ⊆ X open, let M̃(U) = lim←−
D(f)⊆U

M̃(D(f)) = lim←−
D(f)⊆U

M [
1
f

]

This is a module over OX(U) = lim←−D(f)⊆U OX(D(f)) since each M̃(D(f)) is a module over

OX(D(f)). Notice that M̃(X) = M .

Remark 6.3. This is defined in the same way in Shaf.II and in a different, but equivalent,
way in Harthorne.

What is the stalk of M̃ at a point p ∈ Spec R = X?

M̃p = lim−→
p∈U

M̃(U)

= lim−→
p∈D(f)

M̃(D(f))

= lim−→
f /∈p

M [
1
f

]

= Mp

= M ⊗R Rp
This is an OX,p-module.

Example 6.4. Let X = Spec k[x, y], M1 = k[x, y]⊕ k[x, y], M2 = k[x,y]
(x,y) .

For a point p the stalk:
In M1 is: Rp ⊕Rp = (k[x, y]⊕ k[x, y])⊗k[x,y] (k[x, y])p
In M2 is: M2 ⊗R Rp, so this depends on the specific p.

M2 ⊗R Rp =
k[x, y]
(x, y)

⊗k[x,y] k[x, y]p =

{
k(p) = k if p = (x, y)
0 otherwise

M̃2 is the skyscraper sheaf at p = (x, y). Spec k(p)
i- A2

k, where M̃2 = i∗k̃(p).

Lecture 12. February 17, 2009

Exercise 6.5. Hartshorne: 5.1, 5.4, 5.6, 5.7, exercises 1-5 from Karen’s ”pullbacks and all
that” handout, and as one exercise:

(a): Look up the definition and basics of injective modules in an algebra text (eg
Dummit and Foote).

(b): Prove that every module over a commutative ring admits an injective resolution.
(c): If S is an R algebra and E is an injective R-module, prove that HOMR(S,E) is

an injective S-module (hint: adjointness of tensor and hom).

(Quasi-)Coherent Sheaves on Schemes:
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Definition 6.6. M module over a commutative ring A, the quasi-coherent sheaf of OX -
modules is defined by: M̃(D(g)) = M [ 1

g ] ≡Mg = M ⊗A A[ 1
g ] where

M̃(D(g)) = {m
gt
| m ∈M, t ∈ Z where

m1

gt1
∼ m2

gt2
⇔ ∃s such that gs(m1g

t2 −m2g
t1) = 0}

Let U = ∪D(gi). Then m ∈ M̃(U)⇔ mi ∈ M̃(D(gi)),∀i and the mi agree on overlaps. So
that M̃(U) = lim←−D(g)⊆U M̃(D(g)).

Definition 6.7. M̃ is a coherent sheaf if it is a quasi-coherent sheaf and M is a finitely
presented module.

Definition 6.8. A quasi-coherent sheaf on a scheme (X,OX) is a sheaf F ofOX -modules
such that X admits an affine cover X = ∪Ui (each Ui = Spec Ai) with F|Ui = M̃i for some
Ai-module Mi. A quasi-coherent sheaf F is coherent if each Mi is finitely presented.

Examples:
• OX is coherent on any scheme
• OX ⊕ · · · ⊕ OX is quasi-coherent (there are any number of copies of the OX)
• F is a locally free OX -module (i.e. X = ∪Ui be an open cover of X such that
F|Ui ∼= OUi ⊕ · · · ⊕ OUi∀i, where OUi ≡ OX |Ui .

• X smooth, irreducible variety over k and D a divisor, L(D) = {ϕ | divϕ+D ≥ 0} ⊂
k(X) is coherent

• ∧pΩX/k modules of differentials, where X is smooth, irreducible variety, is also
coherent

• Y ⊆i X,OX - i∗OY kernel is sheaf of ideals IY ⊆ OX . Then IY is quasi-
coherent and if OX is Noetherian, then so is IY .

Theorem 6.9. (Prop 5.2 in Hartshorne) Let X = Spec A. The functor {A−mod} - {OX−
mod} sending M - M̃ is an exact, fully faithful functor, whose image is the category of
quasi-coherent OX-modules.

Proof. Given an exact sequence of A-modules:

0→M1 →M2 →M3 → 0⇒? 0→ M̃1 → M̃2 → M̃3 → 0 exact

This is true ⇔ ∀p ∈ Spec A, the induced sequence of OX,p-modules is exact on stalks.

0→ (M̃1)p = (M1)p → (M̃2)p = (M2)p → (M̃3)p = (M3)p → 0

(M1)p = M1 ⊗A Ap. From commutative algebra fact is that a short sequence of modules is
exact if and only if its localization is exact for all localizations. Given a map of A-modules,

M
f- , we get an induce map of OX -modules, M̃

ef- Ñ . Fully faithful means that
every map M̃

g- Ñ of OX -modules is induced by some map M - N of A-modules
(via ∼). Let M = M̃(x) and N = Ñ(X). Then M = M̃(X)

g(X)- Ñ(X) = N is an
OX(X) = A-module map.

HomA−mod(M,N)
∼

bijection
- HomOX−mod(M̃, Ñ)

�

Corollary 6.10. The category of quasi-coherent modules on an affine scheme Spec A is
equivalent to the category of A-modules.

Proposition 6.11. If F is a quasi-coherent OX-module on a scheme (X,OX), then for
every affine open U , we have F|U = M̃ , for some M an OX(U)-module. (set M = F(U)).
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Proof. If F is quasi-coherent, there is a basis B for X such that ∀U ∈ B, F|Uλmλ for
some Aλ-module Mλ on Uλ = Spec Aλ. {Ui}, where Ui = Spec Ai, for some affine cover
F|Ui = Mi, Mi is an Ai-module. By covering Ui’s by basic open affines, we get B. �

All basic commutative algebra constructions for A-modules can be done for quasi-coherent
sheafs on a scheme.

Example 6.12. F f- G is a morphism of quai-coherent OX -modules. What sheafs do we
get out of this?

• Ker(f) is a quasi-coherent sheaf (since localization commutes with taking the kernel)
• Im(f) (we must look at sufficiently small open sets for this to be a sheaf)
• Coker(f)

Remark 6.13. Given 0 → F → G → H → 0 is an exact sequence of quasi-coherent sheaves
on X. For U ⊆ X, we get a sequence 0 → F(U) → G(U) → H(U) → 0 that may not be
exact. This is exact if U is affine or if it is contained in an affine open set, but it might not
be exact otherwise.

6.0.2. Push Down (Direct Image) of Quasi-Coherent Modules.
Let X

f- Y be a morphism of schemes and F be a quasi-coherent scheme.
f∗F is the sheaf on Y given by f∗F(U) = F(f−1(U)). This is an OY -module and

OY (U)
restriction
of scalars

- f∗OX(U) = OX(f−1(U)).

If F is a quasi-coherent sheaf on X and either X is noetherian or f is separated, then f∗F
is quasi-coherent.

Definition 6.14. A morphism X
f- Y of schemes is an affine map if the pre-image of

every affine set is affine. Equivalently, the pre-image of an affine cover is affine.

Suppose F is quasi-coherent. Cover X by affine Ui such that F|Ui = M̃i (Mi = F(Ui)
considered as an OX(Ui) = Ai-module). This is easy when f is an affine map since we can
cover Y by Ui = Spec Ai, so that f∗F|Ui = F(f−1(Ui)) and f−1(Ui) is affine.

Prove that if F is quasi-coherent, then f∗F is quasi-coherent on Y . Assume thatX
f

separated
- Y

and, without loss of generality, Y is affine.

s ∈ f∗F(U)⇔ si ∈ F(Ui)∀i and the si agree on overlaps.

0→ f∗F → ⊕if∗F|Ui → ⊕i,jf∗F|Ui∩Uj is exact
Push Down preserves the category of quasi-coherent modules.

Example 6.15 (Of Push Downs). Let A
ϕ- B and X = Spec B

f- Spec A = Y be
induced by ϕ. Let F be a quasi-coherent sheaf on X. Then F = M̃ for some B-module M .
f∗F is a quasi-coherent on Y , f∗F = M (now thinking of M as an A-module via retriction
of scalars A→ B). If F is coherent, A and B Noetherian, is f∗F coherent? Not in general.
For instance:
Let k ⊂ - k[t], A1

k

f- Spec k,F = OA1 = k̃[t] so that f∗F(Spec k) = F(f−1(Spec k)) =
F(A1

k) = k[t] as a k-module, which is definitely not finitely generated as a k-module.
If f is a finite map, then f∗F is coherent.

Lecture 13. February 19, 2009

Given any map of topological spaces X
f- Y and F a sheaf on X that is an OX -module,

we get a sheaf on Y : f∗F and a map of ringed spaes OY - f∗OX . In the case where f is a
morphism of schemes and F is a a quasi-coherent OX -module, then f∗F is a quasi-coherent
OY -module. However if F is coherent, f∗F need not be coherent.
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6.0.3. Pullbacks:
Commutative Algebra Ringed Spaces

A - B (X,OX)
f- (Y,OY )

{B-mod} restriction
of scalars

- {A-mod} {OX -mod} f∗- {OY -mod}
{B-mod} � {A-mod} {OX -mod} � {OY -mod}
where B ⊗A B � N f∗F � F

Generalities:
Given X

f- Y a map in the category of topological spaces between such spaces.
Let F be a sheaf on Y and we want to define f−1F a sheaf on X.
If f is an open map we can define a presheaf f−1F(U) = F(f(U)), where U ⊂ X is open,
which defines a unique sheaf f−1F .
Otherwise we can define f−1F by looking at all open sets that contain f(U) for a given
open U ⊂ X.

Definition 6.16. f−1(F) is the sheaf associated to the presheaf

f−1(F)(U) = lim−→
V⊇f(U) open in Y

F(V )

This definition agrees with the open we had when f was an open map since in that case we
have a terminal object in the direct limit, which is f(U).

Example 6.17. Let U ⊆open
j X and F a sheaf on X. Let V ⊂ U open. Then:

j−1F(V ) = F(j(V )) = F(V ) note that F|U = j−1F

Example 6.18. Let C ⊂ i- C2 be given by z 7→ (z, 0) and U ⊆ C open. Then

i−1OanC2 (U) = lim−→
V⊇i(U) open

OanC2 (V ) = germs of analytic functions defined on open neighborhood of i(U)

Example 6.19. Let {p, q} ⊂ i- A1
C and C be the constant sheaf on A1

C.

i−1C({p, q}) = lim−→
V⊇{p,q}

C(V ) = C

i−1C({p}) = lim−→
V⊇{p}

C(V ) = C

i−1C({q}) = lim−→
V⊇{q}

C(V ) = C

So this is only a presheaf.

Example 6.20. k[X] ⊂ - k[x, y], then A1
k = Spec k[x] �

π
Spec k[x, y] = A2

k. Note that π
is an open map.

π−1OA1
k
(D(x− λ)) = lim−→

V⊇π(D(x−λ))

OA1
k
(V ) = OA1

k
(D(x− λ)) = k[x]

[
1

x− λ

]
Let f ∈ k[x, y]. If the image of f in A2

k projected onto A1
k, then π−1OA1

k
(D(f)) = k[x]. So

π−1OA1
k

is a sheaf of rings on A2, but not OA2
k
.
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Let (X,OX)
(f,f∗)- (Y,OY ) be a map of ringed spaces (so that OY - f∗OX). Note:

f−1OY is a sheaf of rings on X (but not usually OX as we saw in the previous example).
There is a natural map of sheaves of rings on X:

f−1OY - OX

For open U ⊆ X: f−1OY (U) - OX(U),where

lim−→
V⊇f(U) open

f−1OY (U)
induced by map of

ringed spaces
- lim−→

V⊇f(U)

OX(f−1(V ))
restriction- OX(U)

Given an OY -module (i.e. a sheaf of OY -modules), F , f−1F is an f−1OY -module. f−1F
is an OY -module as follows: for U ⊆ X open, r ∈ f−1OY (U) = lim−→OY (V ) and m ∈
f−1F(U) = lim−→F(V )⇒ rm ∈ f−1F(V )

Definition 6.21. Given an OY -module F , f∗F is the sehaf of OX -modules on X associated
to the presheaf given by for U ⊆ X open, f∗F(U) = OX(U)⊗f−1OY (U) f

−1F(U).

Example 6.22. If X
f- Y , then f∗OY = OX .

Example 6.23. Let A
ϕ- B and Spec B

f- Spec A. We get f∗M̃ = B ⊗AM = M̃

Proposition 6.24. If F is a locally free OY -module, then f∗F is a locally free OX-module.

Proposition 6.25. If (X,OX)
f- (Y,OY ) is a morphism of ringed spaces, then

{OY −modules} f∗- {OX −modules} is a functor: OY - OX = f∗OY

If f happens to be a morphism of schemes, then the quasi-coherent (coherent) modules on
OY pullback to quasi-coherent (coherent) modules on OX .

Example 6.26 (Of Quasi-Coherent Sheaves on ProjS). Let S = S0⊕S1⊕ . . . and S>0 be the

irrelevant ideal. This has a basis D+(f) = Spec

[
S

[
1
f

]]
0

, where f is homogeneous. Take

M a Z-graded S-module. This determines a quasi-coherent sheaf M̃ on X = Proj S. On

basic open set D+(f), M̃(D+(f)) =

[
M

[
1
f

]]
0

is a module over OX(D+(f)) =

[
S

[
1
f

]]
0

.

Check that this is quasi-coherent: If D+(fg) ⊆ D+(f) (whenever we have open basic open
set inside another, we can assume it has this form and in fact we can assume that f and g
are homogeneous of the same degree by looking at higher powers of f and g). We need:

M̃(D+(fg)) = ˜
M̃(D+(f))

(
1
g
f

)

Note that

[
M

[
1
fg

]]
0

= M̃(D+(fg)) =?

[
M

[
1
f

]
0

][
f

g

]
Lecture 14. March 2, 2009

Definition 6.27. A quasi-coherent sheaf F on a scheme X is an OX -module with the
property that for every open affine U ⊆ X (say U = Spec A) F|U = M̃ where M is the
OX(U) = A-module F(U).
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7. Quasi-Coherent Sheaves on Projective Schemes over A

Setup:
Let S = S0 ⊕ S1 ⊕ S2 ⊕ . . . be an N-graded ring, where S0 = A is a Noetherian ring and
S>0 is the irrelevant ideal. Let X = Proj S, so we have a map X - Spec A. The
closed sets of X are V(I), where I is a homogeneous ideal, and the basic open sets are

D+(f) = {p ∈ Proj S | f /∈ p}. OX(D+(f)) =
(
S

[
1
f

])
0

.

Definition 7.1. Let M be a Z-graded S-module. The associated sheaf of OX -modules M̃

is defined as: M̃(D+(f)) =
[
M

[
1
f

]]
0

, where f is homogeneous.

Note:

This is an OX(D+(f)) =
[
S

[
1
f

]]
0

-module.

If D+(g) ⊆ D+(g), we need a natural restriction map (we can assume that g = fh and
deg f = deg h).

M̃(D+(f)) =
[
S

[
1
f

]]
0

- M̃(D+(g)) =
[
S

[
1
fh

]]
0

by
m

f t
7→ mht

(fh)t

Proposition 7.2. This OX-module M̃ is quasi-coherent.

Proof.
[
S

[
1
fh

]]
0

=
[
S

[
1
f

]]
0

[(hf )−1], where h
f ∈

[
S

[
1
f

]]
0

. �

Main Fact: If S is finitely generated as an A-algebra by its element of degree 1, then all
quasi-coherent sheaves on Proj S are of this form and there is a functor:

{Z-graded, finitely generated S-modules} - {coherent OX -modules}

This is not an equivalence of categories.

Example 7.3. Take any graded S-module, M , and let M ′ ⊆M be any submodule such that
∃N0 ∈ Z, with M ′N = MN∀N ≥ N0. The natural map M̃ ′ - M̃ of OX -modules is an
isomorphism. For instance:

M̃ ′(D+(f)) - M̃(D+(f)) given by
m

f t
↔ mfN0

f t+N0

So for the above functor, M ∼ M ′ if they agree in large degree (∃N0 such that MN =
M ′N∀N ≥ N0).

7.0.4. Twisting Sheaves on Proj S.

Definition 7.4. Given a Z-graded module M over S, M shifted by N ∈ Z is the graded

S-module M(N), which is M as an S-module but the grading is shifted:
[
M [N)

]
d

= MN+d.

Caution: The different M(N) are almost always different graded S-modules
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Example 7.5. Fix S = A[x0, . . . , xn]. Let M = S and lets study S̃(N) = OX(N) (the Nth

twist of the structure sheaf OX on X = Proj S).

OX(N)(D+(xi)) =
[
S(N)

[
1
xi

]]
0

=
[
S

[
1
xi

]]
N

= { s
xti
|deg s = N + t, s is a sum of monomialss = xa0

0 . . . xann ,
∑

ai = N + t}

= {x
a0
0

xa0
i

. . .
xann
xani
}

= A

[
x0

xi
, . . . ,

xn
xi

]
xNi

This is not the same as S even though they are isomorphic. Also, in this example we did
not use the assumption that there were no relations on the xi.

Proposition 7.6. If S is finitely generated as an A-algebra by its element of degree 1, the
twisting sheaves OX(n) on X = Proj S are all locally free OX-modules of rank 1.

Compute the global sections of OX(n) in the case that X = Proj A[x0, . . . , xN ]. Take any
s ∈ OX(n)(X) = Γ(X,OX(n)).

s|D+(xi) = xni
Fi(x0, . . . , xN )

xti
,

where Fi is homogeneous of degree t and it depends on the patch D+(xi). When we look
at another patch D+(xj), we get a different homogenous polynomial Fj . On the overlap,
D+(xi)∩D+(x), we want xni Fi

x
ti
i

= xnj Fj

x
tj
j

. We can assume that ti = tj and deg(Fi) = deg(Fj)

since if ti < tj then we could replace Fi by Fix
tj−ti
i .

Check cases:
• If n < 0, this is impossible for Fi, Fj unless they are both zero.
• If n = 0 (this is the case of OX , the global sections are A.
• If n > 0: Γ(X,OX(n)) = Sn.

For example, when n = 1:
[
S[ 1

xi
]
]

1

3 xi xjxi = xj ∈
[
S[ 1

xj
]
]

1

There is always a map for a graded S-module M :

[M ]0 - Γ(X, M̃) where

m 7→ m which on D+(xi) is
m

1
∈
[
M

[
1
xi

]]
0

Observe that S =
⊕

n∈Z Γ(X,OX(n)).

Definition 7.7. Given a quasi-coherent sheaf F on X = Proj S, the n-th twist of F is the
quasi-coherent sheaf F ⊗OX OX(n).

If S is finitely generated as an A-algebra by its element of degree 1, M̃(n) = M̃(n).
There is a functor:

{Z-graded, finitely generatedS-modules}/ ∼ - {coherent OX -modules}

M � M̃

M =
⊕
n∈Z

Γ(X,F(n)) ≡ Γ∗(F) � F
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We need to check that
⊕

n∈Z Γ(X,F(n)) is a graded S-module:

s ∈ Sd = Γ(X,OX(d)) and m ∈Mt = Γ(X,F(t)) = Γ(X,F ⊗OX(t))
s ·m ∈ Γ(X,F ⊗OX(t+ d)) = Md+t

Again assuming that S is finitely generated as an A-algebra by its element of degree 1,

OX(n)⊗OX OX(m)
∼=- OX(n+m)

Theorem 7.8. Under the assumption that S is finitely generated as an A-algebra by its
element of degree 1, this functor defines an equivalence of categories.

Lecture 15. March 5, 2009

Let M be a graded S-module (S-graded ring) and p ∈ Proj S. Let U = homogeneous
elements in S − p.

M̃p =
[
M
[
U−1

]]
0

= M<p>

Theorem 7.9. Fix S = A[x0, . . . , xn]/I a graded ring (with deg xi = 1). Let X = Proj S.

{ Finitely graded S-modules}/ ∼ - {coherent sheaves on X}

M - M̃

Γ∗F = ⊕nΓ(X,F(n)) � F
where M ∼ M ′ if they agree in high degree, OX(n) = S̃(n), F(n) = F ⊗ OX(n), and S is
the torsion free cyclic S-module generated by a degree −n element.

Sketch. Need to show that:
• Γ̃∗(F) - F there is a natural map which is an isomorphism (Hart.: Prop. 5.15).

We can describe this map on a basic open set D+(f), where f is homogeneous.

Γ̃∗(F)(D+(f)) - F(D+(f))

Let m be a degree n element of Γ∗(F) for n = tdeg f (i.e. m ∈ Γ(X,F(n))). We
define this map to be:

m

f t
7→ m|D+(f) ·

1
f t

Note: 1
ft ∈ [S[ 1

f ]]−n = [S(−n)( 1
f ]0, m ∈ F ⊗OX(n)(D+(f)), 1

f ∈ OX(−n)(D+(f)).
Check that this map works (for instance that it commutes with restriction).

• M - Γ∗(M̃) there is a natural map which is an isomorphism in high degree (i.e.
a morphism of graded S-modules and for large N0 ∈ Z such that ∀N ≥ N0 this is a
bijection: MN

- (Γ∗(M̃))0).
Defining this map: Take m ∈M of degree n.

m 7→ m ∈ Γ(X, M̃(n)), where M̃(n) = M̃ ⊗OX OX(n) = M̃(n)

Viewing m as an element of M(n), then m has degree 0. m is a global section since
it is a degree 0 element.

m

1
∈ M̃(n)(D+(f)) =

[
M

[
1
f

]]
0

=
[
M

[
1
f

]]
n

• Given a map M
ϕ- N , show there is a natural map M̃ - Ñ that preserves

the grading. In particular we have a map:

M̃(D+(f)) = [M [
1
f

]]0 - Ñ(D+(f)) = [N(
1
f

]]0 where
m

f t
7→ ϕ(n)

f t
.
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�

Remark 7.10. The category of graded S-modules is not the same as the category of modules
over the graded ring S.

Definition 7.11. A sheaf F of (quasi-coherent) OX -modules on a scheme X is globally
generated if ∃{Si}i∈I ∈ Γ(X,F) such that the restriction of the Si to every affine open set
U generates F(U) as an OX(U)-module.

Equivalently, the germs of the {Si} generate Fp∀p (as an OX,p-module).
Equivalently, F is a quotient of a freeOX -module: ⊕i∈IOX -- F (let ei = (0, . . . , 0, 1, 0, . . . , 0)
where the 1 is in the ith coordinate). Then this map is given by: ei 7→ Si.

Examples:
• Free OX -modules, ⊕OX (in particular OX)
• Any quasi-coherent sheaf on affine scheme
• On X = Proj S, OX(N), N < 0 is not globally generated
• OnX = Proj S, OX(N), N > 0 then Γ(X,OX(N)) ⊇ SN 3 m andm ∈ [S(N)]0 � m

• Let M be a graded S-module generated in degree 0, X = Proj S, and F = M̃ .

[M ]0 ⊆ F(X)

Fp = M<p>

{mi}i∈I degree 0, generated for M.

F(D+(f)) =
[
M [
[

1
f

]]
0

Take an element m ∈M of degree tdeg f . Let {si} all have degree 0. Then:
m

f t
=
s1m1 + · · ·+ skmk

f t
=
s1

f t
m1

1
+ · · ·+ sk

f t
mk

1

So that mi
1 ∈ [M [ 1

f ]]0.
Fujita’s Freeness Conjecture
Let X be a smooth projective variety over k = k so that ωX = ∧dΩX is a coherent sheaf on
X.
Conjecture: ωX(N), N ≥ dimX + 1 is globally generated.

Part 3. Introduction to Cohomology

Example 7.12. Extp: Fix a ring, R and an R-module A. Consider the functor HomR(A, ·)
which sends R-modules to R-modules.

{R−modules} - {R−modules}
M - HomR(A,M)

(M
f- N) - (HomR(A,M) - HomR(A,N))

This is a covariant and left exact functor, i.e. given an exact sequence:

0 - M1
f- M2

- M3
- 0, we get the exact sequence:

0 - Hom(A,M1) - Hom(A,M2) - Hom(A,M3)
For every covariant left exact functor, there are right derived functors called Extp(A, ·).
Defined as follows:
To compute Extp(A,M)

(1) Take an injective resolution of M : 0 - M ⊂ - I1 - I2 - . Let I · be the
complex 0 - I0 ⊂ - I1 - I2 - . . .



Sara W. Lapan 35

(2) Apply the functor to the complex I ·:

0 - HomR(A, I0) - HomR(A, I1) - HomR(A, I3) - . . .

(3) By definition, Extp =the pth cohomology= ker

Im at the pth position.

Definition 7.13. I is injective means that Hom(·, I) is exact.

Lecture 16. March 10, 2009

Exercise 7.14. Read Hartshorne III: §1,2,3(,4). Exercises in III: 2.2,2.4,2.7,3.1,3.2.

Review of Basic Homological Algebra
A co-chain complex is objects in an abelian category, Ai, with maps between these objects:

. . . - Ai−1 di−1
- Ai

di- Ai+1 - . . . ,

where d2 = 0 (equivalently, Imdi−1 ⊆ Kerdi ⊆ Ai). Whenever we have a co-chain complex
we can compute its cohomology:

Hi(A·) =
Kerdi

Imdi−1
.

This sequence is exact if Imdi−1 = Kerdi,∀i (equivalently, the cohomology is zero for all i).
Let C,C ′ be abelian categories. In particular, we consider the following abelian categories:

• Ab
• R-mod
• Sheaves of abelian groups on a topological space X
• Quasi-coherent sheaves on a scheme
• Co-chain complexes with morphisms between co-chains

Given a left exact covariant functor C
Γ- C ′, you can always (provided your category has

enough injectives) compute its right derived functors RpΓ : C - C ′ (“the pth Right
derived functor of Γ”) with the following properties:

(1) R0Γ(F) = Γ(F),∀F ∈ Ob(C)
(2) Given any short exact sequence 0 - A - B - C - 0 in C, there exists

a long exact sequence

0 - R0Γ(A) - R0Γ(B) - R0Γ(C) - R1Γ(A) - R1Γ(B) - R1Γ(C) - · · · .
(3) The RpΓ are “universal” with respect to the previous two conditions.

Remark 7.15. RpΓ does not depend on the choice of injective resolutions.

Example 7.16. C = C ′ = R-module, Γ = HomR(A, ·) and A
g- M

f- N , then
HomR(A,M) - HomR(A,N). Since Γ is a left exact functor, given an exact sequence

0 - M - N - Q - 0,

we get an exact sequence

0 - HomR(A,m) - HomR(A,N) - HomR(A,Q).

Ext is the right derived functor of HomR(A, ·) (i.e. RpHom(A, ·) = ExtpR(A, ·)), so that we
get the long exact sequence:

Ext1(A,M) - Ext1(A,N) - Ext1(A,Q) - Ext2(A,M) - . . . .

Example 7.17. Let C be the category of sheaves of abelian groups on topological space X.

C
Γ(X,·)- Ab by F - Γ(X,F) = F(X)

Γ(X, ·) is a left exact functor.



36 Sara W. Lapan

Definition 7.18. An injective object in an abelian category C is an object I with the
following property: Given 0 - A - B and A - i, there exists an extension
B - I that makes the diagram commute.

0 - A - B

I
?�...

.....
.....

.....
.....

.....
....

HomC(·, I) is right exact and Hom is always a left exact, contravariant functor. So given a
short exact sequence:

0 - A - B - C - 0 and C - I

We get the exact sequence (where the final arrow follows from the injectivity of I):

0 - Hom(C, I) - Hom(B, I) - Hom(A, I) - 0.

How to Compute the right derived functors of a given left exact covariant functor Γ
To compute RpΓ(F) for F ∈ Ob(C):

(1) Take an injective resolution of F (in the category C)

0 - F ⊂
ε - I0 f0 - I1 f1 - I2 - . . .

coker(ε)

⊂

-
-

coker(f0)

⊂

-

-

This can be done if every object of C embeds in an injective object of C, i.e. C has
“enough injectives.”

0 - F - 0 -

0 - I0
?

- I1
?

-

This diagram is denoted by: F - I ·. We can replace F by this complex of
injectives.

(2) Apply the functor Γ to I ·:

0 - Γ(I0) - Γ(I1) - Γ(I2) - . . .

(3) RpΓ(F) = Hp(Γ(I ·)).
Check that R0(Γ(F)) = Γ(F):

R0(Γ(F)) = H0(0 - Γ(I0) - Γ(I1) - . . . )

= Ker(Γ(I0) - Γ(I1))

= Γ(F) by left exactness of Γ
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Given a short exact sequence: 0 - A - B - C - and injective resolutions
I ·, J · of A,C respectively, we get an injective resolution I · ⊕ J · = (I ⊕ J)· of B.

0 - I1

6
.....

- I1 ⊕ J1

6
.....

- J1

6
.....

- 0

0 - I0

6

- I0 ⊕ J0

6

- J0

6

- 0

0 - A

6

- B

6

- C

6

- 0

0

6

0

6

0

6

Then we apply the functor Γ to (I ⊕ J)· to get an exact diagram.

0 - Γ(I1)

6
.....

- Γ(I1 ⊕ J1)

6
.....

- Γ(J1)

6
.....

- 0

0 - Γ(I0)

6

- Γ(I0 ⊕ J0)

6

- Γ(J0)

6

- 0

0 - Γ(A)

6

- Γ(B)

6

- Γ(C)

6

- 0

We can find the cohomology of this complex and, by using the snake lemma, we get maps
Hp(J ·) - Hp+1(I ·), which gives us a long exact sequence of cohomology:

0 - H0(Γ(I ·)) - H0(Γ((I + J)·)) - H0(Γ(J ·)) - H1(Γ(I ·)) - . . .

8. Sheaf Cohomology

Definition 8.1. Let F be a sheaf of abelian groups on a topological space X. The sheaf
cohomology of F is the right derived functor of Γ(X, ·). Explicitly: Given F , take a
resolution by injective sheaves:

0 - F - I0 - I1 - . . .
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Each Ip is a sheaf of abelian groups and
0 - A - B

Ip
?�...

.....
.....

.....
.....

.....
...

Hp(X,F) = Hp(Γ(I0 - Γ(I1 - Γ(I2 - . . . ) = pthsheaf cohomology of F
For this to make sense, we need every sheaf of abelian groups to embed into an injective
sheaf of abelian groups.

Example 8.2. Let X be a scheme and F be a quasi-coherent sheaf. By definition: think
of F as a sheaf of abelian (forget the extra OX -module structure). Compute Hp(X,F) =
Hp(Γ(I ·)), where I · is an injective resolution by injective sheaves of abelian groups. It
turns out that the category of quasi-coherent sheaves on X also has enough injectives. If
you resolve F by injective quasi-coherent OX -modules, you get the same result, i.e. the
same Hp(X,F).

Cohomology Blackbox
Given any quasi-coherent sheaf F on a scheme X (or more generally a sheaf of abelian groups
on a topological space), we have cohomology groups Hp(X,F),∀p ≥ 0 with the following
properties:

(1) H0(X,F) = Γ(F)
(2) Given a short exact sequence 0 - A - B - C - 0 we get a long exact

sequence

Hp−1(X,C)
δp−1
- Hp(X,A) - HP (X,C)

δp- Hp+1(X,A),

where the connecting morphisms δ can be derived using the snake lemma.
(3) If X is an affine scheme and F is a quasi-coherent sheaf of OX -modules, then

Hp(X,F) = 0,∀p > 0. The converse is also true if we restrict to noetherian schemes
(proof from Serre).

(4) Cohomology can be computed using the “Cech complex,” i.e. cover X by open
sets with trivial cohomology along with something else that we will learn later. In
particular, Hp(Pn,OPn(m)) can be explicitly be computed in this way.

(5) If X = Proj S, where S = A[x0,...,xn]
I (deg xi = 1), and F is a coherent sheaf, then

Hp(X,F) is finitely generated as A-modules∀p

Lecture 17. March 12, 2009

Remark 8.3. A short exact sequence of sheaves 0 - A - B - C - 0 is exact
on stalks, but not necessarily exact for all open sets.

Recall that Hp(X,F) = pth right derived functor of the global section functor. It is difficult
to find and show that injective resolutions are in fact injective, so this type of cohomology
is difficult to compute.
Practical Ways to Compute Cohomology: Hp(X,F)

(1) Use long exact sequences to relate Hp(X,F) to cohomologies we know
(2) C̆ech cohomology (Serre’s original definition of cohomology)
(3) Instead of using injective resolutions, use more practical resolutions.

Definition 8.4. A sheaf J of abelian groups on a topological space X is acyclic for the
global section functor (or Γ-acyclic) if Hp(X,J ) = 0,∀p > 0.



Sara W. Lapan 39

Example 8.5. An injective sheaf is always Γ-acyclic, since it is its own injective resolution:

0 - I - I0 - 0 - . . . so that Hp(0 - Γ(I0) - Γ(0) - . . . ) = 0,∀p > 0

Proposition 8.6. Hp(X,F) can be computed from any Γ-acyclic resolution of F .
More precisely,

Hp(X,F) = Hp(0 - Γ(J0) - Γ(J1) - . . . )

where 0 - F - J0 - J1 - . . . is a resolution of F by Γ-acyclic sheaves.

Proof. Given a resolution of Γ-acyclics:

0 - F ⊂
ε - J0 f0 - J1 f1 - J2 - . . .

coker(ε)

⊂

-
-

coker(f0)

⊂

-

-

0

-

0 0
-

-

0

-

Use induction on p:
p = 0: H0(X,F) = ker(Γ(J0) - Γ(J1)) by left exactness
p = 1: From the short exact seqence:

0 - F - J0 - K0 - 0,

we get the long exact sequence:

0 - H0(X,F) - H0(X, J0) - H0(X,K0) - H1(X,F) - H1(X,H0) = 0

H1(X,F) = coker(H0(X,J0) - H0(X,K0)

=
H0(X,K0)

Im(H0(J0) - H0(K0))

=
ker(Γ(J1) - Γ(J2)
Im(Γ(J0) - Γ(J1))

= H1(0 - Γ(J0) - Γ(J1) - Γ(J2) - . . . )

p ≥ 2: Use the short exact sequence 0 - F - J0 - K0 - 0, Hq(X, J0) = 0 for
q > 0 (since J is acyclic), and the snake lemma to get:

. . . - Hp−1(X,J0) = 0 - Hp−1(X,K0) - Hp(X,F) - Hp(X, J0) = 0 - . . .

By induction, Hp−1(X,K0) can be computed from a Γ-acyclic resolution of K0. Any Γ-
acyclic resolution of K0 extends to a Γ-acyclic resolution of F so our induction is complete.

�

More generally, if C - ΓC is any (additive) left covariant functor between abelian cate-
gories you can compute Rp(Γ(F)) from any resolution of Γ-acyclic objects:

0 - F - J0 - J1 - . . . .

Definition 8.7. A sheaf F on a topological space X is flasque (or flabby) if ∀U ⊆ U ′ both

open in X, F(U ′)
restrict- F(U) is surjective.

Examples of Sheaves of Abelian Groups acyclic for global section functor:
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(1) Flasque sheaves are Γ-acyclic
(2) Let X be a smooth manifold, C∞X is acyclic (but not flasque).
(3) ApX = (Smooth p-forms on X) are Γ-acyclic, where X is a smooth manifold
(4) Philosophically, any sheaf that admits a partition of unity.

Theorem 8.8. Let M be a smooth manifold, Hp
DR(M) ∼= Hp(M,R) (where R is the sheaf

of locally constant R-valued functions on M).

Proof.
(0 - C∞M

d- A1
M

d- A2
M

d- . . . )
This sequence is exact at stalks (small enough open sets - on contractible sets). By the
Poincare lemma, if U is contractible, this is exact (every closed p-form on U is exact). So
we can compute sheaf cohomology from the DeRham resolution. �

9. C̆ech Cohomology

Let X be a topological space and F a quasi-coherent sheaf of abelian groups. For a fixed
open cover U , the C̆ech cohomology groups are Ȟp(U,F) (this depends on the cover).
Point: If X is a noetherian separated scheme (or projective over A), then Ȟp(U,F) are all
the same for any affine open cover of X and all are also isomorphic to Hp(X,F).

Example 9.1. Let X = U0 ∪ U1 and let U = {U0, U1} be the open cover of X. Let F be a
sheaf of abelian groups. We want to look at the C̆ech complex, Č ·(U,F).

0 - Č0(U,F) = F(U0)×F(U1)
ď0- Č1(U,F) = F(U0 ∩ U1) - 0

Where ď0 : (s0, s1) 7→ s0|U0∩U1 − s1|U0∩U1 and ker(ď0) = F(X). Ȟ1(U,F) = cohomology of
Č(U,F) at the first spot = cokernel of ď0.

Example 9.2. Let X = S1 and F = Z. Let U0 be the upper hemisphere of S1 and U1 be the
lower hemisphere (where the two sets overlap on an open set). Let U denote this covering
of X. As in the previous example, we get the sequence:

0 - Z(U0)× Z(U1) - Z(U0 ∩ U1) - 0,

which simplifies to:

0 - Z× Z - Z× Z where (n,m) 7→ (n−m,n−m)

So Ȟ0(U,Z) ∼= Z and Ȟ1(U,Z) ∼= Z.

Let X be a topological space, F a quasi-coherent sheaf on X, and U = {Ui}i∈I an arbitrary
open cover of X, where I is a well-ordered set. More generally, we want to define the C̆ech
cohomology of the sheaf F :

0 - Č0(U,F) - . . . - Čp−1(U,F)
ďp−1
- Čp(U,F) - . . .

Where Čp(U,F) =
∏

i0<···<ip

F(Ui0 ∩ · · · ∩ Uip) .for all p ≥ 0.

∏
i∈I
F(Ui) -

∏
i0<i1

F(Ui0 ∩ Ui1) is given by:

(0, . . . , 0, si, 0, . . . , 0) 7→ (0, . . . , 0, (−1)σsi|Ui∩Uj , 0, . . . , 0),

where σ is the permutation that reorders i and j. For α ∈ Čp(U,F),

α = (αi0...ip)
ďp-

(
ďp(α)

)
i0...ip+1

=
p+1∑
j=0

(−1)jαi0...ĵ...ip+1
|Ui0∩···∩Uip+1
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Example 9.3. Let X = P2 with sheaf OP2 and U0, U1, U2 the standard affine cover of X.

0 - Č0(U,OP2)
f- Č1(U,OP2)

g- Č2(U,OP2) - Č3(U,OP2) = 0

Where:
Č0(U,OP2) = OP2(U0)×OP2(U1)×OP2(U2)

Č1(U,OP2) = OP2(U1 ∩ U2)×OP2(U0 ∩ U2)×OP2(U0 ∩ U1)

Č2(U,OP2) = OP2(U0 ∩ U1 ∩ U2)

The maps are given by:

f : (s0, s1, s2) 7→ (s1 − s2, s0 − s2, s0 − s1) and g : (t12, t02, t01) 7→ t12 − t02 + t01.

Using C̆ech cohomology with respect to the standard cover of Pnk , we can explicitly compute
Hp(Pnk ,OPnk (m)),∀p, n,m. Also, using Hartshorne, we can prove that C̆ech cohomology of
any open cover agrees with sheaf cohomology.

Lecture 18. March 17, 2009

Recall: sheaf cohomology can be computed from other resolutions (i.e. flasque).

Lemma 9.4 (Important). If Y ⊂
i- X is a closed embedding, and F is a sheaf of abelian

groups on Y , then
Hp(X, i∗F) = Hp(Y,F).

Proof. To compute Hp(Y,F), take a flasque resolution of F :

0 - F - J0 - J1 - J2 - . . .

By definition, Hp(Y,F) = Hp(0 - Γ(Y, J0) - Γ(Y, J1) - . . . ). Apply i∗ to the
resolution above. Then:

† 0 - i∗F - i∗J
0 - i∗J

1 - i∗J
2 - . . .

is still an exact as a complex of sheaves on X because it is exact at stalks: if p ∈ Y then
looking at the stalks of the complex at p recovers the original resolution with stalks at p
and if p /∈ Y then the stalks of all (i∗Jk)p = 0. In fact, this is still a flasque resolution:

V ⊆ U ⊆ X: i∗Jk(U) = Jk(U ∩ Y )
restriction- i∗J

k(V ) = Jk(V ∩ Y ) is surjective since the
original resolution on Y was flasque. So we can compute Hp(X, i∗F) from †. Take global
section:

Hp
(
0 - Γ(X, i∗J0) - Γ(X, i∗J1) - Γ(X, i∗J2) - . . .

)
But Γ(X, i∗Jp) = i∗J

p(X) = Jp(X ∩ Y ) = Jp(Y ) = Γ(Y, Jp). �

Theorem 9.5. Let S = A[x0, . . . , xn] where A is a noetherian ring and the degree of each
xi is 1. Let X = Proj S. Formally, S = A[x0, . . . , xn] = Sym·A(M), where M is the free
A-module on x0, . . . , xn. Then:

(1) The natural map S - Γ∗(X,OX) = ⊕m∈ZH
0(X,OX(m)), which is given by

s (of degree m) 7→ s ∈ H0(X,OX(m)) where s
1 ∈ OX(D+(xi)) = (S

[
1
xi

]
)m, is an

isomorphism. In part:

H0(X,OX(m)) =

{
0 if m < 0
Sm if m ≥ 0

(2) Hp(X,OX(m)) = 0,∀m and ∀p satisfying 0 < p < n or p > n
(3) Hn(X,OX(−m)) ∼= (H0(X,OX(−m − n − 1)))∗ = (Sym(m−n−1)M)∗ and when

m = n+ 1 this simplifies to: Hn(X,OX(−n− 1)) ∼= A
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(4) The natural map

H0(X,OX(m))×Hn(X,OX(−m− n− 1)) - Hn(X,OX(−n− 1)) = A

is a perfect pairing of free A-modules.

Recall that OX(m) = S̃(m) and
Sm = free A-modules of rank

(
n+m
m

)
= Symm

A (A⊗ · · · ⊗A) = Symm
A ((M)).

Application: Say C ⊆i P2
k is an irreducible curve of degree d given by an irreducible

homogeneous element F ∈ k[x, y, z] of degree d. Compute H1(C,OC) (this is called the
genus of C). By the previous lemma, H1(C,OC) = H1(P2

k, i∗OC). We have a short exact
sequence: (where IC is the ideal sheaf)

0 - IC - OP2
k

- i∗OC - 0

IC = (F̃ ) = S̃(−d),OP2
k

= (S̃), and i∗OC = S̃/(F ) so we get the short exact sequence:

0 - S̃(−d)
F- S̃ - S̃/(F ) - 0

And we get a long exact sequence of cohomology on P2
k:

0 - H0(P2,OP2(−d)) - H0(P2,OP2) - H0(C,OC) - H1(P2,OP2(−d))

H1(P2,OP2) -
�

H1(C,OC) - H2(P2,OP2(−d)) - H2(P2,OP2) - . . .

H0(P2,OP2(−d)) = 0, H0(P2,OP2) = k,H1(P2,OP2(−d)) = 0 where the first and third
come from the previous theorem. So 0 - k - H0(C,OC) - 0 which implies that
H0(C,OC) = k.

0 - H1(P2,OP2) = 0 - H1(C,OC)
∼=- H2(P2,OP2(−d)) - H2(P2,OP2) = 0

H2(P2,OP2(−m−3)) is dual toH0(p2,OP2(m)) andH2(P2,OP2(0)) is dual toH0(p2,OP2(−3)).

So thatH2(P2,OP2(−d)) is dual toH0(P2,OP2(d−3)) =
[
k[x, y, z]

]
d−3

=

{(
d−1

2

)
if d ≥ 3

0 if d < 3
.

Therefore the genus of C, g(c) =

{(
d−1

2

)
= (d−1)(d−2)

2 if d ≥ 3
0 if d < 3

.

Proof. (Of Theorem of Cohomology Hp(PnA = X,OX(m)))

(1) Cover PnA by the standard affine open cover D+(xi) = Spec
((
S
[

1
xi

])
0

)
. Look at

the C̆ech complex for OX(m) = S̃(m).

OX(m)(D+(xi0) ∩ · · · ∩D+(xit)) = OX(m)(D+(xi0 . . . xit)

= [S(m)[
1

xi0 . . . xit
]]0

= S[
1

xi0 . . . xit
]m
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It will be the mth graded piece of the chain complex.

0 - S[
1
x0

]× · · · × S[
1
xn

]
ď0
- ⊕i<jS[

1
xixj

] - . . .

⊕i<j<kS[
1

xixjxk
] -
�
⊕iS[

1
x0 . . . x̂i . . . xn

]
ˇdn−1
- S[

1
x0 . . . xn

] - 0

where α = (
s0

xr0
, . . . ,

sn
xrn

) 7→ (
s0

xr0
− s1

xr1
,
s0

xr0
− s2

xr2
, . . . )

(note that we have to pay attention to the signs in the above map). α ∈ ker(ď0)⇒
s0
xr0

= s1
xr1

in S[ 1
x0x1

] ⇒ xr1s0 = xr0s1 ⇒ s0 = xr0s, s1 = xr1s for some s ∈ S ⇒ s0
xr0

=
s
1
s1
xr1

= s
1 .

(2) See Hartshorne.
(3) Compute Hn(X,OX(m)) = the degree m part of the coker( ˇdn−1). A free A-module

basis of S[ 1
x0...xn

] is xa0
0 . . . xann , where ai ∈ Z.

⊕ni=0OX(D+(x0) ∩ · · · ∩D(xn)) - OX(m)(D+(x0) ∩ · · · ∩D+(xn)) - 0

⊕ni=0S[
1

x0 . . . x̂i . . . xn
] - S[

1
x0 . . . xn

] - 0 degree m part for OX(m)

(0, . . . , 0,
si

(x0 . . . x̂i . . . xn)t
, 0, . . . , 0) 7→ (−1)i

s

(xi0 . . . xin)t

The image of ďn−1 is a free A-module spanned by xa0
0 . . . xann , where not all of

the ai are less than the degree −n − 1 in S[ 1
x0...xn

] but not in the image of ˇdn−1.
So Hn(X,OX(m)) is a free A-module on {xa0

0 . . . xann |
∑
ai = m, ai < 0}. So

Hn(X,OX(−n− 1)) = Ax−1
x . . . x−1

n .
Perfect Pairing :

H0(X,OX(m− n− 1))×Hn(X,OX(−m)) - Hn(X,OX(−n− 1)) = A

Basis over A : {xb00 . . . xbnn } × {x
a0
0 . . . xann } 7→ {x

a0+b0
0 . . . xan+bn

n }

where
∑

bi = m− n− 1, bi ≥ 0 and
∑

ai = −m, ai < 0
∑

(ai + bi) = −n− 1

This generated cokernel of ˇdn−1 in the degree −n− 1.
(4) See Hartshorne for the proof. The perfect pairing is just multiplication of classes

in Hn(X, 0X(m)) represented by an element
∑P

ai=−m−n−1 bix
a0
0 . . . xann and by

element
∑
|I|=m cjXI , where bi, cj ∈ A.

�

Lecture 19. March 19, 2009

Duality in C is a special case of Serre Duality (which is a special case of Grothendieck
duality).
Context for most Algebraic Geometers:

• X is a smooth, projective variety over k = k (or X = Proj (k[x0,...,xn]
I .

• ΩX/k is locally free of rank d (i.e. if at p we have z1, . . . , zd are parameters, then
ΩX is a free OX -module generated by dz1, . . . , dzn in a neighborhood of p).

• ωX = ∧dΩX is locally free of rank 1 (local generator dz1 ∩ · · · ∩ dzd)
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Serre Duality: Let F be a locally free OX -module of finite rank. Fv = HomOX (F ,OX).
There’s a perfect pairing:

Hp(X,F)×Hd−p(X,Fv ⊗ ωX) - Hd(X,ωX)
∼=- k,

i.e. Hp(X,F) is the dual over k to Hd−p(X,Fv ⊗ ωX).

OX(−m) has rank 1 it is a locally free OX -module L, Lv = OX(m)
OX(m−n−1) = OX(m)⊗OX(−n−1) = Lv⊗ωPn , OX(−n−1) is the canonical module on
Pn. The case where X = Pnk ,F = OX(−m), p = n is the duality in part (c) of the previous
theorem.

Part 4. Divisors and All That

10. Basics of Divisors

Hartshorne II, §6
Assumption †: X is a noetherian separated integral scheme, regular in codimen-
sion 1. Each condition has the following implications:
noetherian: X can be covered by finitely many affine open sets each of which is the Spec of
a noetherian ring
integral: ∀U ⊆ X open affine where U = Spec A, OX(U) is a domain ⇒ X has a function
field K:

K = frac(OX(U)),∀U ⊆ X open

= frac(A)
= OX,η, where η is the generic point of X

regular in codimension 1: Let y ∈ X be any generic point of a codimension 1 closed irre-
ducible subscheme. If y ∈ U = Spec A ⊆ X and p ⊆ Spec A of height 1, then OX,y = Ap is
a DVR.

Main Case: X is an irreducible, smooth (or normal), projective variety over k = k

X = Proj S, where S = k[x0,...,xn]
I , normal domain.

Definition 10.1. A prime divisor on X is a codimension 1 closed integral subscheme of
X.

Definition 10.2. Let K be the function field of X, Y ⊆ X a closed subscheme of codi-
mension 1, and y ∈ Y a generic point. So that K ⊇ OX,Y = OX,y is a DVR. For
f ∈ K∗ = K \ {0}, the “order of vanishing of f along Y ”, ordY (f), is

ordY (f) = order of f in OX,y = n, where (t) ⊂ OX,y maximal ideal and f = (unit in OX,Y )·tn.

Since K is a discrete valuation ring, every element of K can be written as (unit) · tn for
some unique n ∈ Z where (t) is the maximal ideal of the discrete valuation ring OX,Y .

Definition 10.3. A (Weil) divisor on X is an element of the free abelian group DivX
on the prime diviors of X.

Proposition 10.4. There is a homomorphism of abelian groups:

K∗ = K \ {0} div- DivX

f 7→ div(f) =
∑

Y prime divisor
ordY (f) · Y

f · g 7→ div(f) + div(g)
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This is the valuation ring of X in K.

Proof. This is effectively the same proof as in 631. The proof is in Hartshorne. �

Remark 10.5. Y uniquely determines the valuation “ordY ”. But the separatedness of X
says that the “ordY ” valuation uniquely determines Y . Let y be the generic point of Y .

Spec K
(0) 7→ y- X

Spec (OX,Y )
?

∩

- Spec Z
?

Separatedness of X gives us the uniqueness of the map Spec (OX,Y ) - X.

Definition 10.6. The group of principal divisors, P (X), is the image of div in DivX.

Definition 10.7. The class group of X is the cokernel of div, i.e. Cl(X) = DivX
P (X) .

Definition 10.8. The degree of a divisor, D =
∑
niYi, is deg(D) = deg(

∑
niYi) =∑

ni deg Yi =
∑
nidi, where Yi = V(Fi) and di = deg(Yi) = deg(Fi).

Example 10.9. Cl(Pnk ), k a field and Pnk = Proj k[x0, . . . , xn].

Y prime divisor⇔ Y = V(F ) and F is a homogeneous, irreducible polynomial

Div(Pnk )
deg-- Z has kernel

P (Pnk ) = {D =
∑

niYi | deg(D) =
∑

ni deg Yi =
∑

ni deg(Fi) = deg(div(Fn1
1 . . . Fntt ))},

Fn1
1 . . . Fntt ∈ k(Pnk ) ⇒ Cl(Pnk ) ∼= Z.

Proposition 10.10. Let X be a scheme satisfying †, Z ⊆ X a closed subscheme, and
U = X − Z. There’s a natural surjective map:

Cl(X) -- Cl(X − Z) = Cl(U) given by
∑

niYi 7→
∑

ni(Yi ∩ U)

If Z has codimension atleast 2, this is an isomorphism. If Z is integral of codimension 1,
then the kernel is generated by Z.

Lecture 20. March 24, 2009

Exercise 10.11. In chapter II: think through 5.17 (but don’t write-up) in order to do 5.18,
6.2ab,6.6, 6.8. In chapter II: 4.5.

Continue to assume that X is noetherian, integral, separated, and regular in codimension
1. The integral assumption gives us a function field, K. Regular in codimension 1 gives us
that ∀Y ⊆ X of codimension 1, OX,Y is a DVR. Since K is a discrete valuation ring, every
element of K can be written as (unit)·tn for some unique n ∈ Z where (t) is the maximal
ideal of the DVR OX,Y .

Definition 10.12 (1). A Weil divisor is Cartier if it is locally principal. Precisely, X has
an open cover {Ui} such that ∃fi ∈ K such that D ∩ Ui = divUifi

Think of D as given by {Ui, divfi} where

divUi∩Ujfi = (divUifi) ∩ Uj = (divUjfj) ∩ Ui = divUi∩Ujfj

So that divUi∩Uj (fi · f−1
j ) has no zeros or poles ⇔ fif

−1
j ∈ O∗X(Ui ∩ Uj)
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Example 10.13. Let X = Pn, D = codimension 1 integral subscheme (i.e. subscheme given
by (x0)). D is not principal but it is Cartier:

D ∩ Ui = D ∩D+(xi) = divUi

(
x0

xi

)
and D ∩ U0 = 0

Fact: If X happens to have the property that all local rings OX,x are UFDs (∀x ∈ X closed
points), then all Weil divisors are locally principal (this comes down to the fact that height
1 prime ideals in a UFD are principal).
Main Case: X is a smooth variety. In this case, OX,x is a UFD ∀x ∈ X.

Example 10.14. Let X = Spec
(
k[x,y,z]
z2−xy

)
(this is a normal scheme).

Consider Y = closed subscheme given by the height 1 prime (y, z)
Claim: Y is a Weil divisor but it is not Cartier. To show this, look at the closed point
p = (x, y, z). (y, z) is not principal in OX,p = k[x,y,z]

z2−xy (x, y, z).

X − Y = Spec
(
k[x, y, z]
z2 − xy

)
− V(y, z)

= Spec
(
k[x, y, z]
z2 − xy

)
− V(y, z2)

= Spec
(
k[x, y, z]
z2 − xy

)
− V(y)

= D(y)

= Spec
(
k[x, y, z]
z2

y − x

[
1
y

])
= Spec

(
k[y, z]

[
1
y

])
Z ε- Cl(X) -- Cl(X − Y ) = 0 where ε(n) = nY

Cl(X −Y ) = 0 because X −Y is Spec of a UFD. Look at y in OX,Y = k[x,y,z]
xy−z2 (y, z) to show

that div(y) = 2Y . This implies that Cl(X) ∼= Z/2Z.

Definition 10.15 (2). A Cartier divisor is the data {Ui, fi} where ∪Ui = X is an open
cover of X, fi ∈ K∗, where fif−1

j ∈ O∗X(Ui ∩ Uj).

Definition 10.16 (3). A Cartier divisor is a global section of a sheaf K∗/O∗X , where K is
the locally constant sheaf on X given by K (unnecessary to include locally).

Remark 10.17. If X is noetherian, integral, separated, and regular in codimension 1 (i.e.
our initial assumptions for this lecture), then these three definitions are all (obviously)
equivalent. However, definition 3 (definition 2) makes sense on an arbitrary scheme, where
K is the sheaf associated to the presheaf K(U) = OX(U)[S−1], where S is the multiplicative
systems of non-zero divisors in OX(U).

11. Divisors and Invertible Sheaves

Temporarily drop the assumption that X is noetherian, integral, separated, and regular in
codimension 1

Definition 11.1. An invertible sheaf on a scheme X is a locally free OX -module of rank
1.
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Example 11.2. If L is invertible, L−1 = HomOX (L,OX) is invertible. Note:

L ⊗ L−1
∼=- OX

Defining the presheaf: ∀U ⊂ X open,

L(U)⊗HomOX (L(U),OX(U)) - OX(U) given by s⊗ ϕ 7→ ϕ(s)

Check that this is an isomorphism and take the sheaf associated to this presheaf.

If L,M are invertible, then L ⊗M is also invertible.

Remark 11.3. The set of invertible sheaves on X (up to isomorphism) forms a group, called
the Picard group of X.

Example 11.4 (Main). Assume (again) that X is noetherian, integral, separated, and regular
in codimension 1. Given a (Weil) divisor D, define the corresponding sheaf L(D) as a
subsheaf of K as (for U ⊆ X non-empty):

L(D)(U) = {g ∈ K∗ | divUg + (D ∩ U) ≥ 0} ∪ {0} ⊆ K
This is an OX(U)-module: f ∈ OX(U), divUf ≥ 0 and g ∈ L(D)(U) ⇒ (fg) ∈ L(D)(U)
because divU (fg) + (D ∩ U) = divU (f) + divU (g) + (D ∩ U) ≥ 0.
If D is Cartier, then L is invertible!
D Cartier ⇒ cover X by Ui such that D ∩ Ui = divUi(fi)

L(D)(Ui) = {g ∈ K∗ | divUig + divUif ≥ 0} ⇔
{g ∈ K∗ | divUi(g · fi) ≥ 0} = {g ∈ K∗g · fi ∈ OX(Ui)}

=
1
fi
· OX(Ui)

Proposition 11.5. The (group) map:

CaDivX - {invertible sheaves on X}

D1 −D2
- L(D1)⊗ L(D2)−1

CaDivX
P (X)

??

- P (X)

mod out by ∼=

?

is an isomorphism if X is a noetherian, integral, separated, and regular in codim. 1.

Of isomorphism.
X is integral, s every invertible sheaf is (isomorphic to) a subsheaf of K.

OX ⊂ - K ⇒ L = L ⊗OX OX ⊂ - L ⊗OX K ∼= K
Identify L with its image in L⊗OX K ∼= K so that L is a subsheaf of K, which is locally free
of rank 1. Cover L by Ui such that L|Ui = 1

fi
· OX |Ui . Define D by the data {Ui, fi}. Since

(L|Ui)|Uj = (L|Uj )|Ui , 1
fi
·OX |Ui∩Uj = 1

fj
·OX |Ui∩Uj ⇒ 1

fi
= sij

1
fj

for some sij ∈ O∗X(Ui∩Uj).
The sij are called transition functions. Note that {sij} ∈

∏
i,j O∗X(Ui ∩ Uj). �

Lecture 21. March 26, 2009

Let X be noetherian, integral, separated, and regular in codimension 1.
Let η ∈ X be the generic point. Then OX,η is the function field K of X.

{Weil Div} ⊇ {Cartier Div.=Locally principal} ⊇ {Principal Div} = P (X)
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where Weil Divisors equal Cartier Divisors when X is nonsingular. Let D ∈ CaDiv, then
L(D) is in an invertible sheaf. There is a one-to-one corresponence between locally prinicipal
divisors and invertible sheafs. Principal divisors are in one-to-one correspondence between
the trivial invertible sheafs (i.e. isomorphic to OX).

{Weil Div} ⊂
⊇ - {Cartier Div.} ⊂

⊇- P (X) = {div(f) | f ∈ K∗}

invertible sheaf, subsheaf of K

6

?
{f · OX | f ∈ K}

6

?

WDiv

P (x)
= Cl(X) ⊇ CaDiv

P (X)
= Pic(X) = {group of iso. classes of invertible sheaves on X}

Example 11.6. Let X = PnA = Proj S where S is an invertible sheaf of OX -modules and so
S̃(m) = OX(m). Let f be homogeneous.

OX(m)(D+(f)) =
[
S(m)

[
1
f

]]
0

=
[
S

[
1
f

]]
m

OX(m)(D+(xi)) =
[
S

[
1
xi

]]
m

= xmi OX(D+(xi))

Let A be a field (not neccessary, but easier to think about). Cl(X) ∼= Z and for some
hyperplane H, Cl(X) = Z ·H. Fix H = V(x0).

OX(m) ∼= OX(mH)

OX(mH)(D+(xi)) = {f ∈ K | div(f) +mH ≥ 0}

f = G
F , G, F are homogeneous of the saame degree and G

F = G
a1
1 ...Garr

F
b1
1 ...F bss

.

div(f) = a1V(a1) + · · ·+ arV(ar)− b1(F1)− · · · − bs(Fs)
Need “+mH”≥ 0. This forces F = xi0, where i ≤ m and deg(G) = deg(F ) so wlog,

G

F
∈ OX(mH)(X). ⇔ G

F
=

any element of [S]m
xm0

.

From this we get a map on sheaves:

OX(m)
∼=- OX(mH) given by f 7→

(
f

xm0

)
Therefore OX(m) ∼= OX(D), where D ∈ Cl(Pn) is of the form mH.

Terminology:

(1) Another word for an invertible sheaf is a line bundle:
Let L be a line bundle on X.

L ⊇ f−1(U)
∼=- U × k

X

f

?
⊇ U

f

?

where U 3 x 7→ f̂(x) = (x, s(x)) ∈ U×k. Let L be the sheaf of sections of L - X:
L(U) = {U s- L | f ◦ s = Id} so that L(U) ∼= OX(U) by the map x 7→ s(x).
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(2) Given an invertible sheaf L ↔ L(D), “take a line-bundle D”, “D1 +D2, “The Chern
class of L is the corresponding divisor class D”

Recall: X
f- Y is a morphism of schemes. An invertible sheaf L on Y can be pulled-back

to f∗L (“f∗L = OX ⊗OY L” by an “abuse” of notation). The pull-back sheaf f∗L must also
be invertible. Think of L as a Cartier divisor, i.e. L = L(D), {Ui, fi}, where fi ∈ K∗. f∗L
should be correspond to the data {f−1(Ui), f∗(fi)}. Assuming that Im(f) * Supp(D), we
get that f∗(fi) ∈ K(X). Without loss of generality, we can replace D by a linearly equivalent
D′ (which represent the same element of Pic(X)) to assume that Im(f) * Supp(D).

Example 11.7 (Classical). P1 ν3- P3 by [s : t] - . Note that s3, s2t, st2, t3 are not
regular functions on P1. However, they are global sections of the invertible sheaf OP1(3).
We could instead have written the map as [1 : t

s : t2

s2 : t3

s3 ]. These are rational functions on
P1 and are all global sections of the sheaf OX(D), where D = 3p and p = [0 : 1] since we
divided by s3.

General Picture:
Given any scheme X over A, any invertible sheaf L on X, and global sections s0, . . . , sn ∈
Γ(X,L), there is a map of schemes of A:

X ........- PnA given by x 7→ [s0(x) : · · · : sn(x)]

This is a morphism on the open set, U , which is the complement of a common zero set of
the si’s. Every map to Pn of this type.

X ...................- P1

U

⊆

6

ϕ

-

ϕ∗OPn(1) = L|U , ϕ∗(xi) == si.
How do we make sense out of “si(x)”?
Choose a neighborhood U of x such that

L|U
ϕ

∼=
- OPn |U = OU given by si 7→ fi

If x ∈ U ′ we need to check that the map L|U ′
ϕ′

∼=
- OU ′ given by si 7→ fi satisfies:

L|U
ϕ - OU

L|U∩U ′
?

OU∩U ′
?

OU ′∩U

γ ∼=

?

LU ′

6

ϕ′- OU ′

6
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where the isomorphism γ is given by s ∈ O∗X(U ∩ U ′) and f ′i = s · fi, s ∈ O∗X(U ∩ U ′).

Remark 11.8. Although we cannot evaluate a section of s ∈ Γ(X,L) at a closed point x ∈ X
to get an element of k, it does make sense to say s(x) = 0 or not.

Lecture 22. March 31, 2009

Let X be an integral scheme and L an invertible sheaf. Let s ∈ L(U). In what sense can
we think of s as a regular function on U?

Example 11.9. X = PnA,L = Ox(1). Γ(X,L) is spanned as an OX(X) = A-module by

x0, . . . , xn. Let Ui = D+(xi). Then OX(Ui) = A

[
x0
xi
, . . . , xnxi

]
and

L(Ui) =
[
A[x0, . . . , xn]

[
1
xi

]]
1

= xi · OX(Ui)
∼=- OX(Ui)

xi|Ui ∈ L(Ui) corresponds to 1 ∈ OX(Ui) whereas xi|Uj ∈ L(Uj) is xj xixj ∈ xj · OX(Uj) and
corresponds to xi

xj
∈ OX(Uj).

If U is sufficiently small, then

L(U)
∼=- OX(U) given by s↔ f

Recall: for f ∈ OX(U), p ∈ U then f(p) means the image of f under the mapOX,p - OX,p/mp =
k(p).
s cannot be evaluated at a point p ∈ U , but we can think of s(p) as the image of s in
Lp ⊗ OX,pk(p). However, it does make sense to look at the “zero set” of s ∈ Γ(X,L)
and in doing so we get a divisor on X corresponding to s ∈ Γ(X,L). Choose a trivial-
ization of L: Cover X = ∪iUi such that L|Ui

∼=- OX |Ui = OUi . For s ∈ Γ(X,L), let
si = s|Ui 7→ fi ∈ OUi . The divisor of s is {(Ui, div(fi)) on Ui ∩ Uj :

L|Ui
ϕi- OUi si = s|Ui - fi

L|Ui∩Uj

rest.

?
OUi∩Uj

rest.

?
si|Uj = sj |Ui

?
fi
?

OUi∩Uj

γ ∼=

?
sijfi = fj

γ

?

L|Uj

rest.

6

ϕj- OUj

rest.
6

sj = s|Uj

6

- fj

6

where γ is given by multiplcation by a unit: fi ∈ OUi∩Uj
γ- sijfi = fj , sijO∗X(Ui ∩ Uj)

is a unit. Given s, t ∈ Γ(X,L), s
t does make sense as an element of OX(U1 ∩ U2) where

Ui = X \ {zero set of si} is open. Evaluate s
t at p:

If p ∈ Ui, then
s

t

ϕi- fi
gi

and if p ∈ Uj , then
s

t

ϕj- fj
gj

=
sijfi
sijfj

=
fi
gi

So evaluating at p does not depend on our open patch.
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Definition 11.10. Global section s0, . . . , sn ∈ Γ(X,F) globally generate the coherent sheaf
F if ∀p ∈ X the germs (s0)p, . . . , (sn)p ∈ Fp generate Fp as an OX,p-module. If F is
invertible, then s ∈ Γ(X,F) generates F at p ⇔ sp ∈ Fp generates as an OX,p-module
⇔ sp /∈ mpFp,mp ⊆ OX,p ⇔ s(p) 6= 0, where s(p) is the image of s in F⊗k(p) = Fp/(mpFp).
Example 11.11. X = PnA:

• L = OX(1): the sections x0, . . . , xn are the global generators for L
• L = OX(t): xt0, . . . , x

t
n are global generators

• In general, s0, . . . , x)n ∈ Γ(X,L) with L any invertible sheaf on X any integral
scheme. These si generate L ⇔ ∪Xi = X where Xi = X \ {zero set of si}.

Example 11.12. Let X = Proj
(
k[x,y,z]
(z2−xy)

)
= D+(x) ∪D+(y) and S = k[x,y,z]

(z2−xy) .

Γ(X,OX(1)) = OX(1)(X) = degree 1 elements in S

OX(1)(D+(x)) =
[
S

[
1
x

]]
1

= x · [S[ 1
x ]]0 = x · k

[
z
x

]
is a module over

OX(D+(x)) =
[
S

[
1
x

]]
0

=
[
k[x, y, z]
(z2 − xy)

[
1
x

]]
0

=
k[ yx ,

z
x ]

( zx )2 − ( yx )
∼= k

[
z

x

]
Γ(X,OX(1)) is globally generated by x, y.
Note that: given X ⊂

ϕ- P2
k then ϕ∗OPnA(1) = OX(1).

Example 11.13. Given any morphism of schemes over A, X
ϕ- PnA, L = ϕ∗OPnA(1) is

an invertible sheaf which is globally generated by si = ϕ∗xi,∀i = 0, . . . , n, where xi ∈
Γ(PnA,OPnA(1)).

Say OPnA(1) is trivialized on Ui = D+(xi). OPnA(1)
∼=- OPnA(Ui). Because Ui cover PnA,

Xi = ϕ−1(Ui) is an open cover of X.

ϕ∗OPnA(1)(xi) = OX(xi)⊗Opn
A
OPnA(1)(Ui)

1⊗ϕi
∼=
- OX(xi)⊗OPn

A
OPnA(Ui)

Amazing Fact:

Theorem 11.14. Let X be any scheme over A.

(1) If X
ϕ- PnA is a morphism of A-schemes, then L = ϕ∗OP(1) is an invertible sheaf

globally generated by s0, . . . , sn, where si = ϕ∗(xi).
(2) Conversely, if L is an invertible sheaf on X globally generated by s0, . . . , sn ∈

Γ(X,L) then there is a unique morphism of A-schemes X
ϕ- PnA such that

ϕ∗OP(1) = L and ϕ∗xi = si.

Proof. This is theorem 7.1 in Hartshorne II.
(1) Already proven
(2) Given X,L and s0, . . . , sn ∈ Γ(X,L). Let Xi = X − {zero set of si} open. Since si

globally generate L, the Xi cover X. Define:

Xi
ϕi- Ui = Spec A

[
x0

xi
, . . . ,

xn
xi

]
⊆ PnA, Ui = D+(xi)

in such a way that it will be obvious that ϕi|Xi∩Xj = ϕj |Ui∩Uj so they glue to
a morphism X - PnA. Because Ui is affine, to construct ϕi, it is equvalent to
construct an A-algebra map

A

[
x0

xi
, . . . ,

xn
xi

]
- OXi(Xi) given by

xj
xi
7→ sj

si

It is easy to check that these patch together to define ϕ : X - PnA with the
desired properties.
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�

Example 11.15. X = Proj
(
k[x,y,z]
(z2−xy)

)
, Γ(X,OX(1)) = k-span of x, y, z.

The map which corresponds to the generators x, y, z is:

X - P2 given by [λ0 : λ1 : λ2] 7→ [λ0 : λ1 : λ2]

ϕ∗(x) = x, ϕ∗(y) = y, ϕ∗(z) = z Note also that x, y or x, x + y are also global generators.
The map which corresponds to the generators x, y is:

X - P1 given by [λ0 : λ1 : λ2] 7→ [λ0 : λ1], where λ0λ1 = λ2
2

Example 11.16. What are all of the k-automorphisms of Pnk?

Autk(Pnk ) = {ϕ : Pnk - Pnk | ϕ is an isomorphism over k}
Map of groups:

0 - k∗·Id - GLn+1(k)
α- Aut(Pnk ) where α(A) = (corresponding linear transformation)

GLn+1(k)
k · I

= PGLn(k) ⊂ - Aut(Pnk )

Claim: This is an isomorphism of groups
Given an automorphism Pn ϕ- Pn, ϕ∗(O1) = L ∈ Pic(Pn) ∼= Z. Since Pic(Pn)

ϕ∗- Pic(Pn)
is an isomorphism of groups, ϕ∗O(1) must be a generator of Pic(Pn), i.e. L is either O(1)
or O(−1). But since Γ(Pn,O(−1)) = 0,L = O(1).
ϕ∗xi = si ∈ Γ(Pn,O(1)) = O(1)(Pn) = L(Pn) = [k[x0, . . . , xn]]1 and si =

∑n
j=0 aijxj . Also,

(aij) is a full rank matrix since si generate.

Lecture 23. April 2, 2009

Exercise 11.17. Hartshorne II: 7.1,7.2,7.3,7.5 due on Thursday, April 9.

{X ϕ- PnA morphisms of A-schemes} ↔ {L invertible sheaf on X with generators s0, . . . , sn ∈ Γ(X,L)}

(X
ϕ- PnA) - (L = ϕ∗O(1), si = ϕ∗xi)

“
(
X - PnA, x 7→ [s0(x) : · · · : sn(x)]

)
” �

(
L, s0, . . . , sn ∈ Γ(X,L) which generate

)
Literally: X

ϕ- PnA is obtained by glueing the maps ϕi corresponding to the ring maps

Γ(Xi,OX) � A

[
x0

xi
, . . . ,

xn
xi

]
sj
si
� xj

xi
where xi = {p ∈ X | si(p) 6= 0} = {p ∈ X | si /∈ mpLp} ⊆ X open. This tells us how to
interpret si(x).

Question: What if, instead of s0, . . . , sn ∈ Γ(X,L), (A - OX(X)-module) we choose a
different set of generators t0, . . . , tn of A-module generators for the A-submodule of Γ(X,L)
generated by s0, . . . , sn?
Write si =

∑n
j=0 aijtj and ti =

∑n
j=0 bijsj so that there is an invertible matrix that changes

the generators. The maps ϕs : X - PnA and ϕt : X - PnA correspond to the maps
x 7→ [s0(x) : · · · : sn(x)] and x 7→ [t0 : · · · : tn], respectively.
Answer: The corresponding maps ϕs and ϕt differ by an automorphism of PnA
Question: What if L is invertible, s0, . . . , sn ∈ Γ(X,L), but the si do not generate L?
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Let U = X − V(s0, . . . , sn), L|U is invertible on U ⊆ X open and si|U ∈ Γ(U,L|u) globally
generate L|U . Then instead of the map X

ϕ- Pn we have a map U - Pn.

Definition 11.18. L an invertible sheaf is very ample if there exist s0, . . . , sn ∈ Γ(X,L)
that generate L and the corresponding map X

ϕ- PnA given by x 7→ [s0(x) : · · · : sn(x)] is
a closed immersion (embedding).

Definition 11.19. L is ample means that Lm is very ample for some m > 0.

Remark 11.20. This is not the way that Hartshorne defines ample, allthough they are often
equivalent, however this is the definition that most mathematicians use.

Definition 11.21. A variety X over k = k is an integral, separated scheme of finite type
over k.

X has a cover by open sets U where U = Spec
(
k[x0,...,xn]
(g1,...,gt)

)
. Since X is integral, k[x0,...,xn]

(g1,...,gt)

is a domain and since X is of finite type, k[x0,...,xn]
(g1,...,gt)

has finitely many generators and finitely
many relations.

Definition 11.22. A curve is a variety of dimension 1.

Often when someone says “curve” they mean a smooth variety of dimension 1, projective.

Definition 11.23. A surface is a variety of dimension 2.

Definition 11.24. A smooth variety (or non-singular) is a variety X over k where
ΩX/k is a locally free OX -module of rank equal to the dimension of X and all local rings
OX,p are regular (i.e. dimOX,p = dimmp/m

2
p).

Remark 11.25. Smooth varieties and non-singular varieties are not the same, however they
are when we assume that they are defined over k = k.

Definition 11.26. A complete variety (or proper)X is a variety such thatX - Spec k
is a proper map.

Big Questions About Varieties:

• How can we tell if two varieties are isomorphic? Or birationally equivalent?
• Given a birational equivalence class of varieties can we choose a “canonical repre-

sentative”? (Minimal Model program)
• How can we construct Moduli spaces of complete, smooth curves of genus g? (Mg)
• How can we construct Moduli spaces of surfaces or higher-dimensional varieties?

(open question)
• What is the smallest dimensional projective space into which a variety X can be

embedded? (smooth surfaces always embed into P5 but for any number m there is
a singular variety that does not embed into Pm)

• Given a smooth projective curve X of genus g, how can we view X as a branched
cover (i.e. ramified cover) of P1?

Tools:

(1) Need criteria to check wheter a given L on X is very ample
(2) Given an invertible sheaf L on a projective variety over k, need formulas for dim

(
Γ(X,L)

)
=

dim
(
H0(X,L)

)
? Riemann Roch! Vanishing theorems.

Proposition 11.27. Let X be a projective scheme over k and X
ϕ- Pnk a morphism

given by L and s0, . . . , sn ∈ Γ(X,L). Let V ⊆
Gamma(X,L) be the vector space generated by the {s0, . . . , sn}. The morpism ϕ is an
embedding (i.e. L is very ample) If and only if the following conditions hold:
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(1) ∀p, q ∈ X,∃s ∈ V such that s(p) = 0 but s(q) 6= 0 (or vice versa). (i.e. L “separates
points”)

(2) ∀p ∈ X,S = {s ∈ V | s(p) = 0} the germs (sp) of these s ∈ S in Lp span
mp/m

2
p ⊗ L ⊆ Lp/mpLp (i.e. L “separates tangent vectors”)

Condition one is equivalent to saying X
ϕ- Pn is one-to-one onto its image:

For p, q ∈ X assume that s0(p) = 0, s0(q) 6= 0 (up to automorpism of Pn, s0 is the s from
condition 1) so that ϕ(p) = [0 : s1(p) : · · · : sn(p)] and ϕ(q) = [1 : s1

s0
(q) : · · · : sn

s0
(q)]

⇒ ϕ(p) 6= ϕ(q).

11.1. Curves: Hartshorne IV
Let X be a smooth projective curve over k = k. ωX = ΩX is locally free of rank 1 (i.e.
invertible). Canonical sheaf.

Pic(X) = {Invertible sheafs} ↔ Div(X)
P (X)

= Cl(X)

ωX ↔ divisor class KX

Definition 11.28. The genus of X is dim
(
Γ(X,ωX)

)
.

Definition 11.29. Let D be a divisor on X, D =
∑
nipi, where pi are points and ni ∈ Z.

The degree of D is
∑
ni.

Proposition 11.30. The group map

Div(X) - Z given by D =
∑

nipi 7→ deg(D) =
∑

ni

has P (X) in the kernel, i.e. it determines a group map Cl(X)
degree- Z.

Due to this, we can define:

Definition 11.31. The degree of an invertible sheaf L on a curve X is deg(L) = deg(D),
where D is any divisor such that L ∼= OX(D) (D is uniquely determined up to a principal
divisor).

Observation: If L has a global section, deg(L) ≥ 0.
Easy criterion: L is ample ⇔ deg(L) > 0.

Lecture 24. April 7, 2009

Let X be a variety (Classical case: a quasi-projective variety or for Schemes: an integral,
separated scheme of finite type over k = k).

Definition 11.32. X .........
ϕ
- Y is a rational map if it is a morphism defined on a dense

open subset of X. It is an equivalence class of such morphisms.

If U
ϕU- Y and V

ϕV- Y , where U, V ⊆ X are dense open sets, then ϕU ∼ ϕV if
ϕU |U∩V = ϕV |U∩V .

Definition 11.33. X ........
ϕ
- Y is regular at p ∈ X if ∃p ∈ U ⊆ X such that ϕ is represented

by a morphism U
ϕ- Y on a dense open subset U ⊂ X.

Definition 11.34. The locus of indeterminacy of X ........
ϕ
- Y is the closed set

{p ∈ X | ϕ is not regular at p}.

Theorem 11.35. If X .........
ϕ
- Y is a rational map with X normal and Y projective, then

the locus of indeterminacy has codimension atleast 2.
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In particular, if X is a curve (smooth), then X ........
ϕ
- Y is actually a morphism.

Definition 11.36. Two varieties are birationally equivalent if any of the following hold:

(1) ∃X ........
ϕ
- Y and Y ........

ψ
- X which are mutually inverse (as rational maps)

(2) ∃U ⊆ X,V ⊆ Y dense open sets with U
∼=- V

(3) k(X) ∼=k k(Y )

If X and Y are smooth projective curves, then X is birationally equivalent to Y ⇔ X ∼= Y .
For this lecture and Hartshorne IV, a curve is a “smooth projective variety of dimension 1.”
Let X be a curve with divisor D =

∑t
i=1 niPi ∈ DivX (Pi are points) whose degree is∑t

i=1 ni ∈ Z. The map

Div(X) - Z, given by D 7→ deg(D), is a group homomorphism.

Proposition 11.37. This map induces a group homomorphism Cl(X) - Z. Equiva-
lently, deg(div(f)) = 0,∀f ∈ k(X).

A morphism X
ϕ-- Y of curves induces a map of fields k(Y ) ⊂ - k(X)

as follows:
The map OY (U) - ϕ∗OX(U) is injective ∀U ⊆ Y so there is an inclusion
of domains

OY (U) ⊂ - OX(ϕ−1(U)) ⊂
rest.- OX(V ), where V ⊆ ϕ−1(U) is open.

Since OY (U) ⊆ k(Y ) and OX(V ) ⊆ k(X), there is an inclusion of fields
k(Y ) ⊂ - k(X).
k(X), k(Y ) have transcendence degree 1 over k and the induced map k(Y ) ⊂ - k(X)
is a finite algebraic extension of fields. Define the degree of ϕ as:

deg(ϕ) = the degree of the field extension [k(Y ) : k(X)]

Proposition 11.38. Let X
ϕ-- Y be a morphism of curves and D ∈ DivY . Then

deg(ϕ∗(D)) = deg(ϕ) · deg(D).

Proof. Let D =
∑
niPi, then ϕ∗(D) =

∑
niϕ
∗(Pi) (i.e. ϕ∗(Pi) is the preimage of Pi

under ϕ counted with multiplicities) ⇒ deg(ϕ∗(D)) =
∑
nideg(ϕ∗Pi) = (

∑
ni)(deg(ϕ)) =

deg(D)deg(ϕ). It suffices to show that deg(ϕ∗(P ) = deg(ϕ).
X

ϕ-- Y and U ⊆ X,V ⊆ Y with V
ϕ- U and P ∈ U . OY,P is a DVR so let t be the

generator of the maximal ideal mp in OY,P . Then ϕ∗t ∈ OX(V ). OX(V )⊗OY,P is a DVR.
By definition ϕ−1(P ) is the subscheme of X defined by ϕ∗(t) in V . �

Example 11.39. Let S = k[x,y,z]
xz−y2 and X = Proj S

ϕ- Y = Proj k[x, z] = P1
k where

[a : b : c] 7→ [a : c]. The map ϕ is given by x, z ∈ Γ(X,OX(1)).
In Y : D+(z) = Spec k[xz ] = Spec k[t]

In X: D+(z) = Spec k[ xz ,
y
z ]

x
z−( yz )2 = Spec k[t,s]

t−s2 ,
where t = x

z , s = y
z .

k[t]⊕ s · k[t] ∼= k[t
1
2 ] ∼= k[s] ∼=

k[t, s]
t− s2

� k[t] ⇒ k(t
1
2 ) ∼= k(s) � ⊃ k(t),

which has degree 2. Let P = [λ : µ], wlog µ 6= 0 so instead write P = [λ : 1].
P ∈ D+(z) = Spec k

[
x
z ] = Spec k[t] = A1 ⇔ local parameter for P is (t− λ)

ϕ∗P = preimage of P , counting multiplicities.
ϕ−1(P ) = subscheme of D+(z) = Spec k[t,s]

t−s2 ⊆ X defined by ϕ∗(t − λ). So ϕ−1(P ) is the
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subscheme of Spec k[t,s]
t−s2 defined by (t− λ) = (s2 − λ).

ϕ−1P = Spec Spec
k[t, s]

(t− s2, t− λ)
∼= Spec

k[s]
s2 − λ

This has two points (λ,±
√
λ) or a point (0, 0) with multiplicity 2. So ϕ∗P = P1 + P2 =

[λ :
√
λ : 1] + [λ : −

√
λ : 1] (note if λ = 0 then this becomes 2[0 : 0 : 1]). Therefore

deg(ϕ∗P ) = 2.

Of Prop. Take f ∈ k(X) and define X ........
ϕ
- P1 by x 7→ [f(x) : 1]. Note that if f has a pole

at x ∈ X, then ϕ(x) = [1 : 0].

div(f) = zeros of f − poles of f = ϕ∗([0 : 1])− ϕ∗([1 : 0]) = ϕ∗([0 : 1]− [1 : 0])

deg(div(f)) = deg(ϕ∗([0 : 1]− [1 : 0])) = deg(ϕ) · deg([0 : 1]− [1 : 0]) = deg(ϕ) · 0 = 0
So the degree of div(f) is zero. �

Tools for Studying Curves:

(1) Serre Duality for curves:
Let X be a smooth projective curve (ωX = ΩX is an invertible sheaf). Then Γ(X,L)
is dual to H1(X,ωX ⊗ L−1).
Equivalently, let L = OX(D), ωX = OX(KX), then Γ(D) is dual to H1(KX −D).

(2) Riemann Roch formula:
Let X be a smooth projective curve and L be an invertible sheaf. The genus of X,
g(X), is g(X) = dimk(Γ(X,ωX)) = dimk(H1(X,OX)). Then

dim(Γ(X,L)) = deg(L) + 1− g + dim(Γ(X,L−1 ⊗ ωX))

Remark 11.40. Riemann’s formula was dim(Γ(X,L)) ≥ deg(L) + 1 − g and Roch found
the error term dim(Γ(X,L−1 ⊗ ωX)), which can be annoying to compute but is certainly
non-negative.

What is deg(ωX)?
dim(Γ(X,ωX)) = deg(ωX) + 1− g+ dim(Γ(X,ΩX)), dim(Γ(X,ΩX)) = 1, dim(Γ(X,ωX)) =
1⇒ g = deg(ωX) + 1− g + 1⇒ deg(ωX) = 2g − 2.
Fact: If degD < 0, then Γ(X,O(D)) = 0.

Proof. If s ∈ Γ(X,OX(D)), then the zero set of s is an effective divisor D′ linearly equivalent
to D and so degD = degD′ ≥ 0. �

Example 11.41. dim(Γ(X,L−1)⊗ ωX) = dim(Γ(X,KX −D)) = 0 if deg(KX −D) < 0.

Proposition 11.42. If degD > 2g − 2, then dim(Γ(D)) = degD + 1− g.

Lecture 25. April 9, 2009

For this lecture a curve is always a smooth, projective variety of dimension 1 over k = k.

Warm-up Problem: What can we say about a curve X if ∃p, q ∈ X such that p 6= q but
p ∼ q (i.e. p− q = div(f), f ∈ k(X)∗)?
If this were true for all points of X, then Cl(X) ∼= Z since any point represents the same
class and 2 times any point represents the same class as 2 times any other point. In general,

X
ϕ- P1 given by z 7→ [f(x) : 1]

ϕ is surjective since f is not a constant and f ∈ k(X)∗. Also p − q = div(f), f has a
simple zero at p and a simple pole at q. Therefore deg(ϕ) = deg(ϕ∗([0 : 1]) = deg(p) = 1
⇒ k(X)L ⊂

∼=- k(t) since X is a curve ⇒ X is birationally equivalent to P1. Hence ϕ is an
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isomorphism.

Recall: deg(L) = the degree of any divisor representing L

H0(X,L) - {effective divisiors on X all linearly equivalent}

s 7→ (divisors of zeros of s

λs 7→ {s = 0} ⇔ {λs = 0}
Therefore P(H0(X,L)) = {effective divisors all linearly equivalent}.
genus(X) = h0(X,ωX) = dim(H0(X,ωX) = h1(X,OX).

Remark 11.43. h0 is the dimension of H0 and ωX is the top dimensional forms on X.

Serre Duality: H0(X,L) is dual to H1(X,ωX ⊗ L−1)
deg(ωX) = 2g − 2.

Remark 11.44. The genus defined here agrees with the definition in topology. In particular,
the genus in topology is 1

2dimRH
1
Sing.(X,R)) = dimCH

1
Sing.(X,C)). On a smooth projective

variety X, viewing X with its complex topology instead of its Zariski topology and using
hodge decomposition:

Hn
Sing.(X,C) ∼= ⊕p+q=nHpq(X) = ⊕p+q=nHp(X,∧qΩX)

For curves,
H1
Sing.(X,C) = H0(X(, ωX)⊕H1(X,OX)

And dimCH
1
Sing.(X,C) = 2g.

Rieman Roch (RR): Let X be a curve and L an invertible sheaf.

h0(X,L) = deg(L) + 1− g + h0(ωX ⊗ L−1),

often the last term is zero. In particular this happens if deg(ωX ⊗L−1 < 0. Since deg(ωX ⊗
L−1) = deg(ωX)− deg(L) = 2g − 2, this amounts to g < 1.

Proof. First of all, h0(ωX ⊗ L−1) = h1(X,L), h0(OX) = 1, and g = h1(OX). So we can
arrange the equation to become:

χ(L) ≡ h0(X,L)− h1(X,L = deg(L+ h0(OX)− h1(OX)

Let χ(OX) = h0(OX) − h1(OX) and L = OX(D). Fix p ⊂
i- X. Then OX - i∗Op by

f 7→ f(p).
0 - OX(−p) - OX - i∗Op - 0

i∗Op is the skyscraper sheaf k at p, OX(−p) = {g ∈ k(X) | div(g)− p ≥ 0}.
Apply ⊗OXOX(D) to get the exact sequence:

0→ OX(−p)⊗OXOX(D) = OX(D−p)→ OX⊗OXOX(D) = OX(D)→ i∗Op⊗OXOX(D)→ 0

i∗Op ⊗OX OX(D) ' Op is still a skyscraper sheaf k at p.
Then we get a long exact sequence in cohomology:

0→ H0(X,D−p)→ H0(X,D)→ H0(p,Op)→ H1(X,D−p)→ H1(X,D)→ H1(p,Op) = 0

Note that we are abusing notation so H0(X,D − p) is actually H0(X,OX(D − p)). The
alternating sum of these dimensions is zero since the sequence is exact So:

h0(D − p)− h0(D) + h0(p,Op)− h1(D − p) + h1(D) + 0 = 0

Noting that h0(p,Op) = 1 and rearranging we get:

h0(D − p)− h1(D − p) = h0(D)− h1(D)− 1⇒ χ(D − p) = χ(D)− 1
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RR holds for D ⇔ RR holds for D − p
⇔ RR holds for χ(D − p) + deg(D − p) + χ(OX)

⇔ RR holds for χ(D − p) + deg(D)− 1 + χ(OX)

RR holds for D ⇔ RR holds for χ(D) = deg(D) + χ(OX)

⇔ RR holds for χ(D − p) + deg(D)− 1 + χ(OX) since χ(D − p) = χ(D)− 1

Therefore RR holds for all divisors if it holds for some divisor, so we only need to check this
for one divisor, D. Try for D = 0 : χ(OX) = deg(OX) + χ(OX) and deg(OX) = 0. �

What can be said about a curve of genus 0?

Theorem 11.45. If X is a curve of genus 0, then X ∼= P1.

Proof. By RR, curves of genus 0 satisfy: h0(D) = deg(D)+1+h0(KX−D). For effective D,
the degree of KX −D is 2g− 2− deg(D) < 0, so h0(KX −D) = 0. So h0(D) = deg(D) + 1.
Take D = p⇒ h0(D) = 2. Fix s0, s1 ∈ Γ(X,OX(D)) that span.

X
ϕ- P1 given by x 7→ [s0(x) : s1(x)]

deg(ϕ) = deg(ϕ∗([0 : 1]) = deg(of the zero set, counting mult. of s0) = 1
Therefore X ∼= P1. �

Hurewitz Formula: If X
f-- Y is a map of curves with deg(f) = n and char(k) = 0, then

2(genus of X)− 2 = n(2(genus of Y)− 2) +
∑
p∈X

(ep − 1),

where ep is the multiplicity of p in ϕ∗(ϕ(p)) = ϕ−1(ϕ(p)) with multiplicity. Note that
ep = 1 ⇔ p is not a ramification point. For shorthand, gX is the genus of X. What can be
said about a curve of genus 1? Let X be a curve of genus 1 and D > 0 effective divisor on
X. By RR

h0(D) = deg(D) + 1− g + h0(KX −D) = deg(D)
The degree of KX −D = 2g − 2 − degD = −degD < 0, so h0(KX −D) = 0. Try D = 2p.
Then H0(OX(2p)) has dimension 2 and is spanned by s0, s1. Assume that {s0 = 0} = 2p.
Then we get a map:

X
ϕ2p- P1 given by x 7→ [s0(x) : s1(x)]

ϕ2p cannot be a map to a point since if it were we would have s0(x) = s1(x),∀x ∈ X, in
which case s0, s1 are linearlly dependent and so they would not span. For now, let’s assume
they have no common factor (we will discuss this more carefully later). Then deg(ϕ2p) = 2.
By the Hurwitz formula, 2gX−2 = 2(2gP1−2)+

∑
p∈X(ep−1)⇒ 0 = −4+

∑
p∈X(ep−1)⇒∑

p∈X(ep − 1) = 4.

Lecture 26. April 14, 2009

Let X be a smooth projective variety over k = k. A morphism x
ϕ- Pnk is equivalent to

a choice of an invertible sheaf L of OX -modules and global sections s0, . . . , sn ∈ Γ(X,L) =
H0(X,L) which globally generate L.
Suppose now that X is a (smooth projective) curve. Take L with generators s0, . . . , sn ∈
Γ(X,L)

Example 11.46. Let X = P1 = Proj k[s, t] and L = OX(3). Then Γ(X,L) =vector space
[k[s, t]]3. Let s0 = s2t, s1 = st2, s2 = t3. Where do these generate L?
Let p = [0 : 1] = 0 and q = [1 : 0] =∞.

(s0)0 = divisor of zeros of s0 = 2p+ q(s1)0 = divisor of zeros of s1 = p+ 2q(s2)0 = divisor of zeros of s2 = 3q
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The rational map P1 ........- P2 given by [s : t] 7→ [s2t : st2 : t3] is equivalent (i.e. agrees on
every open set where both are defined) to the map [s : t] 7→ [s2 : st : t2], which is the Veronese
embedding of degree 2. So the morphism is “really given by” L = O(2) with sections
s2, st, t2. The corresponding linear system is the divisor of zeros of {as2+bst+ct2}[a:b:c]∈P2

k
=

All pairs of points (p+ q) including 2p on P1.

Definition 11.47. A complete linear system |D0| is the collection of effective divisiors
linearly equivalent to D0.

Divisors of |D0| ⇔ Divisors of zeros of s ∈ Γ(X,O(D0))
Curve Classification: Let X be a smooth projective curve over k = k

(1) If X is genus 0, then X ∼= P1

(2) If X is genus 1, then X
ϕ- P1 is a degree 2 branched cover of P1 ramified at 4

points and X ∼= V(F3) ⊆ P2, where F3 is a smooth cubic.
(3) If X is genus 2, then by RR

h0(KX) = degKX+1−g(X)+h0(KX−KX) = degKX+1−2+1 = degKX = 2g(X)−2 = 2.

Let s0, s1 ∈ Γ(X,ωX). This defines a map X - P1 given by x 7→ [s0(x) : s1(x)],
which is a degree 2 cover of P1 ramified at 6 points. We determine the number of
ramified points using the Hurewitz formula: 2(genus of X)−2 = n(2(genus of P1)−
2) +

∑
p∈X(ep − 1)

2 = 2(−2) +
∑
p∈X

(ep − 1)⇒
∑
p∈X

(ep − 1) = 6⇒ # of ramified points is 6

We want to show that a curve of genus 1 can be embedded into P2. Try the divisor D = 3p0.
By RR, (KX = 2g(X)− 2 = 0):

h0(D) = degD + 1− g(Z) + h0(KX −D) = 3 + 1− 1 + h0(−D) = 3

Take s0, s1, s2 ∈ Γ(O(3p0)), (s0)0 = 3p0.

X ⊂
ϕ|3p0|- P2 = Proj k[x, y, z] given by r 7→ [s0(r) : s1(r) : s2(r)]

Assume that ϕ|3p0| is an embedding (proved shortly). ϕ∗O(1) = L = O(3p0) where ϕ∗(x) =
s0, ϕ

∗(y) = s1, ϕ
∗(z) = s2. X = V(F ), F is a homogeneous equation in x, y, z. Note that

(line in P2) ∩X ∈ |3p0|. Therefore F is degree 3. Hence every genus 1 curve is isomorphic
to a (smooth) cubic in P2.

Lecture 27. April 16, 2009

Proposition 11.48 (Hartshorne II: 7.3). Let X be a variety over k. Let X
ϕ- Pn be a

morphism given by s0, . . . , sn ∈ H0(X,L) global generators and span H0(X,L) over k. Let
L = O(D0). Then ϕ is an embedding (i.e. L is very ample) if:

(1) L separates points: ∀p, q ∈ X,∃s ∈ H0(X,L) such that s(p) = 0 but s(q) 6= 0.
Equivalently, ∃D ∈ |D0| =(all divisors effective and inearly equivalent to D) such
that p ∈ D and q /∈ D.

(2) L separates tangent vectors: ∀p, the stalks of s ∈ H0(X,L) which vanish at p span
mp/m

2
p ⊗ L.

Equivalently, for all tangent directionss v at p, ∃D ∈ |D0| such that v is tangent to
D at p.

Remark 11.49. OX(D) is globally generated is equivalent to |D| is base point free. OX(D)
is very ample is equivalent to |D| is very ample.

Proposition 11.50. Let D be a divisor on a curve X.
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(1) OX(D) is globally generated ⇔ ∀p ∈ X, dimH0(X,D − p) = dimH0(X,D)− 1.
This is equivalent to: |D| is base point free ⇔ ∀p ∈ X,h0(D − p) = h0(D)− 1.

(2) OX(D) is very ample ⇔ ∀p, q ∈ X (including p = q), dimH0(X,D − p − q) =
dimH0(X,D)− 2.
This is equivalent to: |D| is very ample ⇔ ∀p, q ∈ X,h0(D − p− q) = h0(D)− 2.

Corollary 11.51. Let D be a divisor on a genus g curve. Then

OX(D) is globally generated if degD ≥ 2g

OX(D) is very ample if degD ≥ 2g + 1

Of Corollary. By RR, h0(D) = degD + 1− g(X) + h0(KX −D). The degree of KX −D =
2g−2−degD, which is always negative under assumptions 1 and 2 so under these assumption
h0(KX −D) = 0. So h0(D) = degD + 1− g. �

Of Proposition. (This is Prop. 3.1 in Hartshorne IV)
(1) p ⊂

i- X

0 - O(−p) - OX
eval.- i∗Op - 0

0 - OX(D − p) - OX(D)
eval.- Op ⊗OX(D) = OX(D)/mpOX(D) - 0

0 - H0(X,D − p) - H0(X,D)
eval.- k - H1(X,D − p) - . . .

OX(D) is globally generated at p⇔ e is surjective. This shows that either h0(D −
p) = h0(D)− 1 or p is a basepoint.
(2) Using prop. 7.3 in Hartshorne, show (⇐): Need O(D) separates points and
tangent vectors.

h0(D − p− q) = h0(D)− 2⇒ h0(D − p) = h0(D)− 1

By (1), OX(D) is globally generated. To separate points: fix p, q ∈ X. Need
† s ∈ H0(X,OX(D)) such that s(p) = 0 but s(q) 6= 0. Equivalently, we need
s ∈ H0(X,OX(D − p)) = H0(D − p). † holds ⇔ Q is not a base point of |D − p|.
Since h0(D− p− q) = h0(D− p)− 1 = h0(D)− 2 (by (1)), Q is not a base point of
|D − p|. Therefore |D| separates points (i.e. OX(D) separates points).
To separate tangent vectors: ∀p ∈ X, s ∈ H0(X,O(D)) which vanishes at p (i.e.
s ∈ H0(X,OX(D − p)) = H0(D − p)). sp spans mp/m

2
p ⊗ OX(D) ⇔ sp does not

vanish to order at least 2 at p ⇔ the corresponding divisor does not have 2p in its
expression.
Want to show:

0 - O(−p) - OX - Op - 0 then tensoring on the right by OX(D − p)

0 - O(D − 2p) - OX(D − p) - k - 0

D separates tangent vectors at p⇔ h0(D − 2p) = h0(D − p)− 1 = h0(D)− 2. �
X genus 1 curve:
Fix a base point p0 ∈ X. This gives a map:

X - Pic0(X) ⊆ PIc(X) given by p 7→ p− p0,

where Pic0(X) is a subgroup of Pic(X) of the divisors classes of degree 0.

Proposition 11.52. For a genus 1 curve, this map is a bijection.
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Proof. (Injective) For points p 6= q, we need p− p0 � q − p0.
p− p0 ∼ q − p0 ⇒ p ∼ q ⇒ X ∼= P1, which is a contradiction hence p− p0 � q − p0.
(Surjective) Take any divisor D of degree 0 on X. Want D ∼ p−p0 for some p ∈ X (i.e. want
to show ∃p such that D+p0 ∼ p or, equivalently, p ∈ |D+p0|). We want H0(X,O(D+p0)) to
be non-zero. Since s ∈ H0(X,O(D+p0))−{0}, then the corresponding divisor is an effective
divisor D′ ∼ D+p0 of degree 1⇒ D′ = p. Use RR to check that h0(X,O(D+p0)) ≥ 1. �

Since Pic0(X) is a group and there is a bijection between Pic0(X) and X, we can give a
group structure to X as follows: For p, q ∈ X define p⊕ q = r, where r is the unique point
satisfying (p− p0) + (q − p0) ∼ r − p0. Then p0 will be the identity in X.

Lecture 28. April 21, 2009

For this lecture, a surface is a smooth projective variety over k = k of dimension 2. Every
complete dimension 2 smooth variety is projective (i.e. the map X - Spec k is proper).
We need tools to map X to projective spaces so we can answer fundamental questions about
X.
(1) Toos for finding h0(X,D) - to get maps to projective space (Formula: RR)
(2) Criteria for check D to be ample (well-understood) or very ample (research area)

By definition, the Eucler characteristic, χ(X,OX(D)), is: χ(X,OX(D)) = h0(X,O(D)) −
h1(X,O(D)) + h2(X,O(D)).

Theorem 11.53. (RR for Surfaces) Let X be a surface and D a divisor on X. Then

χ(X,OX(D)) = χ(X,OX) +
1
2
D · (D −KX),

where D · (D −KX) is the intersection number of the two divisors D and D −KX .

Often in applications, −h1(X,O(D)) + h2(X,O(D)) = 0 - “Kodaira Vanishing.”
Intersection Pairing on a Surface
Let X be a surface and D,C be two divisors on X. The intersection number D · C ∈ Z.
Idea: If D and C are smooth curves intersecting transversly, then D · C = # points in
D ∩ C.
• The intersection number only depends on the divisor class of C and D (i.e. D1 ∼
D2, D1 · C = D2 · C,∀C ∈ Div(X)).
• If C,D are smooth irreducible curves, then

C ·D = #(C ∩D) counting multiplicities =
∑

p∈C∩D
(C ·D)p, where (C ·D)p = dimk

(OX,p
(f, g)

,

where f, g are the equations for C,D, respectively.

Definition 11.54. Curves C and D intersect transversely at p ∈ X if (C ·D)p = 1.

Example 11.55. Let X = P2 and C,D be smooth curves of degree d, c intersecting transver-
sly. Then

D · C = #(D ∩ C) = dcby Bazou’s theorem

Example 11.56. Let X = P2 in x : y : z, L = V(y), C = V(yz − x2). In Uz, L has local
defining equation y

z = t and C has local defining equation y
z −

(
x
z

)2 = t− s2.

(C · L)p = dimk
OX,p

(t, t− s2
= dimk

k[s, t](s,t)
(t, t− s2)

= dimk

k[s](s)
(s2)

= 2,

which is what we would expect since the degree of C is 2 and of L is 1, so their product is
2.
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Theorem 11.57. Let X be a surface. There is a unique symmetric bilinear map:

Div(X)×Div(X) - Z given by (C,D) 7→ C ·D
such that
(1) If C,D are smooth and intersect transversely, then C ·D = #(C ∩D).
(2) If C1 ∼ C2, then C1 ·D = C2 ·D.

Sketch of Proof. Use the fact that given H very ample and any D ∈ Div(X), for n >>
0, (D + nH) is very ample.
For D1, D2 ∈ Div(X), take D′ ∈ |D1 = nH|, which is very ample by the above fact. So
D′ ∼ D1 +nH. Then D1 ·D2 = (D′−nH) ·D2 and we can manipulate the divisors to make
them transverse, then apply the first result. �

Fact: If X
f-- Y is a birational morphism of surfaces and C,D ∈ Div(Y ), then f∗D·f∗C =

D · C.

Example 11.58. Let X = P2 blownup at a point P = [0 : 0 : 1]. Recall that the divisor class
group on P2 is Z and removing a variety of codimension 2 or higher does not effect this. So
the divisor class group of X is Z×Z. Let L̃1 and E be the generators, where E corresponds
to the copy of P1 that was added to P2 to get X.

X
π- P2 and π(E) = p

Let π∗(L1) = L̃1 and π∗(L2) = L̃2 + E ∼ L2, where L1 does not go through p but L2 does
and L1 intersects L2 once. Then

L̃1 · E = 0 and L̃2 · E = 1 and L1 · L2 = 1

L̃2 +E ∼ L̃1, so (L̃2 +E) ·E = L̃1 ·E = 0. Now L̃2 ·E = 1 since L2 goes through the point
p once in P2. Therfore L̃2 · E = 1 so E1 = −1.

Definition 11.59. Let X be a smooth surface. Divisors D1, D2 are numerically equiv-
alent, denoted D1 ≡ D2, if D1 · C = D2

cdotC,∀C ∈ Div(X).

D1 ∼ D2 ⇒ D1 ≡ D2, so numerical equivalence is coarser than ∼. This induces a symmetric
bilinear non-degenerate pairing:

Div(X)/ ≡ ×Div(X)/ ≡ - Z
Now (non-obvious) fact is that Div(X)/ ≡ is a finitely-generated free abelian group.
Neron-Severi Space:

Div(X)/ ≡ ⊗ZR is a vector space over R of finite dimension

The intersection pairing gives a non-degenerate symmetric bilinear form (·, ·).

Remark 11.60. After choosing an appropriate basis for the Neron-Severi space NS(X) =
Div(X)/ ≡ ⊗ZR, this form has 1 in the first diagonal entry and negative ones in the rest of
the diagonal (Hodge index theorem).

Theorem 11.61. (Nakai-Moishezon Criterion) Let X be a smooth surface and D ∈ Div(X).
D is ample ⇔ D · C > 0, for all effective, irreducible divisors C. D2 > 0.

Theorem 11.62. (Kleiman) Let X be a smooth surface and D ∈ Div(X). D is ample
⇔ D · C > 0,∀C in the closed cone of effective divisors on X.

The cone of effective divisors on X ⊆ NS(X) = Div(X)/ ≡ ⊗ZR and it is the divisor class
represented by effective curves where |D| 6= 0.
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