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1. ONE COMPLEX VARIABLE
Lecture 1. September 9, 2009

Definition 1.1. Let V and W be vector spaces over C. A pairing is a bilinear map:

VxW— C.

Let v be a C* simple closed curve in C. Let Q, be the interior of the closed curve v and
Q_ the exterior.
A(Qy) ={f cont. on Q4 Ux | f holo. on .}

A(Q_) ={f cont. on Q_ U~y U{oo} | f holo. on Q_, f(c0) =0}

Given f,g € A(Q24), how can we pair them over 47 In other words, we want a bilinear map
A(Q4) x A(Q4) — C which, ideally, is symmetric and non-trivial.

1st try: f,y fgdz. This is symmetric, but always zero.

2nd try: f,y fgdz. This is usually non-zero (unless f = 0 or g constant), but not

symmetric.
3rd try: fv fgldz| = fﬂ/ fgds (where s is the arc length). This not only satisfies all of

the requirements, but also is a good pairing on both A(21) and A(Q2_). Note that
this is the inner product on L?(v,ds).

Let Hy(y) = L*(v,ds) — closure of A(Q4). Note that this is a Hardy space.
Ezample 1.2. Let 7 be the unit circle traversed counter-clockwise (y(6) = €¥,0 < 6 < 27).

L?(v,ds) = { i a,e™? | z lan|? < oo}

n=—oo

In Q4 (the interior of ) 2™ always converges for n > 0 but not for n < 0, so:

Hi(y) = { Zanem@ | Z lan|* < OO}
n=0

In Q_ (the exterior of ) 2™ always converges for n < 0 but not for n > 0 (in particular z”
does not converge for n = 0 as ||z|| — oo since | Jo_ ds| = 00), so:

H_(y) = { i: ane™ | Zlan|2 < OO}

n=—oo

Now suppose f € Hy(v) and g € H_(y). How can we pair them?
1st try: fw fgds. If ~ is the unit circle, then f,y fgds = 0:

e’} -1
f§ — <Z anein9> ( Z bnein0>
n=0

n=—oo
oo o0
§ : in6 0
— anezn b,nem
n=0 n=1
o0
_ E c emQ
- n
n=1
0
/f?Z/E cne™
Y Y n=1
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2nd try: f,y fgdz. If v is the unit circle, then

oo -1
f= Z ane™ and g = Z bne™?
n=0

n=-—oo

and fy fgdz =27y 0" Janb_1_p, so this is a good pairing:

e} -1
(Zanein6> ( Z bneinﬁ)
n=0 n=-—o0o

—2

00 00
— § Cn61n9+§ akb—l—keiw+§ Cnezne
k=0

n=—oo n=0

oo
/ fgdz = 2mi Zakb,l,ke_w
R k=0

The “perfect duality pairing” is given by the following (note: all of the norms are L? norms):

L fod L fods

Remark 1.3. There is a perfect duality pairing if and only if v is a circle.

I

Let || f|| = supq) <1 and |[g|| = sup)f<1

Now consider the Cauchy integral. Let f be continuous on -, then

Cr) =5 [ 10X

Facts:
(1) Cf is holomorphic on CU {oo} \ v
(2) Cf(0) =0

(3) If f € A(Q4), then the Cauchy integral formula says that

f on Qg

Cfz) = {O on 2_

(4) If f € A(Q2_), then the Cauchy integral formula says that

0 on Q4

Cr) = {—f on Q_

(5) If fis C*, then:
e C'f extends continuously from Q4 to Q4 U~. Let Cy f be the boundary value
of f (i.e. the value on the extension to 7).
o C'f extends continuously from Q2_ to Q_ U~. Let C_ f be the boundary value
of f (i.e. the value on the extension to 7).
(6) Cx extends to bounded operators from L?(7y) to H(¥)
(7) ||C+]| is the operator norm of Cy

—1
ICH| = supyi gy, . <1ICx- fllz = [|C-|| = (mffeH_,nfn—lSUPgEH_,|g||—1|/f9d2|>

(8) f=Cif—C_fonny
Lecture 2. September 11, 2009
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In C': Let v be a C! simple closed curve, let €2, be the interior of the closed curve v, and
let Q_ the exterior. Let

H(y)={f € L*(7,ds) | f extends "holo. in Q,”}

H_(v) = {f € L*(v,ds) | f extends "holo. in Q_” and f(c0) = 0}

H_ and H_ are Hardy spaces. For f € H; and g € H_, we found that a good pairing of f
and g is given by [ fgds.

In C™: Now consider higher dimensions: Let S be a sphere (or similar to a sphere) with Q4
as the interior and Q_ as the exterior. The definition of H(S) is clear (it follows from the
previous definition), but the definition of H_(.S) is not. If H_(S) is defined as above, then
a holomorphic function on Q_ extends to an entire function and the condition f(co) = 0
results in the only possibility being the zero function (i.e. H_(S) = {0}). Dropping the
condition f(co) = 0 still results in H_(S) C H,(S). Nevertheless, facts (1)-(7) from the
previous lecture do generalize, but (8) does not. We need to a construction of H_(.S) that
is “different in higher dimensions, but the same in dimension 1.” Construct dual S* in
dimension 1, S* # S. This will be discussed more later.

More about C'f(z) = f f(C)dC

271'2

Assume that v is C1 |, f is C1 on v, and z € Q_. Extend f to a C' on Q. U~y. Then, using

Green S lheOI‘em, on Qf:
Q+

By the dominated convergence theorem, this is a continuous function for z € Q_ U~ (note:
this integral is convergent towards v by dominated convergence, but the previous definition
of Cf is divergent towards ). The boundary value of Cf is C_f € H_(y). Now let z be
a point on the boundary (i.e. z € ). Around the point z € ~, remove a small semi-circle
inside €24 of radius e. Let 74  be the curve of the semi-circle around z. Let 7; . be the
curve 7y everywhere except the e-neighborhood of z and in that neighborhood it is v . Let
the interior of y; . be Q4 .

C_f(z) =lim — // ag dA
e—0 T Qi e

1 f<<)c .y F(Q)d¢
e §F

e—0 271 Yie C 5_’0 2me

2, (o f 105

where the part in parenthesis is a definition and p.v. stands for principal value.

Exercise 1.4. Show that C'f(z) extends from Q4 to 2 U~. Call the boundary value
Cif € Hi(y). Also show that Cy f(2) = @ + s po. fv f%jq.

Corollary 1.5. C.f—-C_f=f

Theorem 1.6. IM > 0 (depending on ~y) such that ||Cy f|l2 < M||f||2,VCt f. The small-
est such M is ||C4]].

Corollary 1.7. C, extends to a bounded linear map L*(7y,ds) — Hy (7).

What’s the role of the Riemann sphere here?
Consider C U {oo} —+ C U {oo} given by z — o(z) = c+dz Insist that ad — be = 1 (this
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. a b . ~ _ —c+a fle(2)
determines (C d) up to sign). Let § = ¢~ ' (v) = 75*F and f(z) = pine

Everything discussed so far is preserved:

Lﬁw—ﬂmw
L f7ds = L fads

Cyf = Cof
1C5, 411 = [ICy 4]

Definition 1.8. Let V be a vector space and P : V —— V be a linear map. Then P is a
projection operator if P2 = P.

Exercise 1.9. If P is a projection operator then:

(1) I — P is also a projection operator
Proof. (I —P)?=1-2P+P?>=1-P |
(2) kerP =range(I — P)

Proof. Vx € ker(P),(I — P)(z) = x = ker(P) C range(I — P). For y € range(P),
= (I—P)(z) for some z and P(y) = P((I—P(x)) = P(x)— P?(x) = 0 = ker(P) 2
range(I — P). O

(3) range(P) = ker(I — P)

Proof. (I — P)(P(z)) = P(z) — P?(x) = 0 = range(P)

C ke r( P) and if z €
ker(I — P), then (I — P)(z) =0 so P(z) = z = range(P) D ker

P). O
(4) ker PN range P=kerPnN ker(I — P)= {0}

Proof. The first equality follows from (3) and the second equality follows from the
following: If P(z) =0 and (I — P)(z) =0,then0= (I — P)(z) =2z =2=0. O

(5) V =ker P® range P
Proof. This follows from (4) and dimensional analysis. O

(6) Given V = V; @ Vs, there is a unique projection operator P : V —— V with kernel
V1 and range V5.

Proof. Let P(v1 + v2) = va. O
Lecture 3. September 14, 2009

Let v be a C' counterclockwise simple closed curve with Q, as the interior and €_ as the
exterior. Let 5 be a C! clockwise simple closed curve with Q_ as the interior and 5/2: as the
exterior. Let ¢ be a map between the tilde-spaces to the regular spaces (view both spaces
as the Riemann sphere). This shows that anything we do for , can be done for Q_. Q4
is always the portion bounded by the positively oriented part of the curve and 2_ is always
the portion bounded by the negatively oriented part of the curve.

f6) L[ HO&

FeCi(n) = Cef(z) =+~ +pvg— = A(Q)
1 f(Qd¢ C+f+0—f
Hf(z)—zmllv-[yc_z = 5 € C(v)
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H.f(z) = L/ J(Q)d¢ =0 Hf(2) uniformly
2mi Jeey |c—zlze 6%
For f € A(Q4),C4f = f and C_ f = 0 Similarly, for f € A(Q_),—Cyf = f and C;f = 0.
If we extend the domain to Hy, then for f € Hy(vy),£C+f = f and C¢f = 0. Therefore
(Cy)2f=C,f and (-C_)?f = —C_f. Hence C and —C_ are both projection operators
with:

range(+Cy) = Hy(y)
kernel(£C4) = range(I F Cy) = range(FCx) = H+(v)
Recall that L?(vy,ds) = Hy & H_.

2
e <c++c> _C34CC 40 C+C2 G —-C

2 4 4 4

where C.C_ + C_Cy = 0 because for f € Hy, C+f = 0.

PROJECTION OPERATOR: Let V' be a vector space and V = V; @ V5. Define a projection
operator P(v; + v9) = vg, where v; € V;. Then the range of P is V, and the kernel of P is
V1. Every projection operator has this form.

SPECIAL CASE: Let V be a Hilbert space (e.g. L?) and V5 a closed subspace of V. Then V =
Vs- @ Va. From this set-up we get an orthogonal projection operator given by P(w +v) = v
(i.e. P = Py,). With P as above, (I — P)g is an orthogonal projection operator on Vi*.

< Pf,g>=<Pf,g— (I — P)g >=< Pf,Pg>=<Pf+ (I — P)f,Pg >=< f,Pg >
Hence P is self-adjoint.
Exercise 1.10. Given P a projection operator, P is an orthogonal projection operator if
and only if (by definition) ker(P) = (rangeP)" if and only if P is self-adjoint.
Special Case: Let P : R2 — R? be a projection operator. Then dimV; = dimV, = 1.
Exercise 1.11. ||P|| = csc#, where 0 is the angle between V; and V.
Exercise 1.12. In general, if P is a non-zero projection operator, then

||P|| = csc (inf{angle(vi, v2) | v1 € KerP, vy € RangeP}

The portion inside csc is known as the “lst principal angle” of Jordan.

P is an orthogonal projection operator if and only if ||P|| = 1.
Let 2 C C" be open. The Bergman space B(Q)) = {f € L*(Q) | f holo.}.

Proposition 1.13. B(Q) is a closed subspace of L*(2).
Proof. Use the solid Mean Value Theorem. |

Let v be a C! counterclockwise, simple closed curve. The Szego projections S+ are the or-
thogonal projection operators L?(v,ds) — H+ (7). Recall that +Cy : L?(7,ds) — Hy
are also projection operators.

Theorem 1.14. Sy = £C1 & Cy is self-adjoint & ||Cy|| =1 Hy L H. & visa
circle or a line. The last “=” follows from a Kerzman-Stein result.

We need to prove that ||C f||2 < M||f||2 for f € C'. This is true for any v that is C1, but

to simplify the proof we shall assume that y is C2. It suffices to show that [|Hf||l2 < M]|f||2
for f € C*(Q). Let u € C1(Q4 U~), where u(2) is the unit tangent vector for v at z € v (so
7 is a function on S* that extends to a C-valued function in the interior of ~).

Exercise 1.15. For f € Cl(y) = %fﬂ{_{lc_z‘«}%)gmdz

e — 07 to H*f € CY(v). Hint: follow work from the previous lecture.

converges uniformly as
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Lecture 4. September 16, 2009

Hf(2) — Hf(z) as € — 0 uniformly

L / AL

20 Jeey [c—21>e €~ 2

Hif(z) = L/ M — H*f(z) as € — 0 uniformly
2mi Jeeylc-zlze (= Z

where f € C(y),z € y,u € C*(4 U~) and u(z) is a unit tangent vector for v at z € ~.
*NOTE: |dz| = u(z)dz and u(z)|dz| = dz on 7.
Define 6(¢, z) = distance from ¢ to z along v (where (,z € 7).

Lemma 1.16 (1).

4(2,¢)
©(z,¢) = {1|Z§ ’ j f 2 is continuous on 7y X vy

Corollary 1.17. ¢ is bounded on vy X 7.
Lemma 1.18 (2). Assume that vy is C*. Then
u(€)
(—z 6(C2)
Recall that u € C1(Q, U~) and u(z) is the unit tangent vector for v at z € .

Proof. Parametrize v by arc length. Let f : [0,{] — ~ such that f'(¢) = u(f(¢)) and f(0)
is far away from z,{ on 7. Let ( = f(s),z = f(t). Then

w1 fs) L fe)s—t) = (fs) = f{t) s —t

C—z 6(Cz) (—z s—t (s —t)2 C(—z

Note ‘Z:i is bounded by lemma 1, so

F'(s)(s =) = f() + f(s) | _ max]|f”|
(s —1)2 =T

is bounded on (y x v) — {¢ =z}

is bounded by Taylor’s theorem. |
Lemma 1.19 (3). Suppose f,g € C*(v). Then [(H.f)gds = ff@ds.

Proof. Use Fubini’s theorem and *. (Il
Lemma 1.20 (4). Suppose f,g € C'(v). Then [(Hf)gds = [ f(H*g)ds.

Proof. Use uniform convergence H.f — Hf, Hig — H*g and lemma 3. O
Now look at

(w0 p<2717 [ro(2- “Q“_““))

—p.z}(;m. [ro(- Cu(_z)z)wc)

Lemma 1.21 (5). Z(_CZ) - %(_ZE) is bounded on y x v — {¢ = z}.

Z(—C)z ‘cu(—Z)z: (5(—0 - 6<<l,z>> " <5<<1,z> ‘5(—)>

Each term in parenthesis is bounded by lemma 2. O

Proof.
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Therefore:
1
=17 =5 [ (FE - 250 o
(we do not need the principal value)

Corollary 1.22. [|(H — H*)fll2 < M'||llz- In fact, ||(H —H*)flle < M"|[f]lo.

Also,
IHfII5 =< Hf HS >
=<H'f+(H-Hf,Hf >
=< fHAf >+ < (H—H")f, Hf >
= L7+ < (0 = 1) 3 >

1
< ZHfllg + M| f|l2l[Hfll2 by Cauchy-Schwarz

(M) IHAII3
2 2

1
< I+ 1113 +

where the final inequality uses:

1 1 1
0.< SO fll2 = 1112 = SOOI = MIARIFl + 51713

which implies that
(M')?
2

HAII3

M|l A < =171+

’ 2
Then [[Hf]13 < Y||f]3+ @Hf“% + % implies (by rearranging the terms) that

1
IHfI5 < (2 + (M’)2> ||£]|3 and thus

T
2§ (2"' 2+(M)2>|f||2

So the operators C+ are bounded, as previously claimed.

f
+3

[|Cxfll2 = +Hf

Lecture 5. September 18, 2009

S+ (the Szego projections) are characterized by:

(1) Sy projects L?(vy,ds) onto H(v)

(2) [,(Sxf)gds = [, f(S+g)ds
C4 (the Cauchy integrals) satisfy condition (1) but not (2).
Proposition 1.23. Cy satisfy:

(1) Cy projects L*(v,ds) onto Hy(7)
(2) [ (Cf)gdz=— [ f(Cig)dz

Proof. Claim (1) is clear so we shall prove claim (2). f,g € A(Qy) = f,y fgdz = 0 and
frge AQ) = f,y fgdz = 0 (both f and g have zeros at oo, so co is a double zero, hence

by the exterior residue theorem the residue is zero). Pass to the limit

Jog€ Hi(y) :»/fgdz:o and f.g € H_(y) :»/fgdz ~0
vy vy

/ (C fgdz = / (CLf)(Crg — C_g)dz = / (Ci /) (£Cg)dz
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where the second equality follows since either C';.g = 0 or C_g = 0. Furthermore,
[(Cenagas =+ [(Cof - CopCagds = [ f(Crg)a
¥ ¥ ¥

Therefore,

L (Cif)gdz = — L f(Cig)dz

Exercise 1.24. The properties in the above proposition characterize C'y.

Let g = gu, u be a unit vector.

If f € L*(y,ds) =

17l= s | [ foas
geL? |lgll=1 | J~
= sup /fngz
geL? |lg||=1| /v
= sup /fgdz
geL2,|lgll=1 | /v
|ICyll = sup [|Cyf]|
feLz ||fll=1

FeL2 Ifll= 17g€L2,II9II 1

/ (C1f)gdz

Lf

feL2|ifll= 1796L2,||9|| 1

= sup  [|Cgl
ger2 |lgl|=1
= [|C-|
If feHi(y) =
1= swp | [ (s
geL2|lgll=1] /v
sup /
96L27H9H 1

<
heH_ 7Hh|\<HC Il

/ fhdz

—lie-ll_sup | [ fhiz
heH_||h]|=1| J~
f
< s | [ gnae <
Ol = her_ =11/
This is a non-exact duality pairing.
1 1
—— =< inf sup /fhdz
NCHI (IC-Il ~ remslifli=t her_ jjn)=1 | /-
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Theorem 1.25.

1
— = inf sup /fhdz
C-||  feH =1 her_ |jn=1] /5
Proof. Ve > 0, pick g € L? such that ||Cyg|| = 1 and ||g|| < W Choose f = C4g so
that:
inf sup /fhdz < sup /(C+g)hdz
FeHIIfII=1 \ heH_ ||h||=1 |/~ heH_,||h||=1 | Jy
= sup /ghdz
heH_||h||=1 | J~
< [lgll
1
S -
ICH]| —€
Hence, we have equality. (|

2. PROJECTIVE SPACE

Let k =R or C and let V' be a k-vector space. PV is the set of all k-lines through 0 in V.
EPM = P!
k"N {0} —— kP™ given by a = (ag,...,a,) — lo = [ag : - : ay]
lo=Ly < b=Xa(A#£0)

Identify kP with k"1 \ {0}/(a ~ Aa), VA € k\ {0}. Subsets of kP" can be identified with
subsets of k"1 \ {0} invariant under (non-zero) multiplication. Use the quotient topology.

RP" can be identified with the unit sphere in R"*!/a ~ —a

CP"™ can be identified with the unit sphere in C"*1/a ~ ¢?a

From these examples, it is not surprising that kP™ is compact. In fact, kP™ is a manifold.
Standard charts are called affinizations. Let o be a hyperplane in k"' with 0 ¢ o and ag
be the parallel hyperplane to a through 0. Define ¢, : I — N« € a. Let

Uq = {l | I line through 0 not parallel to o} = {l | I ¢ o}

U, o ais bijective since each line in U, intersects a once. Note that Pay = kP™ \ U,
and kP" = U, UPoy. U, corresponds to k" and Pa corresponds to kP"~!. In particular,
CP! can be identified with C LI {point} (R-sphere).

Lecture 6. September 21, 2009

3(2,6)

) z . .

¢(z,0) = {1Z_C #¢ is continuous on 7y X 7y
) z =

How nice does 7 need to be in order for L(y) = Hy (y) ® H_(v)?

Sufficient: vC? (proved in class)
Sufficient: vC*

Sufficient: ~y is Lipschitz
Sufficient: Lemma, 1

Necessary: Tiz_g‘) is bounded

Necessary and Sufficient:3¢ > 0 such that length(vy) N D < C(radius)D, Vdisks D
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Siltazcskl)e a k-hyperplane with 0 ¢ a, ag the parallel hyperplane through 0, and
Uy ={l€kP" |1 ¢ ap} 2> a given by | — [N«
Suppose we have two charts given by o and 3. pgop 1 a\ fo — B\ o
EP" CUq U---UU,, & aioN--Namo ={0}, where m >n+1
The standard atlas is given by:
aj={zek"t |z =1}

Qo= {Z S kn_H | Zj = 0}

20 Zn
pji(zorizn) = | = —
Zj Zj

Zn

Replace ; by ¢; : Us; — Yoy given by (2o : -+ @ 2,) — (2 ...,1,...,7), where the
J
hat means to omit the jth entry.

Definition 2.1. Let V C k™! be an m + 1-dimensional vector subspace. Then P(V) is a
projective m-dimensional k-plane.

Fix affinziation ¢,. There are two possibilities:

(1) V C ap and PV C Py (i.e. “PV lies at 00”)
(2) V &€ ap, a(V) = anV affine m-dimensional k-plane in . PV = (aNV)UP(apNV).
Note that P(ap N V) is a projective m — 1-dimensional k-plane “at 0o”
Special Cases:
(1) m =n—1, Pag is a projective hyperplane at oo with respect to ¢,
(2) m =1, Pa is a hyperplane at oo or Pa =(affine line)U(one point at co)

Exercise 2.2. Two affine lines l1,l5 in k™ are parallel if and only if they meet oo at the
same point.

Definition 2.3. Given an invertible linear map M : k™! —— Ek"*1, there is an induced
map kP" —— kP given by [, — lj;q. This induced map is a projective transformation
(also known as a projective map, a linear fractional transformation, or a Mobius
transformation).

How do these look in affine coordinates? Let’s look in affine patches where 2y # 0.
Let n = 2 and let A through I be the entries of the matrix/linear map M. Then:

(21722) = (]. A 22)
D—>(A+le+CZQZD+E21+FZQZG+H21 +IZQ)

<D+E21+F22 G+Hz1+Izz>
=

A+ Bz +Cz’ A+ Bz, + Cz

1z
217 21

Ezample 2.4. (z1,22) — ( ) is a LF'T corresponding to

o = O
_ o O

1
0
0

Ezample 2.5. (21, 22) — (Z—ll, z9) is not a LFT (it is a birational map). It corresponds to the
map: (29 : 21 : 22) — (21 : 20 : 2122), which is not defined at (0:0: 1).

Exercise 2.6. The maps {¢g o ¢, '}q 5 are linear fractional transformations.
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My, M induce the same linear fractional transformation if and only if M; = AMa(\ # 0).
So can restrict to M € SL(n+ 1, k).

If Kk =R, n even, then get a unique M for each LFT

If K = R,n odd, then LFT determines M up to sign

If k = C, then LFT determines M up to (n + 1)st roots of unity.

0 -1 0
Ezample 2.7. The LFT (21, 22) — (%, 2 corresponds to | =1 0 0
0 0 -1

Proposition 2.8.

(1) LFTs map projective m-dimensional planes to projective m-dimensional planes.

(2) Any projective m-dimensional plane can be mapped to any other m-dimensional
plane by a LFT.

(3) Any projective hyperplane can be mapped to a projective hyperplane at infinity by a
LFT.

Lecture 7. September 23, 2009

Focus oNn RP”:
RP! =RU {0}

E C R is convex <« E is connected
< RP!\ E is connected
= R\ F has 0,1, or 2 components
E C RP! is projectively convex < FE is connected
& RP\ F is projectively convex
Let n > 1,RP™ = R"™ U “projective hyperplane at co”.
Definition 2.9. £ C R" is convex if E N1 is connected for all affine lines [ C R™.

Definition 2.10. E C RP” is projectively convex if £ N is connected for all projective
lines [ C RP".

So E C RP™ is projectively convex < RP™ \ E is projectively convex.

Ezample 2.11. The open/closed ball B in R" is convex, but R"™ \ B is neither convex nor
projectively convex. However, RP™ \ B is projectively convex (not APS-convez).

Definition 2.12 (APS). E C RP" is convex if E is projectively convex and E contains
no projective line.

Note: if F C R", this definition is compatible with the standard definition because for F to
contain a projective line it must contain a point at infinity.

Proposition 2.13. If E C RP" is convex and v is a LFT, then ¢¥(E) is convez.

We will show that if F is open/closed in RP", then E is convex < 3, a LFT, such that
P(E) C RP™ is convex.

Proposition 2.14. Suppose that o C RP" is a projective hyperplane and {E;} is a family
of convex subsets of RP™ \ a. Then NEj is conve.

Proof. Move « to infinity so that RP™ \ o 2 R™. Then quote a standard fact for R™. O

Consider Iy, [, distinct projective lines in RP2.
Case 1:: I, is a line at co. Then RP?\ (I; Uly) = R?\ I, has two components.
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Case 2:: Neither line is at co. Then R?\ (I;Ul3) has four components and RP?\ (11 Ul5)
has two components.

The same kind of reasoning works in higher dimensions.

If ay, e C RP™ are distinct projective hyperplanes, then RP™\ (a7 Uaz) has two components
called open half-spaces. (Another way to see this is by moving one of the «; to c0.) A
closed half-space is the open half-space union (a3 U ay. Open half-spaces are convex.
Closed half-spaces are projectively convex but not convex. A half-space is affine if oy or
a9 lies at oo.

Theorem 2.15 (Affine Finite-Dimensional Hahn-Banach Theorem). Suppose E C R™ is
an open convex subset. Then R™ \ E is a (probably infinite or uncountable) union of affine
hyperplane. Equivalent to the condition:

(x) Xo ¢ E = Xg is in an affine hyperplane disjoint from E

Corollary 2.16. Let E be a convez closed subset of R™. Then R™\ E is a union of affine
hyperplanes.

Proof. For e > 0, let E. = {x € R™ | dist(z, F) < €}. Exercise: E. is open and convex. Then
E =NesoFe and R\ E = U5 oR™ \ E. = R™ \ N> Ee is a union of affine hyperplanes. O

Remark 2.17. This can fail for F convex but neither open nor closed.

Corollary 2.18. If E C R" is a convex set that is either open or closed, then E is the
intersection of open affine half-spaces.

Proof. Pick zp ¢ E. Then x¢ is contained in an affine hyperplane, ay,, disjoint from E. If E
is connected, then E lies on one side of ay,,. Let Hy, be the open half-space bounded by o,
i.e. xp ¢ on D FE. Then F = meER"\EHCEo = ﬂxoeRn\ER" \ Oy = R"™ \ UxOE]R”\Eal’o' O

Exercise 2.19. Suppose E C R" is a convex, closed set. Then FE is the intersection of
closed affine half-spaces. This is not true if E is open.

All of these results are finite-dimensional versions of the Hahn-Banach theorem.

Proof Of Theorem (*). After translation, we can assume that zg = 0. If n = 1 the proof is
easy. Proof by induction:

If n = 2: Let S C R? be a unit circle. Assume that E C R™ and (wlog) 0 ¢ E. (If 0 € E,
then move the origin to a point in R" \ E). Let F = {z € S! | ray from 0 to x hits E}. F
is open and connected, so —F' is open and connected. Since 0 ¢ E, z € F = © ¢ —F and
vice versa, so F N (—F) =@ and FU (—F) € S'. Pick z € S*\ (FU(—F)) and let I, be
the line through 0 and z. Then, as desired, [, is disjoint from F.

If n>2: 0V CR"” any 2-dimensional subspace. Pick a 1-dimensional subset V3 C V
containing 0 and satisfying V; N E = 0. Let p : R —— R™ \ V; be a projection map.
p(FE) is an open, connected, convex set not containing 0. Pick 0 € a € R™ \ V, where «
is a hyperplane and N p(E) = 0. Then 0 € p~'(a) C R", note p~!(a) is a hyperplane,
p~Ha)NE =0. O

Lecture 8. September 25, 2009

E is projectively convex < E N1 is connected ,V projective lines [
& Vp # q € E, E contains at least one line segment joining p and ¢
< RP" \ F is projectively convex

Proposition 2.20 (1). Let E C RP™ be a projectively convex set not contained in a pro-
jective hyperplane. Then E C Int(E) (i.e. E is “fat”).
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For a projective hyperplane E, there is a basis a1, ..., a,; for R**! such that [, € E.

J
Proof. For n =1, the proof is easy. Use induction.
If n > 1: For p € E, we must show that p € Int(E). Choose a basis a1, ..., a, 1 of R**! with
lo; € E,p €ly,. Let A =P(span(ai,...,a,)). So A is a hyperplane through p and AN E is
not contained in a lower-dimensional projective plane. By induction, p € Int4(A N E). For
any point ¢ € Int4(A N E), we must show that ¢ € Int(F). Pick a projective hyperplane B
distinct from A so that BN E is not contained in a lower-dimensional projective plane. Let
B = P(span(as,...,an+1)). Pick r € Intg(BN E) \ A, which is non-empty by the induction
hypothesis. Let [ be the line through ¢ and 7.
Case 1: 1 and all neighboring lines are in E. Then ¢ € Int(FE).
Case 2: Perturb the points ¢,r so that | ¢ E,r ¢ B,q ¢ A. Since ¢,r € E and E is
projectively convex, there is a line segment joining these points which is contained in F. By
perturbing more, we end up getting that ¢ € Int(E). |

Proposition 2.21 (2). If E C RP" is projectively convex, then so are Int(E) and E.

Proof. Suppose Int(E) N1 is not connected. Imagine a circle, I, with p;,ps € Int(E) at
—%,%5 and q1,q2 ¢ Int(E) at 0,7. Perturb the points q1,¢2 to q1,¢2 ¢ E and p1,ps to
p1,p2 € Int(E). Then E N is not connected, which contradicts that E is projectively
convex. ]

E¢=RP"\ E and E = (Int(E°))¢ is projectively convex since E is projectively convex.

Proposition 2.22 (3). Let E be projectively convex and l be a projective line meeting IntE
and IntE¢. Then #(bENI) = 2.

Proof. Again view the line [ as a circle. Let p; €IntE, g3, q2 € bE, ps €IntE°, and a; € bE
be points on [ in order (going counterclockwise around the circle). Perturb the line [ to [
and the points so that ¢o, g3 move to E and E€, respectively, and the rest of the points stay
within their respective sets. Then E N [ is not connected, which is a contradiction. O

Corollary 2.23 (1). Suppose that E is projectively convex and n = dim E > 1. Then E or
E° must contain a projective line.

Proof. Need [ disjoint from either IntE or IntE€. If IntE or IntE® is empty, then this
easily follows. Suppose the boundary of F has finitely many points (i.e. #bE < 00), then
#bE° = oo and the proof is again easy. So assume that #bE, #bE° = co. Choose points
p;j € bE; such that p; — p € bE. If the line joining p; to p, denoted I, ,, does not
meet IntF and IntE¢, then we are done so assume not. Then, by proposition 3, the long
segment joining p; to p lies in either IntE or IntE°. By taking j — oo and passing to an
appropriate subsequence, these line segments will converge to a line. Since the line segments
are contained in the interior of either F or E°, passing to a subsequence and taking the
limit will produce a line in either F or E¢. O

Lecture 9. September 28, 2009

Corollary 2.24 (2). If E C RP? is closed and projectively conver, then E or E¢ contains
a projective line.

Proof. Suppose that E contains no projective line.

Case 1: Suppose FE is contained in a projective line. After a change of coordinates,

Case 2;Prop 1 = E C IntE. Prop 2 = IntE projecitvely convex. Cor 1 = E¢ = (IntE)°
contains a projective line. After a LFT, IntE is an open convex subset of R2. Affine
hyperplane = IntE is intersection of open half-spaces.

Case 2a:The half-spaces are all parallel. Then IntE is a half-space or a strip. E does contain
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a projective line.
Case 2b:Then E° contains a projective line. |

Corollary 2.25 (3). If E C RP? is open, projectively convex, then E¢ is closed, projectively
convex and E or E° contains a projective line.

Corollary 2.26 (4). If E C RP? is (APS-)convez, open/closed, then E° is a union of
projective lines.

Proof. By corollaries 2/3, E¢ contains a projective line. After LFT, E C R2. Quote affine
Hanh-Banach. ]

Theorem 2.27. (“Projective Hahn-Banach,” version 1) E (APS-)convex and open/closed,
then E° is union of projective hyperplanes.

Let R”"’i: Vi @ Va. Then 3!Q : R"t! —» V} projective operator with kernel Vi. This
induces @ : RP" \ PV, — PV, given by I, — lg, (note that Q = Q.

Lemma 2.28 (1). Let I C RP™ be a projecitve line. Then

1] if l C P\
Q) =< proj. line if INPV; =0
point else
Proof. Let | = PW,W C R"! (so dimension of W is 2). dim W NV; = 2,0, 1. |

Similar statement for line segments.

Corollary 2.29. Let E be projectively convex and open/closed. Then Q(E \ PVy) is pro-
jectively convex.

Lemma 2.30 (2). Let dimV; = 1 and E C RP™ \ PV; be (APS-)conver. Then Q(E) is

COMVET.

Proof. Must show that Q(E) 2 PW,W C V5 of dimension 2.

Q L(PW) = P(V; @ W) \ PV; (note: P(V; @ W) = RP? and PV; is a point in RP?). By
corollary 4, 3 a projective line [ such that PV, Cl CP(V; @ W)\ E.

Q(1) is a point in PW \ Q(E), so PW ¢ Q(E). O
Remark 2.31. This is true for higher dimensional V’s (prove by induction).

Proof of Hahh-Banach. By induction on n, let E C RP" be a convex, open/closed subset.
Pick a ¢ E. Want a projective hyperplane containing a in E€. Pick a projective hyperplane
H not containing a. @a’ u(F) is a convex subset of E. Inductive hypothesis implies that
JH C H an (n—2)-dimensional plane and HNQq 1 (E) = 0. E is disjoint from @;}{(ﬁ)u{a}
projective hyperplane in RP”. O
DUuAL PROJECTIVE SPACE

ao

RP" = R""!\ {0}/a ~ Aa where elements are column vectors, i.e.

an

RP™ = R"*1\ {0}/a ~ \a where elements are row vectors, i.e. (bg:---: by)
Then ) a;b; is not defined but > a,;b; = 0 is a well-defined condition.
beRP™ = hy = {a € RP" | > a;b; =0} is a projective hyperplane in RP".
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RP™ « {proj. hyperplane in RP"}
a € RP" = b = {be RP"™ | > ajb; =0} = {b € RP" | a € hy} is a projective hyperplane.
RP" « {proj. hyperplane in RP"™*}

Definition 2.32. Let E C RP". The polar of E, denoted E°, is {b € RP™ | h; € E°}.

Facts:

(1) Always have E C E°°
(2) Theorem above if and only if E convex, open/closed, then E = E°°.

Lecture 10. September 30, 2009
ao

RP" where elements are column vectors a =

RP™ = where elements are row vectors b= (by : -+ : by)
ba=Y ajbj=0&ach,<beb;
j=0

where by, is a hyperplane in RP" and b is the set of hyperplanes through a (i.e. a hyperplane
in RP™). M = SL(n + 1,R) induces

UYpr 2 RP® —— RP™ given by I, — lyrq
Yy RP™ —— RP™ given by I, — lpus
a€hyrpebehy, & bMa=0sPyach
Bz b = Var—1(bs)-

E C RP”

E° = polar of E = {b€ RP™ | h, C E°} = {b € RP™ | ba # 0,Va € E} = (Uuep h})*
(YnE)° = 93,1 (E°), By C By = EY C ES, (UE;)° = NE. If E is closed/open, then E°
is open/closed (respectively).

E°° = (Upepohp)© = (union of all hyperplanes in E€)¢
So E C E°°.

PROJECTIVE HAHN-BANACH (Version 2) E (APS-)convex and open/closed = E = E°°.
Standard Affinization for RP":

1
a1 @
Pl eR" - € Rp™H!
an
an

3 useful affinizations for RP™*:
(1). (by,...,by) ER™ « (1: —by : -+ : —b,) € RP"™ b, = {a € R" | Z?:I a;b; = 1}.
Then R™ « all affine hyperplanes not passing through 0. Define f;(a) = ba.

ECR'"=E°={beR"™| fy#1on E}
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So by defining E° like this, 0 € E°, 0 € E connected implies
E°={beR"™| fy<lon E}and E°° ={a € R" | fy(a) < 1,Vb € E°} D E convex
If F is convex and 0 € E, then E°° = F.

Exercise 2.33. If F is a connected set and 0 € E, then E°° is the smallest convex set
containing F.

E open unit ball for some Banach norm on R" < FE 3 0 open, bounded, convex and
E=-FE.

This implies that E° is a closed unit ball for the dual norm. By Hahn-Banach, the double
dual norm is the same as the original norm.

Ezxample 2.34. Let 1 < p < c0.
E={) lal" <11} = B = {>_|b;[77 <1}

More standard: E° = {b € R™ |f, <1 on E}.
M € GL(n,R) = (ME)° = (E°)M "

. a a;+1 °
Exercise 2.35. Let T': (a;) — ( 1a2 ) and F : (b1, be) — (lilbl’ 1Jbr2b1)' Then (TE)° =
F(E°).

(2). This case is forn = 1. b € R* < (=b: 1) € RP™*. So (—b,1) - (i) =0& —b+a=

0 < a =b. Therefore h, = {b}. So E CR = E° =R\ E and E°° = E always.
(3). Identify b= (b1,...,b,) € R™ with (b, : =by : -+ : —=b,_1;1) € RP™.

n—1 n—1
b ={a €R" [ Y ajbj=an+b,} ={a €R" | an =Y ajb; — by}

j=1 j=1
So R™ « non-vertical affine hyperplanes in R™. This is useful when studying graphs of
functions on R"~1,

Definition 2.36. R"~! —{+ R is convex if epigraph(f) ={a € R" | a,, > f(a1,...,an-1)}
is convex.

n—1

(epigraph(f))° = {b € R™ | Z ajb; < f(ai,...,an_1) + by, va € R" 1}

j=1

= {b e R™ | by > sup 1{2 ajbj - f(ala .. '7an—1)}}

aeRn—
= {b e R™ | b, > f*(bl,...,bn_l)}
where f*(by,...,b,—1) is the Legendre transform of f and is defined as:
f*(bl, e 7bn—1) = sup {Z ajbj — f(a1, ey an_l)}

aeRn—1

Exercise 2.37. Use Hahn-Banach to show that if f is convex, then f** = f. Explain why
exclusion of vertical hyperplane doesn’t cause trouble.

R™ « all affine hyperplanes in R” = RP™ \ {point}. Not homeomorphic unless n = 1.
Lecture 11. October 2, 2009
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If E C R™, then let E° = {b € R™ | Z;l;ol ajb; # a, + b,,Va € E}.

Problem (unsolved): Which E are equivalent (via LF'T /affine maps on a global/local scale)
are equivalent to E°7

See Barvinok, “Course on Convexity” (page 147) for more information.

Work with (;i) € R and (b,b,,) € R™, wherea € R" ! and b € R, Let R" ! L RrU
{oo}. The epigraph of f is: {an, > f(a)}° = {b,, > f*(b)}, where f*(b) = sup,cgn—1(ba —
f(a)).
f convex < {a, > f(a)} convex
= {an > fn}°° = {a, > f(a)} by Hahn-Banach
e fr=r
fr(b) = ba — f(a) = f(a) = ba — f*(b)

Ezample 2.38. Let f(a) = %,p > 1and f*(b) = %,q = ppj.
la]”

F*(8) = Syt (ba — £(a)) = Sup, g ba — 20
%bz—%zb—z”*:O@z:bﬁ

_1_
Then f*(b) = bbr7 — BT — potr  PL — o U7 _ 1
0 iflp <1
Example 2.39. - d f*(b) = =
wample f(a) = la| and f*(b) {OO 5] > 1

Now focus on “nice” situations: Assume that:

(1) f*(b) < o0

(2) f convex.

(3) fis C' = f*(b) = ba — f(a), where a is the solution to f’(a) =b
(4) f

. 2 82 f
4 is C° = Ba, >0

By the inverse function theorem, a is a C*' function of b.

< fla) Va,b
= f(a) for a,b related as above

Recall: ba — f*(b) is {

Hence (f*)'(b) = a. All together, f(a)+ f*(b) = ba, f'(a) = b, (f*)'(b) = a. For “unrelated”
a, b we still have ba < f(a) + f*(b).
p

y where q= ﬁ

Ezample 2.40. For 1 < p < o0, f(a) = thng and f*(b) = Hquq

llallp 1]l -
ba < 7” + Tq <llallp, it [lall, = [[bllq

Exercise 2.41. Rescale to get Holder’s inequality ba < ||a||,||b]4-

Definition 2.42. Let E C RP". Then F is R-linearly convex if E° is a union of projective
hyperplanes. Equivalently, E°° = F.

Note that linearly is sometimes replaced with lineally (same meaning).
(APS)-convex implies:

e projectively convex, but not vice versa (for instance consider RP™ \ {point}.

e R-linearly convex (Hahn-Banach), but not vice versa (for instance consider 2 points)
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Projectively convex does not imply R-linearly convex (consider RP™\ {point}) and R-linearly
convex does not imply projectively convex (consider 2 points).

Proposition 2.43. Let E be an R-linearly convex, connected proper subset of RP™. Then
E is convez.

Proof. 3 hyperplane in E€. After a LFT, E C R". So a € E° = 3 hyperplane H through
a such that H C E°. Since E is connected, E lies on one side of H. Therefore F is an
intersection of half-spaces and so F is convex. O

Can also show: E C RP" R-linearly convex, then each component of E is convex.

Lecture 12. October 5, 2009
F7(6) = sup,(b- a — f(a))
Why?
e polarity
e inequalities (i.e. b-a < f*(b) + f(a))
e useful for Hamiltonian mechanics (see Arnold’s “Math Methods in Classical Me-
chanics”)
e other areas of physics
e Fourier analysis: the Fourier transform is g = fR" e tg(x)dr for x,t € R™.
If g€ L' = g is continuous and ||g||s < ||g]|1
IfgeL?=gecL?

Suppose R" . rU {00} is convex and ||efg||; < 1 for some g.
le” =+ g(a)|| = €"*|g(x)| < /"Dl Pg(2))]

|§(t + is)| iis deifned and < e/ (*) when f*(s) < oo. §(t + is) is defined on A =
R™ x i{s € R™ | f*(s) < oo}. Ezercise: § is holomorphic on the interior of A.
e see wikipedia for more

2.1. CP".

Definition 2.44. Let E C CP". E is C-linearly convex if £° = CP™ \ E is a union of
C-projective hyperplanes.

Ezample 2.45 (Examples of C-linearly convex sets).

e n=1= all F are C-linearly convex

EcC'= (E is C-linearly convex < C™ \ F is a union of C-affine hyperplanes)

{E;} are C-linearly convex = NE; is C-linearly convex

E, c C™ Ey; C C™ are C-linearly convex = E; x E5 is C-linearly convex
E C CP" is C-linearly convex = IntFE is C-linearly convex

E c CP” is C-linearly convex does not imply E is C-linearly convex

Proposition 2.46. Let [ be a C-affine line and |l C E C C", where E is C-linearly convex.
Then E =4dfine ¢ x g,

Proof. Assume that [ is the zj-axis. Let H C E° be a C-hyperplane. Then H par. to z;
axis. E° is union of hyperplanes par. to zi-axis. Therefore E°=CxG=FE=Cx E'. O

Lemma 2.47. If E is open and C-linearly convez, then E is pseudo-convexr. However, the
converse s not true.

Proof. E =N pe hyperplane (CE™ \ H) .



20 Sara W. Lapan

Example 2.48. Let E C C" be C-linearly convex and @ : C" — C"~! projection. This does
not imply that Q(F) is C-linearly convex.

Setting up the definitions of projectively C-conver and C-convex.

Let E C CP! = Riemann Sphere.

E is projectively C-convex < E, E° are connected < E° projectively C-convex

E is C-convex < E is projectively C-convex and E # CP!

E c CP! open = (E is projectively C-convex < E connected and simply connected )

E c CP! is open or closed and bE is a smooth manifold without boundary = (E is C-convex
& E = or bE is one simple closed curve )

E C Cis C-convex < C\ E has no boundary components.

Ezxample 2.49. If F,, E5 C C are C-convex, this does not imply that Fy N Fy is C-convex.
Lecture 13. October 7, 2009

Definition 2.50. Let £ C CP". FE is projectively C-convex if [N E and [\ E are
conncected for all projective C-lines [. E is C-convex if F is projectively convex and E
contains no projective C-line. FE is C-linearly convex if CP" \ E is a union of projective
C-hyperplanes.

All of these are invariant under LFTs.

Definition 2.51. Let E C C". E is C-convex if E is projectively C-convex. Equivalently,
INE is connected and !\ E has no bounded components for affine C-line [. FE is C-linearly
convex if C™\ E is a union of affine C-hyperplanes.

Example 2.52. Given E C R C C C CP!, then E is C-convex < E is connected.

Exercise 2.53. Intersections of any affine C-line [ with R™ C C™ are empty, a point or an
affine R-line.

Corollary 2.54. Given E C R C C" C CP", then E is C-convex < E is R-convex.

Exercise 2.55. Intersections of affine C-hyperplanes with R™ are empty, affine R-hyperplanes,
or (n — 2)-dimensional affine R-planes.

Corollary 2.56. Given E C R", then E is C-linearly convex < R™ \ E is a union of
(n — 2)-dimensional affine R-planes.

Ezample 2.57. Let A C C™ be the open unit disk. A x A, A x A are C-convex.

Theorem 2.58. Let £; C C™, Ey C C™ both open or both compact, but neither a point,
nor empty, nor all of C™. If E1 X Fy is C-convex, then E1, E5 are R-conver.

Proof. See APS, Prop. 2.2.5. (]

We will show that if E C CP" is C-convex and open/closed, then E is C-linearly convex.
This is the complex projective version of the Hahn Banach theorem. However, if FE is C-
linearly convex, this does not imply that E is C-convex. We will also show that if F is
C-linearly convex and open/closed with C! boundary, then E is C-convex.

What does C' boundary mean? If E is compact, this means that E is a 2n-dimensional
manifold with boundary and bE is a (2n — 1)-dimensional manifold without boundary.

CP" = (Ceop. \ {0})/ ~ and CP™ = (Crow \ {0})/ ~

ag

€ CP" and (bg : - : by,) € CP™
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ach,sbeh b= ajb=0
j=0
CP™ is the set of C-hyperplanes in CP™ and A} is the set of C-hyperplanes through a.

Definition 2.59. Let £ C CP". The dual complement E* of E is:
E*={beCP"™ | hy CE}={beCP"™ | ba#0,YVa € E} = (UaeE hZ)C

As before, (Y E)* = 95,1 (E¥), where ¥}, 1 : ly — lyp-1. If By C Es, then EY D E5. If
E is open (closed), then E* is closed (open). In addition, (UE;)* = NEY.

E C E** always and F = E** < FE is C-linearly convex

E* is always C-linearly convex and (E*)¢ = Usephy so E** is always C-linearly convex.

If E C F and F is C-linearly convex, then E* D F* = E** C F*x = F. So E** is the
smallest C-linerly convex set containing E (i.e. it is the C-linear convex hull of E).

Proposition 2.60. If E is C-linearly convex, then IntE is C-linearly convex.

Proof. IntE C (IntE)** C E** = E and IntE)** is open so E = IntE)**. O

Theorem 2.61. Suppose E C C™ is compact and C-linearly convex, E* is connected, and
a ¢ E. Then there exists a polynomial p such that |p(a)| > maxg [p|.

Lecture 14. October 9, 2009

Definition 2.62. Let E C C™ compact. Then E is polynomial convex if for a ¢ E, 3 a
polynomial p such that |p(a)| > maxg |p|.

Theorem 2.63. If E is polynomial convex, then all functions holomorphic on a neighbor-
hood of E are E-uniform limits of polynomials.

Theorem 2.64. Let E C C™ be compact and C-linearly convex. If E* is connected, then
E is polynomial convex.

Proof. Suppose a ¢ E. Choose f : [0,1] — E* with hy) = hyperplane at oo, a € hy ().
hy@y = {g: = 0}, where g, is a 1st degree polynomial which depends continuously on ¢ > 0.
Let S ={t € (0,1) | g% is (EU{a}) — uniform limit of polynmoials}. Then (0,€¢) C S, S is

j
closed and S is open (for ¢y € S with ¢y ~ ¢, g% Z;io (1;’;) = g% 4 = g% so (EU{a})-
‘o 0 o :

1
gl—e(a)

Approximate polynomials on E U {a} and get |p(a)| > maxg |p|. O

uniform limit of polynomials = ¢ € S). Therefore S = (0,1).

> maxg

1
Jt—e |

Remarks:

e Just need to pull some hyperplane through a to co avoiding E

e F is polynomial convex = F is C-linearly convex.
Example: {(z1,22) | 22 = 23, |21] < 1} is polynomial conve. E is not C-linearly
convez.

e (Stalzenberg, 1963) E is polynomial convex < all a ¢ E lie in an algebraic hyper-
plane that can be pulled to oo avoiding F.

Projective R-planes in RP":

e They are closed submanifolds
e They are flat with respect to any affinizations (equivalently, R-LFTs map affine
R-planes to R-affine planes)
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These properties also hold in CP".

What about R-projective planes in CP™?

Example: RU {00} C CP* = CU {00} is a closed submanifold byt it is not flat with respect
to any affiniztaions (real line maps to a circle).

Exercise 2.65. Let E be an affine R-plane in C* 22 R?". Let F be the closure of E in CP".

(1) F is a manifold < E complex or totally real
(2) F is flat with respect to all affinizations < E is complex

Let E C C* @2 R2” g0 that E* € CP™ and E° c RP2"*, 3 affinizations for E* are:

3: (~ Legendre transform) - discuss later

1
2: Forn=1b€C« [-b:1 € CP*and a € C < |- | € CP.. Then b} =
a
{b| —b+a=0}={a} and E*=C\ E.
1:
1
ai
acC’— | " | eCPtandbeC™ < [1: —by:---: —b,] € CP™
an

hy={aeC"| 372 a;b; =1}
The real dot product of a and b corresponds to the real part of the complex dot
product of a and b.
hi® = {a | Reba = 1 and h;¢ = {a | ba = 1}
For n =1,
c 1 Lt
hb :{g} andhb :{7 |t€R}
So h% is the point on h]}f closest to 0.
For n > 1,
h]}f is a disjoint union of C-hyperplanes and h% is a C-hyperplane in h]}f closest to 0.
If fp : a — ba, then:
beE"<1¢ fi(E)and be E° & 1 ¢ Refp(E)
E° C conjugate of E*.
Lecture 15. October 14, 2009

E°.* affine version (1) with a € C*,b € C™ and f; : C* — C by a + ba. Suppose E C C".
Then
beE*<1¢ fi,(E)

be E° < 1¢ Rel3(E)
So E* lines in conj(E®).
Definition 2.66. E is circular if for a € E,§ € R = ¢?a € E. E is complete circular
ifforac E,|\|<1=Xa€E.
If F is circular and b € C™*, then
o fi(F) is a disk centered at 0 or all of C
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e E* =conj(E®)
e if £ =conj(FE), then E* = E°

Definition 2.67. E is a Reinhardt domain if (aj,...,a,) € FE and 604,...,0, € R, then
(e®1ay, ..., e6i0,a,)inE. E is a complete Reinhardt domain (ai,...,a,) € E,|)\;| < 1,
then (Maq,..., \pan) € E.

E complete Reinhardt = E complete circular, E =conj(F) = E* = E°.
Ezample 2.68. If E = {3, |a;[? < 1},1 < p < oo, then E° = E* = {3, |b;[|? < 1},q =

p—1

>

Proposition 2.69. If E C C™ is open and C-convex, then E is connected and simply
connected.

The converse is not true.

Proof. Any two points in F have a line connecting them in F so E is path connected =
connected. Given v : [0,1] — E,v(0) = (1) = a. Need h : [0,1]> — E. Let S be
a square with ~(¢) along the left edge and a along the rest of the edges with ¢ as the
variable from bottom to top and s is the variable from left to right. E is open and [0, 1]
is compact, so we can partition S into finitely many open sets. Partition the left edge as:
0=ty <t1 < - <tph1 <tp,=1and h; = (t; —t;j_1) x [0,1]. h;(s,t) is defined on h;
and h;(s,t) is contained in a C-line for fixed t. We want to extend our definition of the h;
to one map h, but we don’t know that h;(s,t;) = hj(s,t;—1). However, they are homotopic
within E N (line). Use this to assemble h. O

Theorem 2.70. If E C C? is open and C-convez, then E is C-linearly conver.

Proof. 1t suffices to prove that it 0 € E¢ then 0 € | C E°, where [ is a complex line.
Suppose not. For each ¢ € C (a slope), let Ec = {z | (2,(z) € E}. The E; are open,
connected, simply-connected and non-empty with 0 ¢ E.. We can choose a continuous
branch of arg z on E, in particular arg.(z) (determined up to 27Z). The set of all possible
choices forms a Z-bundle over C and a covering spaces over C. We can choose arg.(z) to be
continuous in ¢. We have been ignoring the vertical line in this so far, so let’s fix that. Let
Eg ={z ] (Cz,2) € E}. In the same way, we get arg.(z). How do these relate?

PickCG(C\{O}:(zGEC@CzEE%

2 € B = —arg(2) + arg1 (C2) = arg(()
This gives a continuous branch of the arg on C\ {0}, which is a contradiction since there is
no continuous branch of arg on C\ {0}. O

Proposition 2.71. Let V C C™ be an affine C-plane and E C C™ be C-conver. Then ENV
is C-convez.

Proposition 2.72. Suppose E C C" is open, C-convex, V is an affine C-plane, and Q :
C™ — V is an affine projection. Then Q(E) is C-convex.

Theorem 2.73. If E C C" is open and C-convex, then E is C-linearly convez.

Proof. By induction on n assuming the previous proposition. Let a € E°. When n = 1 this
is clear and we already proved the case when n = 2. By the n = 2 case, da € | C E° line.
Choose @ : C" — V, where V is an affine hyperplane and @ collapses [ to a point. Since
a€lC EQU) ¢ Q(F) CV (note: Q(E) C V is C-convex). Get Q(I) C W C V\ Q(E),
where dim W =n — 2. Get a € Q~}(W) C E°¢ with dimension n — 1. O

Lecture 16. October 16, 2009
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Last time:
Theorem 2.74. If E C C" is open and C-convez, then E is C-linearly conver.
The proof used proposition 1:

Proposition 2.75 (1). Q : C" — V affine projection and E C C" open, C-convez, then
Q(E) is C-convex.

Proposition 2.76 (2). E C C" is open and C-convezx, then E is connected and simply-
connected.

Proposition 2.77 (3). If V C C" is an affine plane and E C C" is C-convex, then VN E
1s C-convez.

Proof of Proposition 1. Claim 1: Q(E) is connected

Claim 2: Q(F) is simply-connected: take a loop v C Q(FE) and break it into arcs which
when lifted to C™ are arcs in E. Then connected the endpoints of these arcs in apropriate
ways. We can do this so that the loop we get is inside F since E is C-convex, so we get
a loop 7 such that Q(5) is homotopic to v. By proposition 2, ¥ ~point in E. Project the
homotopy: then v ~ point in Q(F). Now consider a line I C V. ENQ~1(l) is C-convex.
Claims 1 and 2 imply that Q(ENQ~1(I)) = Q(E)NI is connected and simply-connected. [

Projections in Projective Space:

Given a ¢ H C CP", where H is a hyperplane, we get @ : CP" \ {a} — H such that for
be CP"\ {a}, b — abN H, where abN H is the point given by the line connecting a and b
that intersects H.

Proposition 2.78 (4). For n = 2 and a,H,Q as above, a ¢ E, where E is an open,
C-convez set. Then Q(E) # H.

Proof of Proposition 4. We may assume that a = 0 € C2 C CP? and H =the line at
oo = CP'. Then @Q : (z1,22) — (21 : 22). Suppose to the contrary that Q(E) = CP'. Use
Michael’s theorem (1955): Let X,Y be manifolds, X —*+ Y is continuous open and

surjective, ¢~ (y) is contractible Vy € Y = JY Y+ X continuous such that po = Idy
(i.e. ¥(y) € ¢~ (y),Yy € Y). So there is a continuous 1 : CP! — E such that Q o ¢ = Id.

Construct a “fiberwise universal cover” E \ ¢(CP!). Mimicing what we did last lecture, we
get a continuous branch of

arg (M) on F \/1;(_(6]}’1) \ {ze-axis.

21— (2
Do this again with the two variables switch. Following the same step as a proof proof from
last lecture, we get a contradiction. O

Corollary 2.79. If E C CP? is open and C-convez, then E is C-linearly convez.
Proof. By Prop. 4, 3 a line in E°. Move it to co and apply the affine result. O
Addendum to Proposition 4: Q(E) is C-convex.

Proof. We may assume that E is disjoint from the zs-axis (so z1 # 0). Then Q(z1,22) =

(71 : 22) = (1 : 2) Do a LFT change of coordinates: w; = %wg = i—f New E C C? and

Q(w1,ws) = wy. Apply the affine result from Proposition 1. |

Proposition 2.80 (5). Let Q : CP" \ {a} — H as before with a ¢ E and E C CP™ an
open, C-convex set. Then Q(F) is C-convez.
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Proof. By induction on n:

Let [ C H be aline. Then Q~*(I)U{a} is a projective 2-plane. By the “projective proposition
37, Q1) N E is C-convex. By the addendum to proposition 4, Q(Q~*(I)NE)) = INQ(FE)
is C-convex = Q(F) is C-convex. O

Corollary 2.81. E C CP" is open and C-convez, then E is C-linearly convex.

Proof. Fix a ¢ E. Choose a projection @ : CP" \ {a} — H, where H is a hyperplane.
Q(E) C H is C-convex. By the inductive hypothesis, 3W C H \ Q(E) of dimension n — 2.
Q 1 (W) U {a} is a projective hyperplane in E° that contains a. Therefore every point
outside E belongs to a projective hyperplane outside of £ = FE is C-linearly convex. (]

Lecture 17. October 21, 2009

Given an open set £ C CP'. E is C-convex < FE is connected, simply connected, and
E # CP! & E contractible (i.e. Id: E — E homotopic to constant within E).

Theorem 2.82. Given E C CP! closed, non-empty. E is C-convex < E is connected,
HY(E)=0,H*E) =0+« H°FE) =R and H*(E) = 0,Yk > 0 & E has the cohomology of
a point.

H¥(E) is the kth cohomology of E. If the cohomology has coefficients in R, then E con-
ncected is equivalent to H°(E) = R. H2(E) = 0 ensures that E is not the Riemann sphere.
Let E = U;U; be a relatively open cover of E, f;r : U N U — R locallly constant,
figw + fog+ fij = 0= 3f; : Uj — R locally constant such that f;r = f; — fx. fjx:
U;NU,NU; — Ris locally constant, f;ri— fikm+fiim—feim=0=3f;r:U;NU, = R
is locally constant such that f;r; = fjr + fe1 + fik-

Proof. Refer to the APS monograph. |

Proposition 2.83. Given Ey, By C CP! both C-convex and both open/both closed. E1 U Es
18 C-convez < E1 N Ey # () is C-convex.

Proof. Use the Mayer-Vietoris sequence. ([l

Proposition 2.84 (2’). If E C CP" is closed and C-convex, then E has the cohomology of
a point.

Proof. Use Mayer-Vietoris and Vietoris-Begle “blowing-up.” O

Proposition 2.85 (5). Suppose a ¢ E C CP", where E is a closed C-convex set. Let H
be a hyperplane and Q : E — H a projection. Then Q(E) is C-convez.

Proof. Use Vietoris-Begle Mapping Theorem. O
Theorem 2.86. E C CP” closed and C-convez, then E is C-linearly convex.

Theorem 2.87. Let E C CP" be C-convex, non-empty, and open/closed. Then E* is
C-convexr and non-empty.

Proof. Recall that:
E*={be CP™ | hy C E°} = {be CP™ | ba#0,Ya € E} = (Uueg h)"

By the previous theorem, F is C-linearly convex = E* # (). o € F = E* disjoint from
h’, = E* contains no projective line. Assume this is true for dimension n — 1. It suffices to
show that E* N A} is C-convex, Va € CP".
Case 1: E* N h’ =0, so nothing to prove.
Case 2: E*Nh’ #0 = some b€ h’ and hy C E°=ba=0but ba #0,Ya € E = a ¢ E.
Let H be a hyperplane and CP" \ {a} — H. By proposition 5 or 5, Q(F) is C-convex.
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h’ = set of hyperplanes in CP" through a and @ : h — a* — set of hyperplanes within H
(the dual of H). By induction, Q(E)* (the dual within H) is C-convex. So Q(E)* is the set
of hyperplanes in H that do not intersection Q(E). Identify Q(FE) with E* N h. O

Consider C CP" open with C' boundary.
Given: p € bE N C", we have a real tangent hyperplane p € T,,(bE) C C™. T,(bE) contains
a unique C-hyperplane H,(BE) passing through p — H,(bE) is the unique C-hyperplane
tangent to bE at p. The T}, construction will not behave well under LFTs, but the H, will
behave well.

Fisa LFT = Hpg,) (b(F(F)) = F(H,(bE))
In particular, also have H,(bE) for p at co. Now suppose that E is C-linearly convex. Then
each p € bE must lie in a C-hyperplane H C E° (in particular it must be the hyperplane
H,(bE)). Suppose H # H,(bE).. Then H meets bE transversally at p. H has R-dimension
2n — 2 so H has smooth boundary of R-dimension 2n — 3. So H,(bE) C E“.

Lecture 18. October 23, 2009

General assumptions for this lecture: £ C CP" is open and bE is C'.
Last lecture we showed:

e p € bE = 3 a unique projective C-hyperplane H,, tangent to bE at p
e [/ is C-linearly convex = H, € E°

Assumptions that we will use at some point during this lecture:

(*): E is connected and Vp € bE we have p ¢ H,(bE)NE

(**): Jp € bE such that p is isolated in H,(bE) N E (or in H,(bE) NbE)
Claim 1: (x) = each line [ meets bF transversally along b(I N E).

Proof. If | is not transverse to bE at p, then [ € H,(bE) = p € b(IN E). O
Claim 2: (x) = I N E is connected VC-lines [

Proof. Consider p,q € IN E. Since E is connected, there is a path v : [0,1] — E such that
¥(0) = p, (1) = q, and ~(t) # p for t # 0. Let ; = p—component of E N ( line through
p,v(t)). Transversality implies that b§); is a union of C! curves varying continuously with ¢.
Let S = {t € (0,1] | v(t) € Q:}. Sis open in (0,1], (0,1]\ S is open in (0, 1], and (0,¢) C S
for some 1 < e > 0. Therefore S = (0,1] = (1) € Q. O

Claim 8: (%) = each H, € E°
So all non-empty [ N E are connected and bounded by a fixed number, k, of C* curves.
Claim 4: (x), (xx) => k=1
Proof. wlog, assume that p = 0 is the point given by (x*), T,(bE) = C"~! xR and H,(bE) =
C"~ 1 x {0}. Locally, E = {Imz, > ¢(z1,...,2n_1,Rez,)}, where ¢ is C*. bE N (C"~! x
{0}) = {0} = ¢(0) =0, > 0 at other nearby points. Let

Q. ={2€C|(20,...,0,ic) e E} ={z € C | ¢(2,0,...,0) < ¢}
For 0 < € < ¢y = ()¢ is non-empty, connected, and bounded by k-smooth curves. For
0<e <e2<e = Qe CQ,. S0 [Ngeeee, 2 = {0}. Since the boundary curves vary
continuously with e, it is not possible that (. <¢o e 1s a point unless k = 1. O

Theorem 2.88. (%), (xx) = E is C-conver = E is C-linearly conver = ().

Remarks about (xx):
(1) ¥ EccCrC
p" bounded, then (xx) is automatic.



Sara W. Lapan 27

Proof. Choose p € E farthest from the origin (ties are ok). H, \ {p} C E°. O

(2) (%) may be a consequence of C-convexity
(3) If E C C? strongly pseudoconvex with bEC3, then (xx) fails < E ~affine ( convex
domain in R?) x iR? (Result due to Bolt, 2009). This implies that E does not have
smooth boundary in CP2.
How do we verify condition (x)?
Reduce to the case C"~! x R. Locally E = {Imz, > ¢(z1,...,2n_1,Rez,)}. (¥) at 0 &
o(z1,-.+,%n-1,0) has a strict local minimum at 0 = Hessian of ¢ at 0 with respect to
XlyeeeyTna1,Y1s--->Yn—1 1S > 0. If the Hessian is > 0, then (xx) holds.

Lecture 19. October 26, 2009

2
Recall: ¢ : R™ — R, Hess,¢(z) = > %(p)xjxk.
E c CP" is open and bE is C?.
For p € bE with T,,(bE) and H,(bE) we can apply a linear transformation to move p to 0
with Tp = C"~! x R and Hy = C"~! x {0}. Let z, = u+iv and v > p(21, ..., 2n_1,u).
(%) holds at 0 = ¢(z1,...,2,-1,0) has a local minimum at 0 = Hessgp > 0 on C"n — 1 x
{0}. Also, Hessgp > 0 on C"! x {0} = ¢(21,...,2,-1,0) has a strict local minimum at 0
= (%), (x*) hold at p.
How does the choice of LFT affect Hessians? Let n = 2
1 4215211522
U <Z2> = | GiEZ iz,
A+Bz,1+Czo
0 0
If we want <O> — (0), then we need D = G = 0. For

£0

21\ 0 21\ Ez + Fz
()= ()= ()~(aii)

A
det | D
G

T =W
~ 1 Q

we insist that A = 1. If

, (0 (E F , (0 _
SO(I)(O)(H 7 . Need ® 0 :CxR—=CxR& H=0,I>0.
1 B C 1 0 0 1 B C
0 D E|=0=®,00,=(0 D FE 0 1 0
0 0 I 0 0 I 0 0 1

So @, : (?) — (DZII—; Ez?). Let v = (21, u) pullback via ®; to v = (21, u)
2 2

1 - 1
Iv=@(Dz1 + Ez, Iu),p = j@(DZd + 22, Iu), Hessop (2) = fHessogo <‘I’/1(O) (Zl) >

Do the same pullback with ®5.

22 FB-co 1 z 4 1 2
Im———= = 1+Bz1+Cz =_H ...=_H
m- Y Bt O ¥ <R61+Bz12+022 griessop | L + guiessop | +

z2

Imm =Im(22—Bz120—Cz3+- ) = v—Im(Bz120+C23)+- - - = v—Im(Bzu+Cu?)+- - -
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Re-arranging these equations,

1
v = §Hesso<plm (2) + Im(Bz129 + Cu2) 4.

Hesso@ (Zl) = Hessop (2) + 2Im(Bz; 29 + Cu?)

[z z
Hesspp <01> = Hessgp (01>
Combine: ® = ®; o &5 so that

e om()

21
U
o)

may be prescribed arbitrarily.

N———

e Remaining terms of Hessyp (

Option 1:

S ¥ X
o O O

e "o % %

so the Taylor expansion of ¢ contains no u terms until at least the 3rd order.

Option 2:

O ¥ ¥
S ¥ ¥
= O O

If Hessgy > 0 on Hy get Hessgp > 0 on Tj.
Exercise 2.89. Show that this generalizes to higher dimensions.

Let E C R™ be connected, open and bounded with C? boundary.
E={z]|p(x) <0},pis C*,dp+# 0 on bE
Suppose E has another defining function, p, p = np where n > 0 on bE.

Hess,p(x) = n(p)Hesspp(x) + p(p)Hesspn () + dpp(x)dpn(z)
If p € bE and x is tangent to bE at p, then Hess,p(x) = n(p)Hesspp(x).

Lecture 20. October 28, 2009

When we have been discussing T, (the real tangent space at a) and H, (the complex tangent
space at a, H, C T,), they are affine spaces, not necessarily vector spaces.
+ Assume E C R"™ or C" is bounded, connected and open with C? boundary. E has a C?
defining function p satisfying dp # 0 on bE and E = {z | p(z) < 0}.
Theorem 2.90 (1). In R™, TFAE

(1): Hessyp >0 on TY(bE),Va € bE

(2): E is convex

(3): u: E— R given by u(x) = —d(z,bE) is convex

(4): u is convex near bE

(5): 3C>*¢ : E — R such that (x) — o0 as x — bE and Hess,y) > 0

(6): E=UE;,E; CC E; CC E3 CC --- all strongly convez (note the notation “CC”

means that F; C E; 1 is compact or E; is relatively compact in F;i1).
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Definition 2.91. E is strongly convex if Hess,p > 0 on T2 (bE),Va € bE.
Definition 2.92. ¢ : F — R is strongly convex if Hess ¢ > 0,Va € bE.
Note that this is sometimes referred to as strictly convex.

{domains satisfying 1} Hclosed {convex domains satisfying 1} D°P*" {strongly convex domains}

The first set is a Banach manifold.

Theorem 2.93 (2). In C", TFAE
(1°): Hessap >0 on HY(bE),Va € bE
(2): E is C-convex (and C-linear convezity)
(4’): Hessgu(w) > lldo u()|P4Ido (G vy peqr bE, w € C

u

(6’): E=UE;,E; CC E; CC E3 CC --- all strongly C-convex

Definition 2.94. E is strongly C-convex if Hess,p > 0 on H?(bE),Va € bE. Equiva-
lently, E is strongly C-convex if Va € bE,3 a LFT ® such that ®(F) strongly convex in
a neighborhood of ®(a).

fis convex if f(tx + (1 —t)y) > tf(z) + (1 —1)f(y),Va,y,0 <t < 1. Fquivalently, f is
convex if the epigraph of f is convex. If f is C2, then f is convex < Hess, f > 0, Va.

Definition 2.95. F is strongly pseudoconvex if the strict inequality holds in condition
(17) when w # 0. Equivalently, E is strongly pseudoconvex if Va € bE, 3P biholomorphic
near a such that ®(F) is strongly pseudoconvex in a neighborhood of ®(a).

Theorem 2.96 (3). In C", TFAE
(1”): Hess,p(w) + Hessup(iw) > 0,Va € bE,Yw € H2(bE)
(2”): E is pseudoconvex
(83”): w is locally a clear limit of C? functions satisfying i
(4”): 1 Hessqu(w) + Hessqu(iw) > Q‘d“u(w)‘Qtld““(iw)lg ,Va near bE,w € C"
(5”): JY: E — R C™ such that p(z) — oo as z — bE and Hess,(w)+ Hess,h (iw) >
0,Yae E,w=#0
(6”): E=UE,;,E; CC E5 CC E3 CC --- all strongly pseudoconvex

These three theorems are all assuming that the boundary is smooth.
Lecture 21.
October 30, 2009 Let ¢ : C™ — R,

Hessqp(v) = Z j k:aziw(a)v-ﬁ +Rez O (a)vjv
T L Rz T L gz,

. 0% _
Hess, ¥ (v) + Hess ¢ (iv) = 2 ]Zk 92,071 (a)v; T
Hess, ¥ (v) — Hess ¥ (iv) = 2Rez G (a)vjv
“ @ o Tk 8zj8zk vk

These terms are not standardized, but we shall call: %(a) the C—Hess, 1 and %(a)
20z Z2j0Zk
the holomorphic—Hess, .

Hessy = C — Hessy + Re(holomorphic-Hesst))

We can now write the conditions in the previous lecture as:
(5")C — Hessqtp > 0, “i strongly plurisubharmonic”
(4")C — Hessq (—log(—u)) > 0, “—log(—u) plurisubharmonic”
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(1")C — Hessqp > 0 on H?
Recall: H? is the C-tangent vector space at a, while H, is the affine C-tangent spaces at a.
Transformations for Hessians:

Let M —2+ N —“+ R. General rule:
Hess, (u 0 ®)(v) = Hessq(q)u(®' (a)v) + u'(®(a)) - Hess, ®(v)

Usuallly mathematicians prefer when the second term vanishes because the first term is
more reminiscent of the standard chain rule. The second term vanishes if:

e & is affine (so composing a convex function with an affine function returns a convex
function):
Conditions (1), (5), (6) are directly affine invariant, while (2), (3), (4) are indirectly
affine invariant.
Conditions (1), (6") are directlly C-affine invariant, while (4’) is indirectly affine
invariant.

e & is holomorphic = C — Hess,® =0

= C — Hessq(u o ®)(v) = C — Hessg(q)u(®'(a)v)

so the composition of a plurisubharmonic function with a holomorphic map is
plurisubharmonic. Therefore,
Conditions (1”), (5”), (6") are directly holomorphically invariant.

e What if ® is a LFT? (composition of a convex function with a LFT is not convex)

_affine mapping of
For real z, ®(x) = P ey s P

_ Ag,1vi+-+Ag,nvn ’
Lemma 2.97. Hess,®(v) = B2 P prvrr s P (a)v.

Let a € M and look at the level surfaces through a and ®(a). The level surface through a
is (10 )~ (u(®(a))).
v is tangent at a to (uo ®) " (u(®(a))) & (uo @) (a)v = u'(®(a))®' (a)v = 0
& @'(a)v is tangent at ®(a) to u™ " (u(®(a)))
So condition (1), (6) are directly LF T-invariant, while the conditions (2), (3), (4), (5) are all
indirecly LFT-invariant.
Complex Case:

The same argument works if the vector v € H?. Then
Conditions (1), (6') are directly LF T-invariant.

Definition 2.98. bE is strongly C-convex at a if Hess,p > 0 on H?.

bE is strongly C-convex at a = C — Hess,p > 0 on HY. Re(holo.-Hess,p) = Re(D>_ -+~ z;2x)
has no particular sign.
We need C — Hess,p(z) + Re(holo.-Hess,p(x) > 0, Vz.

C — Hess,p(e?z) + Re(holo.-Hess) 4 p(e??) > 0
For certain chose of #, C — Hess,p(e?’z) — |holo.-Hess, p(z)|.
Need: |holo.-Hess,p(z)| < C — Hess,p(z),V non-zero z € HY.
Lecture 22. November 2, 2009

Let E = {p < 0} with a C? boundary. Recall: bE is strongly C-convex (or C-convex) at
a € bE < Hess,p > 0 (or Hess,p > 0) on H? < |holo.-Hess,p(z) < C — Hess,p(z),Vz € H?

lholo.-Hess, p(2)|
NOoN-zZero < —CfHGSSap(Z)

Replace p by p = np, (n > 0 on bE) = Hess,p = nHess,p on T2, C — Hess,p = nCHess,p
on H?, and holo.-Hess,p = 1 holo.-Hess,p on HY. For n =2, dim¢ H? = 1.

< 1,Vz € H? nonzero = bE strongly pseudoconvex at a.
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(*) Independent of p, invariant under rotation, dibdr on z independent of choice of z €
H?\ {0}. So (*) defines a scalar iinvariant depending on a € bE.

. . 2] [é) 2] %) %) 9
Simple choice of z = (8—2"2,—6—;) € C? - 7(3—1’; ay’; —8—5,0—;) € R* Check that
z,iz 1 gradp so z € HY. Need:

0 pm P2
(p2 - pl) (,01,1 ,01,2) <_P2 > —det | p1 p1,1 P12
P21 P22 P1 P2 P21 P2,2

1> =N\ U T )
B Mi Pz 1) 1 P2
(P2 =p1) <P2,1 P2,2> (—m) sdet | pr Pia

P2 P20l P23

Independent of choice of p. LFT-invariant.
What happens without absolute values in the norm?

M-2o N+ Rand M 2+ R

b 2= w) (o 22) (0 a.)
bi Pk 0 @k) \Pi rjx) \0 Pk

Just need ® holomorphic. Denominator picks up a factor of |det’ ®|2.

) P
w(? s )

= det Ao i Py n+ Ao kP ;
. ) D By Pkt Ao kP
Py PJJ@) Zl PIPLj Zl m PLm®1j Dk — Zz PUAG o+ At + Ao man

1 0 0 p; 1 0
= det det 7 ) det —
¢ (0 %k) ¢ <Pk pj,k) ¢ (0 (I)lw)

The numerator picks up a factor of (det’ ®)? and the quotient picks up

0 pw
det
(Pj Pj,k-) dz1 N\ dze

—det(o %)dzl/\dZQ
Pi Pik

BbE =

is LF'T invariant.
Compare on C to the Betrami differential u(z )d: Suppose f : C — C is an orientation-

preserving diffeomorphism. Then g{c = ;z 7o, Where ff’ < 1.
Beltrami Equation: Given |u(z)| < 1, solve % = p(z)E

Special case: Teichmuler differential is czgig %, where ¢ is a constant.

Lecture 23. November 4, 2009

Ezample 2.99. In C2:
(1) Let B ={|z1|P 4 |22/P < 1}. Then
2 —pZizg dzy Ndzo 2—pdzy Ndzy  Z123
P mmdnAdn P a1z deAda
This is strongly C-convex off the axes when 1 < p < 0.
(2) Let E = {Imzy > |21|7}. Then
¥y—2z1dzy Ndzg v —2dz; Ndzs zZ1

By = = —
Yooz le A\ dZ2 Y 21 le N dZQ

Bye =

This is strongly C-convex off of z; =0 for v > 1.
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(3) Let E = {Imz; > a|z1|* + Refz7}. Then

Bdzy N dzo

Byg = — —=

adzy Adzg

This is strongly convex for |3| < a. Note that the (2,0) form dz; A dze has a pole
in projective space at oo.

e Byr is defined on bE, but in these examples we get an extension of the form:
rational (2,0) form
conjugate of rational (2,0) form"
e In these examples, |Byg| is constant, but this is not typical.
e bE in CP" is not everywhere smooth and strongly C-convex unless in example 1)

Theorem 2.100 (deTraz-Trepeau/Bolt). Suppose Byp = 0. Then E is LFT-equivalent to
a ball (also local).

Theorem 2.101 (Bolt). Suppose Byp = k%1242 gnd 0 < |k| < 1. Then E is affine-

dzy Ndzo
equivalent to example 3 (also local).

A similar result holds for example 1.
Problems:

(1) When is |Bpg constant?

(2) When is Byp — rational (2,0)

conjugateofrational(2,0)

What does B tell us? Let a € E ~» T,bE = C x R and (z1,22) = (z,u + ). be is given
locally by

v=f(z,u) = alz + Refz? + O([uf*) + O(IBF°) + O(Jul - |2])

Recall (from Lecture 19), that we can improve this to:

v = f(z,u) = afz] + Refz? + O(|ul®) + O(|5])

p(z,w) = f(z,u) —v. Hessgp <(Z)> = a|z|? +ReBz2. If you do not want the defining function
in this formula, you can use the second fundamental form to make it independent of the
defining function. The new (equivalent) equation is: I (g) (a|z]|? + ReB2?) { dV] , where

Iy is the second fundamental form.
B = Bdzuidz (a4 0) and |B| = ﬂ. B is strongly C-convex at 0 < a > 0, % < 1. The

@ dzy Adzo
. . ‘e . 1 e
levels sets of Iy are ellipses. The major-to-minor axis ratio (717 soos» Where ecc is the
161
1 . Co .
eccentricity) ’/3+‘|g + 1+|‘g The minor axis is given by 322 > 0, i.e.

2 arg(minor axis) = —arg 3.
Claim: This determlnes “arg §” at 0.

In general, B, = b(a )W determines a map

det(X1Y) _ det*(X---Y)

B : {(z,y) € T'C? | 2, yC—linear ind} — C given by (z,) — b(a) ————-"tv
{(z,9) |z,y ¥ g y (z,y) ()det(X~--Y)

| det(X:Y)|2
Ba($7y) = Ba(yvx) = Ba(l‘ + y7y) and Ba()\m7y) = %Ba(x7 y) = Ba(x7 )‘y)

Z) € Hy for t € R\ {0}

Back to particular situation: Pick any y = (?) € To\ Hp and z = (0
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and z # 0.
B (tz)2 B2
B = — =
o(@:y) altz]2 alz]?
We can replace the B’s by B. Note that a|z|2 > 0. Conclude that By(z,y) > 0 < z € minor
axis. This determines “arg B.”

Exercise 2.102. This geometric description of B works at all a € bE and is LFT-invariant.
Lecture 24. November 6, 2009

Let S be a C?R-hypersurface in a 2-dimensional C manifold M. For a € S C M,
b(a) le A dZQ ’

dz1 N dzo

Two ellipses are similar if they are equivalent via a dilation. In the above equivalence, we

can get circles < b(a) = 0. If |b(a)] = 1 we get a family of parallel lines and if |b(a)| > 1

then we get a family of hyperbolas.

Suppose S C CP? is a strongly C-convex hypersurface. Bg — family of similar ellipses

centered at a in H,, LFT-invariant.

Problem: What “compatibility condition” must Bg satisfy?

Special Case: Given ¢(z1)%10422 g this Bg for some strongly C-convex S = {Im(zy) =

Gt ot 7:121 e
f(z1)} “rigid hypersurface.

Theorem 2.103. This happens if and only if
P2+ =Pz — Wzsoz) .
L=y
(this is an underdetermined non-linear hyperbolic PDE).

|b(a)| < 1 «— family of similar ellipses in H

Im (<Pzz — PPz +

S\ {Bs = 0} is folliated by real curves tangent to the minor axis. Examples?

Returning to C!:
Metrics on R? = C:

= a(2)|dz|* + Re(B(2)dz?), with |3] < a (written as the hermitian part plus the anti-
hermitian part)

— B()d2? _ B(z)dz
Bg T a(z)|dz]? T a(z)dz

Definition 2.104. Metrics g, g are conformally equivalent if § = A\g, where ) is a positive
function of z. Equivalently, B; = B,.

Can we change coordinates so that ¢ is conformally equivalent to the standard metric?
Yes, but it is important that we are in R2.
(C,g) N (C, |[dw|?) has pull-back f*(|dw|?) = (|w.|? + |w=|?)|dz|? + Re(2w. . )dz>
_ 2w, Wy dz
B« (jdw|?) = [w, [2+]w=]? dz
Definition 2.105. A conformal dilation of f, py, is
gi - ’U.)gdf Eg

MIZ0r T wedz 14+ I [B,P

Ahlfors-Bers: Assume that ||By|[oc < 1 on C. Then 3 an orientation preserving (i.e. the
real Jacobian determinant is positive) homeomorphism/difeomorphism f : C — C solving
af _ B, . . . . . 1
oF = TViiB R f is a diffeomorphism if By is C-.

Note that 2L = — Bs g called a Beltrami equation.

OF = 1+y/1-1B, 2
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Returning to higher-dimensions: C-dimension > 2
Let S C CP™ a smooth R-hypersurface. Ds : S — CP™ given by a — H,(S). Define
S* =D(9).

Proposition 2.106. IfS = bE, where E is open and C-convez, then S* = b(E™*).

Let’s study Dg (using affinization 3).

1
z1 z1
S eCte— | 7| eCP"
Zn :
Zn
(Myoemn) €C™ e— (pn : =M1 -+ 1 =M1, 1) € CP™
n—1
hy ={z¢€C" | sznjzzn+77n}={z€((3”|17-z:0}
=1

Why? We like to work near 0 € S. Ty = C" ™! x R, Hy = C"~! x {0}.
Let n = Dg(z). Then z € H, = h,, i.e. Z;L:_ll 2N = zn + M.

Lecture 25. November 9, 2009

S C CP" is a C?,R-hypersurface with defining function p. Dg : S — CP™ is given by
z — H.(s). S*) = Dg(S) c CP™. Let I's be the graph of Dg, so I's C {(z,1) €
CP™ x CP™ | z € hy} = the incidence submanifold of CP" x CP™*. Using affinization 3,

n—1
{(z,m) € CP" x CP™ | z € hy} = {(2,m) € C" x C™*" | sznj =2Zn+ M}

Jj=1

Affinization 3 excludes vertical hyperplanes so it is fine for local but not global purposes,
while affinization 1 is better for global than local purposes.
Focus on n = 2.

Work near 0 € 5,755 = C x R, HyS = C x {0}.

7.5 = {(61.60) | 2Re( 72 () - )+ () - @) ) =0}

0 0
Hos — {(41,¢2> 2 (@)er — ) + (2N - o) = o}
Op Op.
= {(<1>C2) - %Zpl (2)G=C — 22— %zpl (2)21}
Dzg Oz

={(¢1,¢2) [ mC1 = G2 +n2}

(m,m2) € Ds(z). Let zg = u + iv. Choose

Zo — Zg _ B B__
— az1Z] — fzf — —Z1z + 3rd order terms

p=v—flzu) == 54T



Sara W. Lapan 35

Dg (21, u+if(z1,u)) = (2iaz1+2iBz14 -+ , —u+---) and Dg(0) : (Z;) — <22a21_+u21521>.

Dy is diffeo. near 0 & z; — 2 — az1,9i0z; invariant

& |l # [4]

& strongly C — convex or strongly C-concave (i.e. |8| > |a|)
= S™ is smooth near 0,Ds(0) =0¢€ SH) Tp8™) = C x R,
HoS™ = C x {0}, Ds- (Ds(0)) =0

D4 (0) : HyS — HyS™ in the strongly C-convex case (i.e. |a| > |betal), this map is orientation
reversing (since 2iaz7 dominates 2i3z;) and not C-linear. In general (this in the strongly
C-convex case), Di(2) : HY(S) — HY(S™) is orientation reversing and not C-linear. Dg- o
Ds = 1. Dg is contact or quasi- conformal map for sub-Riemannian metrics on S, S*.
All Dy (z)’s are conjugate linear < Bg =0 < S is LFT-equivalent to part of a sphere.

Remark 2.107. For the sphere, 8 = 0 so in some sense the sphere is the most severe strongly
C-convex space we can have.

Strongly C-concave case (i.e. |3] > |al). Still have Dg contact, Dg« 0o Dg = Is.
Definition 2.108. Dg is CR if all Di(z) : H? — H?S* is C-linear.

Dg is CR < 1, is anti-hermitian on each HS < S is Levi-flat o Frobenius ¢ 5o foliated by
1-dimensional C-manifolds.

Remark 2.109. For Levi-flat surfaces, @ = 0 so in some sense they are the most severe
strongly C-concave spaces we can have.

Theorem 2.110. Suppose Ds(U) is a C? 3-dimensional manifold for all relatively open
U C S. Then Dy(z) is invertible Vz € S (which occurs < S is strongly C-convex/concave).

Proof. Let V = {z € S | Dy(z) invertible} W = S\ V is relatively open in S. Show that
W = 0. det D4(z) = 0 on W by definition of W. By Sard’s theorem, Dg(W) has no zero in
S*= W =0. SoVisdensein S. Dg-oDg=1onV = Dg«oDg =1 on S = each Dy(z)
is invertible. ]

Lecture 26. November 11, 2009

Brief Look at the Real Case: Let S C RP? be a smooth curve. Dg : S — RP?* is given by
z+— T,5. T's = {(z,n) € RP? x RP** | y = Dg(x)} and S™) = Dg(9).
Affine version: I's = {(x,n) € R? x R?* | T,,S is given by z1n; = o + 12}
x€T,S=x1m =x2+m onlg
11 =slope of T,S = dxy = mdz, on I'g pulls back to equation on T, S
T1M = T2 + M2 = w1dm + mdry = dzy + dne = xdp = dn
So dny = z1dn; on I'g pulls back to hold on T,]S(*) when S™) is smooth.
So the three equations we have are:
(1) zym =x2+monly
(2) dxo = mdzq on I'g and pulls back to TS
(3) dny = x1dn; on T's and pulls back to T,,S™)
The Legendre transform: S =graph of f —— S* =graph of f* (where f* is the Legendre
transform of f)
Returning to C:
Let S C CP? be a smooth real hypersurface. Ds : S — CP?* is given by z + H.S.
I's = {(z,) € CP? x CP** | = Dg(2)} and S*) = Dg(9).
Affine version: (z,m) € I's < H,S is given by z1m1 = 29 + 2.
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z€ H,S = 21m =20 +m2 on g = dzg = mdz
ﬁ(z,n)FS = {(¢, Ds(9)) | ¢ € H,S} has R-dimension 2. So dzp = 1m1dz; on fNI(Z)n)FS.
Repeat the argument from the real case: dne = z1dn; on I;'(zm)I‘s and on H,,S(*) when this
is defined. So the three equations we have are:

(1) z1m =22+ n2 on I's

(2) dZQ = 771d21 on H(zm)rs

(3) dng = z1dn on fI(z,n)I‘S and on HnS(*) when this is defined
C-Legendre transform: S = {v = f(z,u)} = S®) = {v = f*(2,u)}, where f* is the C-
Legendre tranforrm.
Returning to material from the previous lecture:

Let 20 = u 4w and S = {v = a|z1]* + Refz{ + ---} = Ds(0) = 0,D5(0) : <Zl) ~
(szl - 21'621)

—u
S() “ocally smooth” < |8] < || or |a| < |8] & strongly C-concave/convex

Get TpS™) = C x R. Want second order data for S*) at 0.

ne = z1m1 — 22 = 21(2iaZy + 2ifB2 + -+ ) — u —iclz;|* — iReBz7 + - -
: __—iam—ifm

USlng zZ1 = W

2 R 22
Imys = afz1[2 + Refzf + - = - = ABlHRe@d

This looks similar to the way S is defined (i.e. az1|? + ReB2z? is similar to %W):
D% (0) maps ellipses in HyS determined by IS to elllipses in HyS™) determined by I3S™).
1Bs(0)|| = 2 = |Bgy (0)]. In general, [Bgc) (2)] 0 Ds = |Bs(2)]-
Therefore, S*) is strongly C-convex/concave < S is strongly C-convex/concave.
We want to further restrict our choice of projective coordinates:
e we could rotate z; so that 3 > 0 (this gets rid of the issue of Ref versus Ref3)
e we could dilate 21 (by a real constant) so that a? — |3|? = 1 (this gets rid of the
denominator)
Now S*) = {v = a|z1| + Refz} + Reyz} + RedzZ; + - - - }, note that there are no u?, z3u
terms. We still have the freedom:
. Dz1+Ezo
( ) — 1+%&j2022 , for D,C eR
w 1+Bz1+Cz2

Theorem 2.111 (Hammond). Can choose B, E such that Reyz3, Red 2371 match for S, S™).
Can’t always pin down D:

S = {v = a|z1|? + ReB2?} — S given by (2, u + iv) — (D?z, Du+ iDv) for D > 0
Lecture 27. November 13, 2009

Let S C CP" be a C?R-hypersurface. For p € S, using a LFT we can map p +— 0, the R
tangent space to C"~! x R and the C tangent space to C"~! x {0}. Let 2z, = u + iv and

2= (21, Zn-1)-

v=f(z,u) = Z (ajiziZi + Re(sumi<jr<n—1B8jk22k) + o(||2'|[* +u?)
1<j,k<n—1
C-convex < |Bjkzjze| < D o522 for all p € S.
strongly C-convex < [B; 22k < Y- a;gzjz; (for all p € S) when 2" # 0 = strongly
pseudoconvex.
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Assume strongly C-convex. Can convert the matrix (o 1) to I. “Diag. of quadratic form” =
can convert (8;) to diagonal matrix without changing (o). Get v =732, |z;]? +
Re Y <jc,1 8577 Relax the normalization to 3 a|2;|* +Re Y ;27 (instead of assuming
the a; = 1). Note that we have been assuming that the «;’s are real. Get;

Z1 2’6.04151 + 2i,6121
Ds(0) : — ‘ C
Zn—1 2ZOln—lzn—l + Zlﬁn—lzn—l
u —Uu

Note that the first vector is in C*~! x R.

strong C-convexity =

S™) is “locally smooth” < Dg is a local diffeomorphism

& |B1] # laal, ..., |Br-1] # |an—1]

This implies S™) is given by:

Imﬁnzz Oéj|77J| +R Z ﬁjn] 4

Aoy — [B5]? = 1B;1?

Use coordinate rotations to get all 3; > 0. Use coordinate dilations to get a; — [3;]* = 1.
Now S™) satisfies same normalizations as S. Also, D maps H,S to HnS(*)7 but it is not
C-linear in the C-convex case (we would need a; = 0, V7). After the change in coordinates,
N = Y, aj|ni[> +Re Y Bj[n7 + - --. Dy preserves 1.S|p.s up to a multiplicative constant.

Exercise 2.112. Define ps : S — R by ¢g(0) = H?;ll (1 - li’;) = H;l;ll 1 (after the
i 3
normalization).

(1) General formula (using affine coordinates) for ¢g:

0 0 px O
0 0 0 pp
pi 0 pik Pix
0 »p7 Pin Pik

ps(z) = 0
det? ( pg)
Pi Pk

where the matrix in the numerator is (2n + 2) x (2n + 2) and in the denominator is
(n+1) x (n+1), pis the defining function and py, is the g—z’;.

(2) ¢s is LET-invariant

(3) n=2,ps=1-|Bs

det

Global Considerations:

S = bE,E C CP" open and connected. As we have seen previously, S strongly C-convex
= EC-convex,C-linearly convex and E* closed,C-convex,C-linearly convex, S*) = b(E*),
and we will show today that S*)C?2, is strongly C-convex immersed.

Theorem 2.113. Let S be given as above. Then S™) has no self-intersections.
Lecture 28. November 16, 2009
Lecture 29. November 18, 2009
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Bergman Kernel for the unit ball: thinking of the kernel as holomorphic forms and zero,
dzi N+ Ndzy Ndwy A -+ A dw,

(]_ — ZE)nJrl
is an (n,n)-form on B x B invariant under (z,w) — (Tz,Tw), T €Aut(B).
Let & cC C" be an open, connected, strongly C-convex subset and S = bQ2. Let AQQ) =
C(2)NHolo(?) and let p be a positive cont. multiple of surface measure on S.

Cp =

Theorem 2.114. K C Q compact = maxg |f| < Ck||f||r2(s,0), Vf € A(Q).

H(S,u) = A(Q)|s = L?(S, p)-closure of A(Q)|g
Corollary 2.115. Each f € H(S,u) has a natural holomorphic extension to €.

Arguing as in the Bergman case, we get a Szegd kernel kSH(z w) (abbreviate to k(z,w)),
which satisfies:

e holomorphic in z with L? b.v.
e conjugate holomorphic in w with L? b.v.
o k(w,z) =k(z,w)

ortho.
. Pgi L2(S, 1) —»OJ H(S, p) given by Pf(z) = [ f(

(z,w)dp(w), z € Q
There is a problem with the transformation law, which is fixable with a good choice of p.

Ezample 2.116. Let 2 =unit ball and p =Euclidean surface measure. The Szeg6 kernel turns

(n—1)! (dzl/\-u/\dzn/\dﬁl/\~~-/\dﬁn)nil
27 (1—zw)™

we could work with functions: T*f = (f o T')(det T")7+T. When n = 1, this agrees with the
LFT-transformation law from lecture 2.

out to be: . This is invariant under AutB. Alternatively,

Apo -+ Aon
Exercise 2.117. A LFT T can be written as : : . Show that
An,O o An,n
—det(~)

detT' =

(Ao + Aopz1 + -+ 4 Aonzn)
where the numerator is usually normalized to 1. Note that the matrix for T is not unique.

We need to be able to interpret f(z)(dz1 A--- dzn)#. This works out nicely on projective
space.

2.2. Line Bundles on CP".

Define a line bundle, O(j,k) , on CP" as follows: Let = : C**!\ {0} — CP". For
E C CP" = C"\ {0}/¢ ~ A(, let E = n1(E) ¢ €1\ {0}, which is invariant under
multiplication by non-zero scalars.

section of O(j, k) over E < F : E — C where F(X) = )\jxkF(C)

Usually j,k € Z but it is enough to assume that j — k € Z since AN = |\ theili—k)arg A
For holomorphic sections, we would need k = 0.
Charts for CP": CP™ = Uy U - - - U U, where Uy, = {[{o Cn] € CP™ | ¢ # 0}

Define F,,, : ENU,, — C by [(0:---:Cn]|—>F<%,...,1,...,g:L

;
Check that Fi(¢) = (C> (C> F,,(¢) is the transition function for ( € ENU,, NUj,.
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—n—1
Important special case: j = —n—1,k = 0 so that F;({) = <C5) F,,(¢). There is a one
to one correspondence:
Sections of O(—n —1,0) on E < (n,0) — forms on F

Lecture 30. November 20, 2009

ECCP"— ECC""'\ {0}, AE=E for A\ #0
L(E, j, k) = { sections of O(j, k) over E} <> {F : E — C | F(X) = )\jxkF(C)}
F could be holomorphic if & = 0. F' could be positive if j = k. Given two sections
Fy € D(E, j1, k1), Fo € D(E, jo, k2) = Filz € T, j1 + ja, k1 + ko), F1 € T(E, k1, 1), FiF €
D(E,j1 + k1,71 + k1), F1F1 > 0. For G € T'(E,5,5),G > 0 = G* € I'(F,ja,ka). For
Hel(E,jk),|H =VHH € F(E, itk J;’“)
Consider M €SL(n + 1,C) and ) is the LFT associated to M. Let
. M* . . %

Recall that 1, does not uniquely determine M (i.e. two matrices could both give rise to
¥ar). In particular,

b =t o M =wM, 0" =1 M*F =/~ M*F
The lift to T'(F, 7, k) is unique < j — k € (n + 1)Z.
Claim: There is a natural correspondence:
I'(E,—n —1,0) < (n,0) — forms over F

How does this work?
On E N U, write (n,0)-form as:

fGzi,.o o z0)dzy A Adzy,
:f<C17._.7C">d41/\.../\§"
Co G/ Co Co
S} ¢n
f(C;""’ Co)
= ——7—(GdG A+ ANdC — QdCo AdCa Ao ANdGy -+ (=1)"CadCo A AdG1)
0
Let n = C(;H'ldzl A ANdzy,.
Exercise 2.118. di An =1d{y A --- A d(,, VI linear.
f(z1,-y20) =F(Q,21,...,2,) and F(Co,...,¢n) € T(EN Uy, —n —1,0).
Exercise 2.119. This construction give consistent results on each U,,.

Remark 2.120. The bundle associated to (n,0)-forms is called the canonical bundle by
algebraic geometers.

Alternate argument: 7 is O(n+1, 0)-valued (n, 0)-form on CP*. Then F' € T'(E, —n—1,0) =
Fn is an (n, 0)-form. ‘

Given F € T'(E, j, k) on ENUy write F as f(z1, ..., 2n)(dz1 A+ - -Adzp) 7 (dZy A- - /\d?n)%
Note that the multiple-valued problem (of taking fractional powers) is only an issue when we

change coordinates. Given f(z1,...,2,) = F(1,21,...,2,) and F((o,...,(n) = Cg(gf(gé, o g())

Ezample 2.121. Beltrami differential Bg = 24210422 ¢ (5, —3,3) and |Bg| € I'(S,0,0).

a dz1Ndzo
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Let S C CP™ be a strongly C-convex hypersurface. Need:

e Norm on I'(S, —n, 0) (since for an invariant norm we need I'(S, j, k) such that j+k =
—n and for this to be holomorphic we need k = 0)
e C-bilinear pairing between I'(S, —n,0) and T'(S™), —n, 0)
For n =1, let y be a curve in the Riemann sphere. The canonical bunddle is I'(vy, —2,0) so
(v, —1,0) is the square-root of the canonical bundle. So

(W € T(7,~1,0), / FWzf (2)Vdz = / |F?|dz], and / FeWizg(:)Vdz = / fgdz

For n =2, F = f(2)(dz1 Adz)3 € T(S,—2,0) so FF € I'(S, —2,—2) and we want FFp to
be a non-negative 3-form. So y is a positive 3-form on S with values in Q(2, 2). fs FFu
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