Complex Function Theory: Analysis on Domains in \mathbb{CP}^n

Notes by: Sara Lapan Based on lectures given by: David Barrett

Contents

1. One Complex Variable	2
2. Projective Space	10
2.1. \mathbb{CP}^n	19
2.2. Line Bundles on \mathbb{CP}^n	38

 $^{^0{\}rm Remark:}$ These notes were typed during lecture and edited somewhat, so be aware that they are not error free. if you notice typos, feel free to email corrections to swlapan@umich.edu.

1. One Complex Variable

Lecture 1. September 9, 2009

Definition 1.1. Let V and W be vector spaces over \mathbb{C} . A **pairing** is a bilinear map:

$$V \times W \longrightarrow \mathbb{C}$$

Let γ be a C^1 simple closed curve in \mathbb{C} . Let Ω_+ be the interior of the closed curve γ and Ω_- the exterior.

 $A(\Omega_{+}) \equiv \{ f \text{ cont. on } \Omega_{+} \cup \gamma \mid f \text{ holo. on } \Omega_{+} \}$

 $A(\Omega_{-}) \equiv \{ f \text{ cont. on } \Omega_{-} \cup \gamma \cup \{ \infty \} \mid f \text{ holo. on } \Omega_{-}, f(\infty) = 0 \}$

Given $f, g \in A(\Omega_+)$, how can we pair them over γ ? In other words, we want a bilinear map $A(\Omega_+) \times A(\Omega_+) \longrightarrow \mathbb{C}$ which, ideally, is symmetric and non-trivial.

1st try: $\int_{\infty} fgdz$. This is symmetric, but always zero.

2nd try: $\int_{\gamma} f \overline{g} dz$. This is usually non-zero (unless $f \equiv 0$ or g constant), but not symmetric.

3rd try: $\int_{\gamma} f\overline{g}|dz| = \int_{\gamma} f\overline{g}ds$ (where s is the arc length). This not only satisfies all of the requirements, but also is a good pairing on both $A(\Omega_+)$ and $A(\Omega_-)$. Note that this is the inner product on $L^2(\gamma, ds)$.

Let $H_{\pm}(\gamma) \equiv L^2(\gamma, ds)$ - closure of $A(\Omega_{\pm})$. Note that this is a Hardy space.

Example 1.2. Let γ be the unit circle traversed counter-clockwise $(\gamma(\theta) = e^{i\theta}, 0 \le \theta < 2\pi)$.

$$L^{2}(\gamma, ds) = \left\{ \sum_{n=-\infty}^{\infty} a_{n} e^{in\theta} \mid \sum |a_{n}|^{2} < \infty \right\}$$

In Ω_+ (the interior of γ) z^n always converges for $n \ge 0$ but not for n < 0, so:

$$H_{+}(\gamma) = \left\{ \sum_{n=0}^{\infty} a_n e^{in\theta} \mid \sum |a_n|^2 < \infty \right\}$$

In Ω_{-} (the exterior of γ) z^{n} always converges for n < 0 but not for $n \ge 0$ (in particular z^{n} does not converge for n = 0 as $||z|| \to \infty$ since $|\int_{\Omega_{-}} ds| = \infty$), so:

$$H_{-}(\gamma) = \left\{ \sum_{n=-\infty}^{-1} a_n e^{in\theta} \mid \sum |a_n|^2 < \infty \right\}$$

Now suppose $f \in H_+(\gamma)$ and $g \in H_-(\gamma)$. How can we pair them?

1st try: $\int_{\gamma} f \overline{g} ds$. If γ is the unit circle, then $\int_{\gamma} f \overline{g} ds = 0$:

$$f\overline{g} = \left(\sum_{n=0}^{\infty} a_n e^{in\theta}\right) \left(\sum_{n=-\infty}^{-1} \overline{b_n} e^{-in\theta}\right)$$
$$= \left(\sum_{n=0}^{\infty} a_n e^{in\theta}\right) \left(\sum_{n=1}^{\infty} \overline{b_{-n}} e^{in\theta}\right)$$
$$= \sum_{n=1}^{\infty} c_n e^{in\theta}$$
$$\int_{\gamma} f\overline{g} = \int_{\gamma} \sum_{n=1}^{\infty} c_n e^{in\theta}$$
$$= 2\pi i \cdot 0$$
$$= 0$$

2nd try: $\int_{\gamma} fgdz$. If γ is the unit circle, then

$$f = \sum_{n=0}^{\infty} a_n e^{in\theta}$$
 and $g = \sum_{n=-\infty}^{-1} b_n e^{in\theta}$

and $\int_{\gamma} fgdz = 2\pi \sum_{n=0}^{\infty} a_n b_{-1-n}$, so this is a good pairing:

$$fg = \left(\sum_{n=0}^{\infty} a_n e^{in\theta}\right) \left(\sum_{n=-\infty}^{-1} \overline{b_n} e^{in\theta}\right)$$
$$= \sum_{n=-\infty}^{-2} c_n e^{in\theta} + \sum_{k=0}^{\infty} a_k b_{-1-k} e^{-i\theta} + \sum_{n=0}^{\infty} c_n e^{in\theta}$$
$$\int_{\gamma} fg dz = 2\pi i \sum_{k=0}^{\infty} a_k b_{-1-k} e^{-i\theta}$$

The "perfect duality pairing" is given by the following (note: all of the norms are L^2 norms):

Let
$$||f|| = \sup_{||g|| \le 1} \left| \int_{\gamma} fgdz \right|$$
 and $||g|| = \sup_{||f|| \le 1} \left| \int_{\gamma} fgdz \right|$

Remark 1.3. There is a perfect duality pairing if and only if γ is a circle.

Now consider the Cauchy integral. Let f be continuous on γ , then

$$Cf(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)d\zeta}{\zeta - z}$$

Facts:

- (1) Cf is holomorphic on $\mathbb{C} \cup \{\infty\} \setminus \gamma$
- (2) $Cf(\infty) = 0$
- (3) If $f \in A(\Omega_+)$, then the Cauchy integral formula says that

$$Cf(z) = \begin{cases} f & \text{on } \Omega_+\\ 0 & \text{on } \Omega_- \end{cases}$$

(4) If $f \in A(\Omega_{-})$, then the Cauchy integral formula says that

$$Cf(z) = \begin{cases} 0 & \text{on } \Omega_+ \\ -f & \text{on } \Omega_- \end{cases}$$

- (5) If f is C^1 , then:
 - Cf extends continuously from Ω_+ to $\Omega_+ \cup \gamma$. Let $C_+ f$ be the boundary value of f (i.e. the value on the extension to γ).
 - Cf extends continuously from Ω_{-} to $\Omega_{-} \cup \gamma$. Let $C_{-}f$ be the boundary value of f (i.e. the value on the extension to γ).
- (6) C_{\pm} extends to bounded operators from $L^2(\gamma)$ to $H_{\pm}(\gamma)$
- (7) $||C_{\pm}||$ is the operator norm of C_{\pm}

$$||C_{+}|| = \sup_{||f||_{L^{2}} \leq 1} ||C_{+}f||_{L^{2}} = ||C_{-}|| = \left(\inf_{f \in H_{-}, ||f|| = 1} \sup_{g \in H_{-}, ||g|| = 1} \left| \int fg dz \right| \right)^{-1}$$
(8) $f = C_{+}f - C_{-}f$ on γ

Lecture 2. September 11, 2009

In \mathbb{C}^1 : Let γ be a C^1 simple closed curve, let Ω_+ be the interior of the closed curve γ , and let Ω_- the exterior. Let

$$H_{+}(\gamma) = \{ f \in L^{2}(\gamma, ds) \mid f \text{ extends "holo. in } \Omega_{+} " \}$$

$$H_{-}(\gamma) = \{ f \in L^{2}(\gamma, ds) \mid f \text{ extends "holo. in } \Omega_{-} \text{" and } f(\infty) = 0 \}$$

 H_+ and H_- are Hardy spaces. For $f \in H_+$ and $g \in H_-$, we found that a good pairing of f and g is given by $\int_{\gamma} fgds$.

In \mathbb{C}^n : Now consider higher dimensions: Let S be a sphere (or similar to a sphere) with Ω_+ as the interior and Ω_- as the exterior. The definition of $H_+(S)$ is clear (it follows from the previous definition), but the definition of $H_-(S)$ is not. If $H_-(S)$ is defined as above, then a holomorphic function on Ω_- extends to an entire function and the condition $f(\infty) = 0$ results in the only possibility being the zero function (i.e. $H_-(S) = \{0\}$). Dropping the condition $f(\infty) = 0$ still results in $H_-(S) \subset H_+(S)$. Nevertheless, facts (1)-(7) from the previous lecture do generalize, but (8) does not. We need to a construction of $H_-(S)$ that is "different in higher dimensions, but the same in dimension 1." Construct dual S^* in dimension 1, $S^* \neq S$. This will be discussed more later.

More about $Cf(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)d\zeta}{\zeta-z}$. Assume that γ is C^1 , f is C^1 on γ , and $z \in \Omega_-$. Extend f to a C^1 on $\Omega_+ \cup \gamma$. Then, using Green's theorem, on Ω_- :

$$Cf(z) = \frac{1}{\pi} \int \int_{\Omega_+} \frac{\frac{\partial f}{\partial \overline{\zeta}}}{\zeta - z} dA(\zeta)$$

By the dominated convergence theorem, this is a continuous function for $z \in \Omega_- \cup \gamma$ (note: this integral is convergent towards γ by dominated convergence, but the previous definition of Cf is divergent towards γ). The boundary value of Cf is $C_-f \in H_-(\gamma)$. Now let z be a point on the boundary (i.e. $z \in \gamma$). Around the point $z \in \gamma$, remove a small semi-circle inside Ω_+ of radius ϵ . Let $\gamma_{+,\epsilon}$ be the curve of the semi-circle around z. Let $\gamma_{1,\epsilon}$ be the curve γ everywhere except the ϵ -neighborhood of z and in that neighborhood it is $\gamma_{+,\epsilon}$. Let the interior of $\gamma_{1,\epsilon}$ be $\Omega_{+,\epsilon}$.

$$C_{-}f(z) = \lim_{\epsilon \to 0} \frac{1}{\pi} \int \int_{\Omega_{+,\epsilon}} \frac{\frac{\partial f}{\partial \zeta}}{\zeta - z} dA$$

=
$$\lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{\gamma_{+,\epsilon}} \frac{f(\zeta)d\zeta}{\zeta - z} + \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{\gamma_{1,\epsilon}} \frac{f(\zeta)d\zeta}{\zeta - z}$$

=
$$-\frac{f(z)}{2} + \left(\frac{1}{2\pi i} p.v. \int \frac{f(\zeta)d\zeta}{\zeta - z}\right)$$

where the part in parenthesis is a definition and p.v. stands for principal value.

Exercise 1.4. Show that Cf(z) extends from Ω_+ to $\Omega_+ \cup \gamma$. Call the boundary value $C_+f \in H_+(\gamma)$. Also show that $C_+f(z) = \frac{f(z)}{2} + \frac{1}{2\pi i}p.v.\int_{\gamma} \frac{f(\zeta)d\zeta}{\zeta-z}$.

Corollary 1.5. $C_{+}f - C_{-}f = f$

Theorem 1.6. $\exists M > 0$ (depending on γ) such that $||C_+f||_2 \leq M||f||_2, \forall C^1 f$. The smallest such M is $||C_+||$.

Corollary 1.7. C_+ extends to a bounded linear map $L^2(\gamma, ds) \to H_+(\gamma)$.

What's the role of the Riemann sphere here?

Consider $\mathbb{C} \cup \{\infty\} \xrightarrow{\varphi} \mathbb{C} \cup \{\infty\}$ given by $z \mapsto \varphi(z) = \frac{c+dz}{a+bz}$. Insist that ad - bc = 1 (this

determines $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ up to sign). Let $\tilde{\gamma} = \varphi^{-1}(\gamma) = \frac{-c+a\gamma}{d-b\gamma}$ and $\tilde{f}(z) = \frac{f(\varphi(z))}{a+bz}$. Everything discussed so far is preserved:

$$\begin{split} \int_{\tilde{\gamma}} \tilde{f} \tilde{g} dz &= \int_{\gamma} fg dz \\ \int_{\tilde{\gamma}} \tilde{f} \overline{\tilde{g}} ds &= \int_{\gamma} f \overline{g} ds \\ C_{\tilde{\gamma}} \tilde{f} &= C_{\gamma} \tilde{f} \\ ||C_{\tilde{\gamma},+}|| &= ||C_{\gamma,+}|| \end{split}$$

Definition 1.8. Let V be a vector space and $P: V \longrightarrow V$ be a linear map. Then P is a **projection operator** if $P^2 = P$.

Exercise 1.9. If P is a projection operator then:

(1) I - P is also a projection operator

Proof.
$$(I - P)^2 = I - 2P + P^2 = I - P$$

(2) $\ker P = \operatorname{range}(I - P)$

Proof. $\forall x \in \ker(P), (I - P)(x) = x \Rightarrow \ker(P) \subseteq \operatorname{range}(I - P).$ For $y \in \operatorname{range}(P), y = (I - P)(x)$ for some x and $P(y) = P((I - P(x)) = P(x) - P^2(x) = 0 \Rightarrow \ker(P) \supseteq \operatorname{range}(I - P).$ □

(3) range(P) = ker(I - P)

Proof. $(I - P)(P(x)) = P(x) - P^2(x) = 0 \Rightarrow \operatorname{range}(P) \subseteq \ker(I - P) \text{ and if } z \in \ker(I - P), \text{ then } (I - P)(z) = 0 \text{ so } P(z) = z \Rightarrow \operatorname{range}(P) \supseteq \ker(I - P).$

(4) ker $P \cap$ range $P = \ker P \cap \ker(I - P) = \{0\}$

Proof. The first equality follows from (3) and the second equality follows from the following: If P(x) = 0 and (I - P)(x) = 0, then $0 = (I - P)(x) = x \Rightarrow x = 0$. \Box

(5) $V = \ker P \oplus \operatorname{range} P$

Proof. This follows from (4) and dimensional analysis.

(6) Given $V = V_1 \oplus V_2$, there is a unique projection operator $P: V \longrightarrow V$ with kernel V_1 and range V_2 .

Proof. Let $P(v_1 + v_2) = v_2$.

Lecture 3. September 14, 2009

Let γ be a C^1 counterclockwise simple closed curve with Ω_+ as the interior and Ω_- as the exterior. Let $\tilde{\gamma}$ be a C^1 clockwise simple closed curve with $\tilde{\Omega}_-$ as the interior and $\tilde{\Omega}_+$ as the exterior. Let φ be a map between the tilde-spaces to the regular spaces (view both spaces as the Riemann sphere). This shows that anything we do for Ω_+ can be done for Ω_- . Ω_+ is always the portion bounded by the positively oriented part of the curve and Ω_- is always the portion bounded by the negatively oriented part of the curve.

$$f \in C^{1}(\gamma) \Rightarrow C_{\pm}f(z) = \pm \frac{f(z)}{2} + \text{p.v.} \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)d\zeta}{\zeta - z} \in A(\Omega_{\pm})$$
$$\mathcal{H}f(z) = \frac{1}{2\pi i} \text{ p.v.} \quad \int_{\gamma} \frac{f(\zeta)d\zeta}{\zeta - z} = \frac{C_{\pm}f + C_{\pm}f}{2} \in C(\gamma)$$

$$H_{\epsilon}f(z) \equiv \frac{1}{2\pi i} \int_{\zeta \in \gamma, |\zeta - z| \ge \epsilon} \frac{f(\zeta)d\zeta}{\zeta - z} \xrightarrow{\epsilon \to 0^+} \mathcal{H}f(z) \text{ uniformly}$$

For $f \in A(\Omega_+)$, $C_+f = f$ and $C_-f = 0$ Similarly, for $f \in A(\Omega_-)$, $-C_{\pm}f = f$ and $C_+f = 0$. If we extend the domain to H_{\pm} , then for $f \in H_{\pm}(\gamma)$, $\pm C_{\pm}f = f$ and $C_{\mp}f = 0$. Therefore $(C_+)^2 f = C_+ f$ and $(-C_-)^2 f = -C_- f$. Hence C_+ and $-C_-$ are both projection operators with:

$$\operatorname{range}(\pm C_{\pm}) = H_{\pm}(\gamma)$$

$$\operatorname{kernel}(\pm C_{\pm}) = \operatorname{range}(I \mp C_{\pm}) = \operatorname{range}(\mp C_{\mp}) = H_{\mp}(\gamma)$$

Recall that $L^2(\gamma, ds) = H_+ \oplus H_-$.

$$\mathcal{H}^2 = \left(\frac{C_+ + C_-}{2}\right)^2 = \frac{C_+^2 + C_+ C_- + C_- C_+ + C_-^2}{4} = \frac{C_+ - C_-}{4} = \frac{I}{4}$$

where $C_+C_- + C_-C_+ = 0$ because for $f \in H_{\pm}$, $C_{\mp}f = 0$.

PROJECTION OPERATOR: Let V be a vector space and $V = V_1 \oplus V_2$. Define a projection operator $P(v_1 + v_2) = v_2$, where $v_i \in V_i$. Then the range of P is V_2 and the kernel of P is V_1 . Every projection operator has this form.

SPECIAL CASE: Let V be a Hilbert space (e.g. L^2) and V_2 a closed subspace of V. Then $V = V_2^{\perp} \oplus V_2$. From this set-up we get an orthogonal projection operator given by P(w+v) = v (i.e. $P = P_{V_2}$). With P as above, (I - P)g is an orthogonal projection operator on V_2^{\perp} .

$$< Pf, g > = < Pf, g - (I - P)g > = < Pf, Pg > = < Pf + (I - P)f, Pg > = < f, Pg > = < f,$$

Hence P is self-adjoint.

Exercise 1.10. Given P a projection operator, P is an orthogonal projection operator if and only if (by definition) $\ker(P) = (\operatorname{range} P)^{\perp}$ if and only if P is self-adjoint.

Special Case: Let $P : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a projection operator. Then dim $V_1 = \dim V_2 = 1$.

Exercise 1.11. $||P|| = \csc \theta$, where θ is the angle between V_1 and V_2 .

Exercise 1.12. In general, if P is a non-zero projection operator, then

 $||P|| = \csc\left(\inf\{\operatorname{angle}(v_1, v_2) \mid v_1 \in \operatorname{Ker} P, v_2 \in \operatorname{Range} P\}\right)$

The portion inside csc is known as the "1st principal angle" of Jordan.

P is an orthogonal projection operator if and only if ||P|| = 1. Let $\Omega \subset \mathbb{C}^n$ be open. The **Bergman space** $B(\Omega) = \{f \in L^2(\Omega) \mid f \text{ holo.}\}.$

Proposition 1.13. $B(\Omega)$ is a closed subspace of $L^2(\Omega)$.

Proof. Use the solid Mean Value Theorem.

Let γ be a C^1 counterclockwise, simple closed curve. The **Szego projections** S_{\pm} are the orthogonal projection operators $L^2(\gamma, ds) \longrightarrow H_{\pm}(\gamma)$. Recall that $\pm C_{\pm} : L^2(\gamma, ds) \longrightarrow H_{\pm}$ are also projection operators.

Theorem 1.14. $S_{\pm} = \pm C_{\pm} \Leftrightarrow C_{\pm}$ is self-adjoint $\Leftrightarrow ||C_{\pm}|| = 1 \Leftrightarrow H_{+} \perp H_{-} \Leftrightarrow \gamma$ is a circle or a line. The last " \Leftrightarrow " follows from a Kerzman-Stein result.

We need to prove that $||C_{\pm}f||_2 \leq M||f||_2$ for $f \in C^1$. This is true for any γ that is C^1 , but to simplify the proof we shall assume that γ is C^2 . It suffices to show that $||\mathcal{H}f||_2 \leq \widetilde{M}||f||_2$ for $f \in C^1(\Omega)$. Let $u \in C^1(\Omega_+ \cup \gamma)$, where u(z) is the unit tangent vector for γ at $z \in \gamma$ (so γ is a function on S^1 that extends to a \mathbb{C} -valued function in the interior of γ).

Exercise 1.15. For $f \in C^1(\gamma) \Rightarrow \frac{1}{2\pi i} \int_{\gamma - \{|\zeta - z| < \epsilon\}} \frac{\overline{u(z)}f(\zeta)u(\zeta)d\overline{\zeta}}{\overline{z} - \overline{\zeta}}$ converges uniformly as $\epsilon \to 0^+$ to $\mathcal{H}^* f \in C^1(\gamma)$. *Hint: follow work from the previous lecture.*

Lecture 4. September 16, 2009

$$\mathcal{H}_{\epsilon}f(z) = \frac{1}{2\pi i} \int_{\zeta \in \gamma, |\zeta - z| \ge \epsilon} \frac{f(\zeta)d\zeta}{\zeta - z} \longrightarrow \mathcal{H}f(z) \text{ as } \epsilon \to 0 \text{ uniformly}$$
$$\mathcal{H}_{\epsilon}^*f(z) = \frac{1}{2\pi i} \int_{\zeta \in \gamma, |\zeta - z| \ge \epsilon} \frac{\overline{u(z)}f(\zeta)u(\zeta)d\overline{\zeta}}{\overline{\zeta} - \overline{z}} \longrightarrow \mathcal{H}^*f(z) \text{ as } \epsilon \to 0 \text{ uniformly}$$

where $f \in C^1(\gamma), z \in \gamma, u \in C^1(\Omega_+ \cup \gamma)$ and u(z) is a unit tangent vector for γ at $z \in \gamma$. *NOTE: $|dz| = u(z)d\overline{z}$ and u(z)|dz| = dz on γ .

Define $\delta(\zeta, z) = \text{distance from } \zeta \text{ to } z \text{ along } \gamma \text{ (where } \zeta, z \in \gamma \text{)}.$

Lemma 1.16 (1).

$$\varphi(z,\zeta) = \begin{cases} \frac{\delta(z,\zeta)}{|z-\zeta|}, & z \neq \zeta \\ 1, & z = \zeta \end{cases} \text{ is continuous on } \gamma \times \gamma$$

Corollary 1.17. φ is bounded on $\gamma \times \gamma$.

Lemma 1.18 (2). Assume that γ is C^2 . Then

$$\frac{u(\zeta)}{\zeta - z} - \frac{1}{\delta(\zeta, z)} \text{ is bounded on } (\gamma \times \gamma) - \{\zeta = z\}$$

Recall that $u \in C^1(\Omega_+ \cup \gamma)$ and u(z) is the unit tangent vector for γ at $z \in \gamma$.

Proof. Parametrize γ by arc length. Let $f:[0,l] \longrightarrow \gamma$ such that f'(t) = u(f(t)) and f(0)is far away from z, ζ on γ . Let $\zeta = f(s), z = f(t)$. Then

$$\frac{u(\zeta)}{\zeta - z} - \frac{1}{\delta(\zeta, z)} = \frac{f'(s)}{\zeta - z} - \frac{1}{s - t} = \frac{f'(s)(s - t) - (f(s) - f(t))}{(s - t)^2} \frac{s - t}{\zeta - z}$$

Note $\frac{s-t}{\zeta-z}$ is bounded by lemma 1, so

$$\left|\frac{f'(s)(s-t) - f(t) + f(s)}{(s-t)^2}\right| \le \frac{\max|f''|}{2}$$

is bounded by Taylor's theorem.

Lemma 1.19 (3). Suppose $f, g \in C^1(\gamma)$. Then $\int (\mathcal{H}_{\epsilon}f)\overline{g}ds = \int f(\overline{\mathcal{H}_{\epsilon}^*g})ds$. *Proof.* Use Fubini's theorem and *.

Lemma 1.20 (4). Suppose $f, g \in C^1(\gamma)$. Then $\int (\mathcal{H}f)\overline{g}ds = \int f(\overline{\mathcal{H}^*g})ds$.

Proof. Use uniform convergence $\mathcal{H}_{\epsilon}f \to \mathcal{H}f, \mathcal{H}^*_{\epsilon}g \to \mathcal{H}^*g$ and lemma 3. Now look at

$$(\mathcal{H} - \mathcal{H}^*)f = p.v \left(\frac{1}{2\pi i} \int f(\zeta) \left(\frac{d\zeta}{\zeta - z} - \frac{\overline{u(z)}u(\zeta)d\overline{\zeta}}{\overline{\zeta} - \overline{z}}\right)\right)$$
$$= p.v \left(\frac{1}{2\pi i} \int f(\zeta) \left(\frac{u(\zeta)}{\zeta - z} - \frac{\overline{u(z)}}{\overline{\zeta} - \overline{z}}\right) |d\zeta|\right)$$

Lemma 1.21 (5). $\frac{u(\zeta)}{\zeta-z} - \frac{\overline{u(z)}}{\overline{\zeta}-\overline{z}}$ is bounded on $\gamma \times \gamma - \{\zeta = z\}$. Proof.

$$\frac{u(\zeta)}{\zeta - z} - \frac{\overline{u(z)}}{\overline{\zeta} - \overline{z}} = \left(\frac{u(\zeta)}{\zeta - z} - \frac{1}{\delta(\zeta, z)}\right) + \left(\frac{1}{\delta(\zeta, z)} - \frac{\overline{u(z)}}{\overline{\zeta} - \overline{z}}\right)$$

Each term in parenthesis is bounded by lemma 2.

Therefore:

$$(\mathcal{H} - \mathcal{H}^*)f = \frac{1}{2\pi i} \int \left(\frac{u(z)}{\zeta - z} - \frac{\overline{u(z)}}{\overline{\zeta} - \overline{z}}\right) f(\zeta) |d\zeta|$$

(we do not need the principal value)

Corollary 1.22. $||(\mathcal{H} - \mathcal{H}^*)f||_2 \leq M'||f||_2$. In fact, $||(\mathcal{H} - \mathcal{H}^*)f||_{\infty} \leq M''||f||_2$. Also,

$$\begin{split} ||\mathcal{H}f||_{2}^{2} &= <\mathcal{H}f, \mathcal{H}f > \\ &= <\mathcal{H}^{*}f + (\mathcal{H} - \mathcal{H}^{*})f, \mathcal{H}f > \\ &= + <(\mathcal{H} - \mathcal{H}^{*})f, \mathcal{H}f > \\ &= \frac{1}{4}||f||_{2}^{2} + <(\mathcal{H} - \mathcal{H}^{*})f, \mathcal{H}f > \\ &\leq \frac{1}{4}||f||_{2}^{2} + M'||f||_{2}||\mathcal{H}f||_{2} \ by \ Cauchy-Schwarz \\ &\leq \frac{1}{4}||f||_{2}^{2} + \frac{(M')^{2}}{2}||f||_{2}^{2} + \frac{||\mathcal{H}f||_{2}^{2}}{2} \end{split}$$

where the final inequality uses:

$$0 \le \frac{1}{2} (M'||f||_2 - ||\mathcal{H}f||_2)^2 = \frac{1}{2} (M')^2 ||f||_2^2 - M'||f||_2 ||\mathcal{H}f||_2 + \frac{1}{2} ||\mathcal{H}f||_2^2$$

which implies that

$$M'||f||_2||\mathcal{H}f||_2 \le \frac{(M')^2}{2}||f||_2^2 + \frac{||\mathcal{H}f||_2^2}{2}$$

Then $||\mathcal{H}f||_2^2 \leq \frac{1}{4}||f||_2^2 + \frac{(M')^2}{2}||f||_2^2 + \frac{||\mathcal{H}f||_2^2}{2}$ implies (by rearranging the terms) that

$$||\mathcal{H}f||_{2}^{2} \leq \left(\frac{1}{2} + (M')^{2}\right)||f||_{2}^{2} \text{ and thus}$$
$$||C_{\pm}f||_{2} = \left|\left|\pm\frac{f}{2} + \mathcal{H}f\right|\right|_{2} \leq \left(\frac{1}{2} + \sqrt{\frac{1}{2} + (M')^{2}}\right)||f||_{2}$$

So the operators C_{\pm} are bounded, as previously claimed.

Lecture 5. September 18, 2009

 S_{\pm} (the Szego projections) are characterized by:

- (1) S_{\pm} projects $L^2(\gamma, ds)$ onto $H_{\pm}(\gamma)$
- (2) $\int_{\gamma} (S_{\pm}f)\overline{g}ds = \int_{\gamma} f(\overline{S_{\pm}g})ds$

 C_{\pm} (the Cauchy integrals) satisfy condition (1) but not (2).

Proposition 1.23. C_{\pm} satisfy:

(1)
$$C_{\pm}$$
 projects $L^2(\gamma, ds)$ onto $H_{\pm}(\gamma)$
(2) $\int_{\gamma} (C_{\pm}f)gdz = -\int_{\gamma} f(C_{\pm}g)dz$

Proof. Claim (1) is clear so we shall prove claim (2). $f, g \in A(\Omega_+) \Rightarrow \int_{\gamma} fgdz = 0$ and $f, g \in A(\Omega_-) \Rightarrow \int_{\gamma} fgdz = 0$ (both f and g have zeros at ∞ , so ∞ is a double zero, hence by the exterior residue theorem the residue is zero). Pass to the limit

$$f, g \in H_{+}(\gamma) \Rightarrow \int_{\gamma} fg dz = 0 \text{ and } f, g \in H_{-}(\gamma) \Rightarrow \int_{\gamma} fg dz = 0$$
$$\int_{\gamma} (C_{\pm}f)g dz = \int_{\gamma} (C_{\pm}f)(C_{+}g - C_{-}g)dz = \int_{\gamma} (C_{\pm}f)(\pm C_{\pm}g)dz$$

where the second equality follows since either $C_+g = 0$ or $C_-g = 0$. Furthermore,

$$\int_{\gamma} (C_{\pm}f)(\pm C_{\pm}g)dz = \pm \int_{\gamma} (C_{\pm}f - C_{\mp}f)C_{\pm}gdz = -\int_{\gamma} f(C_{\pm}g)dz$$
$$\int (C_{\pm}f)adz = -\int_{\gamma} f(C_{\pm}a)dz$$

Therefore,

$$\int_{\gamma} (C_{\pm}f)gdz = -\int_{\gamma} f(C_{\pm}g)dz$$

Exercise 1.24. The properties in the above proposition characterize C_{\pm} . Let $\tilde{g} = \overline{gu}$, u be a unit vector.

$$\begin{split} \text{If } f \in L^{2}(\gamma, ds) \Rightarrow \\ & ||f|| = \sup_{g \in L^{2}, ||g|| = 1} \left| \int_{\gamma} f \bar{g} ds \right| \\ & = \sup_{g \in L^{2}, ||g|| = 1} \left| \int_{\gamma} f \bar{g} dz \right| \\ & = \sup_{g \in L^{2}, ||f|| = 1} \left| \int_{\gamma} f \tilde{g} dz \right| \\ & = \sup_{f \in L^{2}, ||f|| = 1, g \in L^{2}, ||g|| = 1} \left| \int_{\gamma} (C_{+}f) g dz \right| \\ & = \sup_{f \in L^{2}, ||f|| = 1, g \in L^{2}, ||g|| = 1} \left| \int_{\gamma} f(C_{-}g) dz \right| \\ & = \sup_{g \in L^{2}, ||g|| = 1} \left| |C_{-}g| \right| \\ & = ||C_{-}|| \\ \end{split} \\ \\ \text{If } f \in H_{+}(\gamma) \Rightarrow \\ \begin{aligned} ||f|| = \sup_{g \in L^{2}, ||g|| = 1} \left| \int_{\gamma} f(C_{-}g) dz \right| \\ & \leq \sup_{h \in H_{-}, ||h|| \leq ||C_{-}||} \left| \int_{\gamma} fh dz \right| \\ & = ||C_{-}|| \sup_{h \in H_{-}, ||h|| = 1} \left| \int_{\gamma} fh dz \right| \\ & = ||C_{-}|| \sup_{h \in H_{-}, ||h|| = 1} \left| \int_{\gamma} fh dz \right| \\ & = ||C_{-}|| \sup_{h \in H_{-}, ||h|| = 1} \left| \int_{\gamma} fh dz \right| \\ & \leq ||f|| \end{aligned}$$

This is a non-exact duality pairing.

$$\frac{1}{||C_+||} = \frac{1}{||C_-||} \le \inf_{f \in H_+, ||f||=1} \sup_{h \in H_-, ||h||=1} \left| \int_{\gamma} fh dz \right|$$

Theorem 1.25.

$$\frac{1}{||C_-||} = \inf_{f \in H_+, ||f||=1} \sup_{h \in H_-, ||h||=1} \left| \int_{\gamma} fh dz \right|$$

Proof. $\forall \epsilon > 0$, pick $g \in L^2$ such that $||C_+g|| = 1$ and $||g|| \le \frac{1}{||C_+||-\epsilon}$. Choose $f = C_+g$ so that:

$$\inf_{f \in H_+, ||f||=1} \left(\sup_{h \in H_-, ||h||=1} \left| \int_{\gamma} fh dz \right| \right) \leq \sup_{h \in H_-, ||h||=1} \left| \int_{\gamma} (C_+g) h dz \right| \\
= \sup_{h \in H_-, ||h||=1} \left| \int_{\gamma} gh dz \right| \\
\leq ||g|| \\
\leq \frac{1}{||C_+||-\epsilon}$$

Hence, we have equality.

2. Projective Space

Let $k = \mathbb{R}$ or \mathbb{C} and let V be a k-vector space. $\mathbb{P}V$ is the set of all k-lines through 0 in V. $k\mathbb{P}^n = \mathbb{P}k^{n+1}$

$$k^{n+1} \setminus \{0\} \longrightarrow k\mathbb{P}^n$$
 given by $a = (a_0, \dots, a_n) \mapsto l_a = [a_0 : \dots : a_n]$
 $l_a = L_b \Leftrightarrow b = \lambda a (\lambda \neq 0)$

Identify $k\mathbb{P}^n$ with $k^{n+1} \setminus \{0\}/(a \sim \lambda a), \forall \lambda \in k \setminus \{0\}$. Subsets of $k\mathbb{P}^n$ can be identified with subsets of $k^{n+1} \setminus \{0\}$ invariant under (non-zero) multiplication. Use the quotient topology.

 \mathbb{RP}^n can be identified with the unit sphere in $\mathbb{R}^{n+1}/a \sim -a$

 \mathbb{CP}^n can be identified with the unit sphere in $\mathbb{C}^{n+1}/a \sim e^{i\theta}a$

From these examples, it is not surprising that $k\mathbb{P}^n$ is compact. In fact, $k\mathbb{P}^n$ is a manifold. Standard charts are called affinizations. Let α be a hyperplane in k^{n+1} with $0 \notin \alpha$ and α_0 be the parallel hyperplane to α through 0. Define $\varphi_{\alpha} : l \mapsto l \cap \alpha \in \alpha$. Let

 $U_{\alpha} = \{l \mid l \text{ line through 0 not parallel to } \alpha\} = \{l \mid l \notin \alpha_0\}$

 $U_{\alpha} \xrightarrow{\varphi_{\alpha}} \alpha$ is bijective since each line in U_{α} intersects α once. Note that $\mathbb{P}\alpha_0 = k\mathbb{P}^n \setminus U_{\alpha}$ and $k\mathbb{P}^n = U_{\alpha} \sqcup \mathbb{P}\alpha_0$. U_{α} corresponds to k^n and $\mathbb{P}\alpha$ corresponds to $k\mathbb{P}^{n-1}$. In particular, \mathbb{CP}^1 can be identified with $\mathbb{C} \sqcup \{\text{point}\}$ (\mathbb{R} -sphere).

Lecture 6. September 21, 2009

$$\varphi(z,\zeta) = \begin{cases} \frac{\delta(z,\zeta)}{|z-\zeta|}, & z \neq \zeta \\ 1, & z = \zeta \end{cases} \text{ is continuous on } \gamma \times \gamma$$

How nice does γ need to be in order for $L^2(\gamma) = H_+(\gamma) \oplus H_-(\gamma)$?

- Sufficient: γC^2 (proved in class)
- Sufficient: γC^1
- Sufficient: γ is Lipschitz
- Sufficient: Lemma 1
- Necessary: $\frac{\delta(z,\zeta)}{|z-\zeta|}$ is bounded
- Necessary and Sufficient: $\exists c > 0$ such that $\text{length}(\gamma) \cap D \leq C(\text{radius})D, \forall \text{disks } D$

Charts:

Let α be a k-hyperplane with $0 \notin \alpha$, α_0 the parallel hyperplane through 0, and

$$U_{\alpha} = \{ l \in k \mathbb{P}^n \mid l \nsubseteq \alpha_0 \} \xrightarrow{\varphi_{\alpha}} \alpha \text{ given by } l \mapsto l \cap \alpha$$

Suppose we have two charts given by α and β . $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \alpha \setminus \beta_0 \longrightarrow \beta \setminus \alpha_0$

$$k\mathbb{P}^n \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_m} \Leftrightarrow \alpha_{1,0} \cap \cdots \cap \alpha_{m,0} = \{0\}, \text{ where } m \ge n+1$$

The standard atlas is given by:

$$\alpha_j = \{z \in k^{n+1} \mid z_j = 1\}$$
$$\alpha_{j,0} = \{z \in k^{n+1} \mid z_j = 0\}$$
$$\varphi_j : (z_0 : \dots : z_n) \mapsto \left(\frac{z_0}{z_j}, \dots, \frac{z_n}{z_j}\right)$$

Replace φ_j by $\widetilde{\varphi}_j : U_{\alpha_j} \longrightarrow \P \alpha_j$ given by $(z_0 : \cdots : z_n) \mapsto (\frac{z_0}{z_j}, \ldots, \hat{1}, \ldots, \frac{z_n}{z_j})$, where the hat means to omit the *j*th entry.

Definition 2.1. Let $V \subset k^{n+1}$ be an m + 1-dimensional vector subspace. Then $\mathbb{P}(V)$ is a **projective** *m*-dimensional *k*-plane.

Fix affinitiation φ_{α} . There are two possibilities:

- (1) $V \subset \alpha_0$ and $\mathbb{P}V \subset \mathbb{P}\alpha_0$ (i.e. " $\mathbb{P}V$ lies at ∞ ")
- (2) $V \not\subseteq \alpha_0, \varphi_\alpha(V) = \alpha \cap V$ affine *m*-dimensional *k*-plane in α . $\mathbb{P}V = (\alpha \cap V) \sqcup \mathbb{P}(\alpha_0 \cap V)$. Note that $\mathbb{P}(\alpha_0 \cap V)$ is a projective m - 1-dimensional *k*-plane "at ∞ "

Special Cases:

Example 2.4

- (1) m = n 1, $\mathbb{P}\alpha_0$ is a projective hyperplane at ∞ with respect to φ_{α}
- (2) m = 1, $\mathbb{P}\alpha$ is a hyperplane at ∞ or $\mathbb{P}\alpha = (\text{affine line}) \sqcup (\text{one point at } \infty)$

Exercise 2.2. Two affine lines l_1, l_2 in k^n are parallel if and only if they meet ∞ at the same point.

Definition 2.3. Given an invertible linear map $M : k^{n+1} \longrightarrow k^{n+1}$, there is an induced map $k\mathbb{P}^n \longrightarrow k\mathbb{P}^n$ given by $l_a \mapsto l_{Ma}$. This induced map is a **projective transformation** (also known as a **projective map**, a **linear fractional transformation**, or a **Mobius transformation**).

How do these look in affine coordinates? Let's look in affine patches where $z_0 \neq 0$. Let n = 2 and let A through I be the entries of the matrix/linear map M. Then:

$$(z_1, z_2) \mapsto (1: z_1: z_2)$$

$$\mapsto (A + Bz_1 + Cz_2: D + Ez_1 + Fz_2: G + Hz_1 + Iz_2)$$

$$\mapsto \left(\frac{D + Ez_1 + Fz_2}{A + Bz_1 + Cz_2}, \frac{G + Hz_1 + Iz_2}{A + Bz_1 + Cz_2}\right)$$

$$(z_1, z_2) \mapsto (\frac{1}{z_1}, \frac{z_2}{z_1}) \text{ is a LFT corresponding to } \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Example 2.5. $(z_1, z_2) \mapsto (\frac{1}{z_1}, z_2)$ is not a LFT (it is a birational map). It corresponds to the map: $(z_0: z_1: z_2) \mapsto (z_1: z_0: z_1 z_2)$, which is not defined at (0: 0: 1).

Exercise 2.6. The maps $\{\varphi_{\beta} \circ \varphi_{\alpha}^{-1}\}_{\alpha,\beta}$ are linear fractional transformations.

 M_1, M_2 induce the same linear fractional transformation if and only if $M_1 = \lambda M_2 (\lambda \neq 0)$. So can restrict to $M \in SL(n+1, k)$.

If $k = \mathbb{R}$, *n* even, then get a unique *M* for each LFT

If $k = \mathbb{R}, n$ odd, then LFT determines M up to sign

If $k = \mathbb{C}$, then LFT determines M up to (n+1)st roots of unity.

Example 2.7. The LFT $(z_1, z_2) \mapsto (\frac{1}{z_1}, \frac{z_2}{z_1} \text{ corresponds to } \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$

Proposition 2.8.

- (1) LFTs map projective m-dimensional planes to projective m-dimensional planes.
- (2) Any projective m-dimensional plane can be mapped to any other m-dimensional plane by a LFT.
- (3) Any projective hyperplane can be mapped to a projective hyperplane at infinity by a *LFT*.

Lecture 7. September 23, 2009

Focus on \mathbb{RP}^n : $\mathbb{RP}^1 = \mathbb{R} \cup \{\infty\}$

 $E \subset \mathbb{R}$ is **convex** $\Leftrightarrow E$ is connected

$$\Leftrightarrow \mathbb{RP}^1 \setminus E \text{ is connected}$$

 $\Rightarrow \mathbb{R} \setminus E$ has 0,1, or 2 components

 $E \subset \mathbb{RP}^1$ is **projectively convex** $\Leftrightarrow E$ is connected

 $\Leftrightarrow \mathbb{RP}^1 \setminus E$ is projectively convex

Let $n > 1, \mathbb{RP}^n = \mathbb{R}^n \cup$ "projective hyperplane at ∞ ".

Definition 2.9. $E \subset \mathbb{R}^n$ is **convex** if $E \cap l$ is connected for all affine lines $l \subset \mathbb{R}^n$.

Definition 2.10. $E \subset \mathbb{RP}^n$ is **projectively convex** if $E \cap l$ is connected for all projective lines $l \subset \mathbb{RP}^n$.

So $E \subset \mathbb{RP}^n$ is projectively convex $\Leftrightarrow \mathbb{RP}^n \setminus E$ is projectively convex.

Example 2.11. The open/closed ball B in \mathbb{R}^n is convex, but $\mathbb{R}^n \setminus B$ is neither convex nor projectively convex. However, $\mathbb{RP}^n \setminus B$ is projectively convex (not APS-convex).

Definition 2.12 (APS). $E \subset \mathbb{RP}^n$ is **convex** if E is projectively convex and E contains no projective line.

Note: if $E \subset \mathbb{R}^n$, this definition is compatible with the standard definition because for E to contain a projective line it must contain a point at infinity.

Proposition 2.13. If $E \subset \mathbb{RP}^n$ is convex and ψ is a LFT, then $\psi(E)$ is convex.

We will show that if E is open/closed in \mathbb{RP}^n , then E is convex $\Leftrightarrow \exists \psi$, a LFT, such that $\psi(E) \subset \mathbb{RP}^n$ is convex.

Proposition 2.14. Suppose that $\alpha \subset \mathbb{RP}^n$ is a projective hyperplane and $\{E_j\}$ is a family of convex subsets of $\mathbb{RP}^n \setminus \alpha$. Then $\cap E_j$ is convex.

Proof. Move α to infinity so that $\mathbb{RP}^n \setminus \alpha \cong \mathbb{R}^n$. Then quote a standard fact for \mathbb{R}^n . \Box

Consider l_1, l_2 distinct projective lines in \mathbb{RP}^2 .

Case 1:: l_2 is a line at ∞ . Then $\mathbb{RP}^2 \setminus (l_1 \cup l_2) = \mathbb{R}^2 \setminus l_2$ has two components.

Case 2:: Neither line is at ∞ . Then $\mathbb{R}^2 \setminus (l_1 \cup l_2)$ has four components and $\mathbb{RP}^2 \setminus (l_1 \cup l_2)$ has two components.

The same kind of reasoning works in higher dimensions.

If $\alpha_1, \alpha_2 \subset \mathbb{RP}^n$ are distinct projective hyperplanes, then $\mathbb{RP}^n \setminus (\alpha_1 \cup \alpha_2)$ has two components called **open half-spaces**. (Another way to see this is by moving one of the α_i to ∞ .) A **closed half-space** is the open half-space union $(\alpha_1 \cup \alpha_2)$. Open half-spaces are convex. Closed half-spaces are projectively convex but not convex. A half-space is **affine** if α_1 or α_2 lies at ∞ .

Theorem 2.15 (Affine Finite-Dimensional Hahn-Banach Theorem). Suppose $E \subset \mathbb{R}^n$ is an open convex subset. Then $\mathbb{R}^n \setminus E$ is a (probably infinite or uncountable) union of affine hyperplane. Equivalent to the condition:

(*) $X_0 \notin E \Rightarrow X_0$ is in an affine hyperplane disjoint from E

Corollary 2.16. Let E be a convex closed subset of \mathbb{R}^n . Then $\mathbb{R}^n \setminus E$ is a union of affine hyperplanes.

Proof. For $\epsilon > 0$, let $E_{\epsilon} = \{x \in \mathbb{R}^n \mid \text{dist}(x, E) < \epsilon\}$. Exercise: E_{ϵ} is open and convex. Then $E = \bigcap_{\epsilon > 0} E_{\epsilon}$ and $\mathbb{R}^n \setminus E = \bigcup_{\epsilon > 0} \mathbb{R}^n \setminus E_{\epsilon} = \mathbb{R}^n \setminus \bigcap_{\epsilon > 0} E_{\epsilon}$ is a union of affine hyperplanes. \Box

Remark 2.17. This can fail for E convex but neither open nor closed.

Corollary 2.18. If $E \subset \mathbb{R}^n$ is a convex set that is either open or closed, then E is the intersection of open affine half-spaces.

Proof. Pick $x_0 \notin E$. Then x_0 is contained in an affine hyperplane, α_{x_0} , disjoint from E. If E is connected, then E lies on one side of α_{x_0} . Let H_{x_0} be the open half-space bounded by α_{x_0} , i.e. $x_0 \notin H_{x_0} \supset E$. Then $E = \bigcap_{x_0 \in \mathbb{R}^n \setminus E} H_{x_0} = \bigcap_{x_0 \in \mathbb{R}^n \setminus E} \mathbb{R}^n \setminus \alpha_{x_0} = \mathbb{R}^n \setminus \bigcup_{x_0 \in \mathbb{R}^n \setminus E} \alpha_{x_0}$. \Box

Exercise 2.19. Suppose $E \subset \mathbb{R}^n$ is a convex, closed set. Then E is the intersection of closed affine half-spaces. This is not true if E is open.

All of these results are finite-dimensional versions of the Hahn-Banach theorem.

Proof Of Theorem (*). After translation, we can assume that $x_0 = 0$. If n = 1 the proof is easy. Proof by induction:

If n = 2: Let $S^1 \subset \mathbb{R}^2$ be a unit circle. Assume that $E \subsetneq \mathbb{R}^n$ and (wlog) $0 \notin E$. (If $0 \in E$, then move the origin to a point in $\mathbb{R}^n \setminus E$). Let $F = \{x \in S^1 \mid \text{ray from } 0 \text{ to } x \text{ hits } E\}$. F is open and connected, so -F is open and connected. Since $0 \notin E$, $x \in F \Rightarrow x \notin -F$ and vice versa, so $F \cap (-F) = \emptyset$ and $F \cup (-F) \subsetneq S^1$. Pick $x \in S^1 \setminus (F \cup (-F))$ and let l_x be the line through 0 and x. Then, as desired, l_x is disjoint from E.

If n > 2: $0 \in V \subset \mathbb{R}^n$ any 2-dimensional subspace. Pick a 1-dimensional subset $V_1 \subset V$ containing 0 and satisfying $V_1 \cap E = \emptyset$. Let $\rho : \mathbb{R}^n \longrightarrow \mathbb{R}^n \setminus V_1$ be a projection map. $\rho(E)$ is an open, connected, convex set not containing 0. Pick $0 \in \alpha \subset \mathbb{R}^n \setminus V$, where α is a hyperplane and $\alpha \cap \rho(E) = \emptyset$. Then $0 \in \rho^{-1}(\alpha) \subset \mathbb{R}^n$, note $\rho^{-1}(\alpha)$ is a hyperplane, $\rho^{-1}(\alpha) \cap E = \emptyset$.

Lecture 8. September 25, 2009

E is projectively convex $\Leftrightarrow E \cap l$ is connected, \forall projective lines *l*

 $\Leftrightarrow \forall p \neq q \in E, E \text{ contains at least one line segment joining } p \text{ and } q$ $\Leftrightarrow \mathbb{RP}^n \setminus E \text{ is projectively convex}$

Proposition 2.20 (1). Let $E \subset \mathbb{RP}^n$ be a projectively convex set not contained in a projective hyperplane. Then $E \subset \overline{Int(E)}$ (i.e. E is "fat"). For a projective hyperplane E, there is a basis a_1, \ldots, a_{n+1} for \mathbb{R}^{n+1} such that $l_{a_i} \in E$.

Proof. For n = 1, the proof is easy. Use induction.

If n > 1: For $p \in E$, we must show that $p \in \overline{\operatorname{Int}(E)}$. Choose a basis a_1, \ldots, a_{n+1} of \mathbb{R}^{n+1} with $l_{a_j} \in E, p \in l_{a_1}$. Let $A = \mathbb{P}(\operatorname{span}(a_1, \ldots, a_n))$. So A is a hyperplane through p and $A \cap E$ is not contained in a lower-dimensional projective plane. By induction, $p \in \overline{\operatorname{Int}_A(A \cap E)}$. For any point $q \in \operatorname{Int}_A(A \cap E)$, we must show that $q \in \overline{\operatorname{Int}(E)}$. Pick a projective hyperplane B distinct from A so that $B \cap E$ is not contained in a lower-dimensional projective plane. Let $B = \mathbb{P}(\operatorname{span}(a_2, \ldots, a_{n+1}))$. Pick $r \in \operatorname{Int}_B(B \cap E) \setminus A$, which is non-empty by the induction hypothesis. Let l be the line through q and r.

Case 1: l and all neighboring lines are in E. Then $q \in Int(E)$.

Case 2: Perturb the points q, r so that $l \notin E, r \notin B, q \notin A$. Since $q, r \in E$ and E is projectively convex, there is a line segment joining these points which is contained in E. By perturbing more, we end up getting that $q \in \overline{\operatorname{Int}(E)}$.

Proposition 2.21 (2). If $E \subset \mathbb{RP}^n$ is projectively convex, then so are Int(E) and \overline{E} .

Proof. Suppose $\operatorname{Int}(E) \cap l$ is not connected. Imagine a circle, l, with $p_1, p_2 \in \operatorname{Int}(E)$ at $-\frac{\pi}{2}, \frac{\pi}{2}$ and $q_1, q_2 \notin \operatorname{Int}(E)$ at $0, \pi$. Perturb the points q_1, q_2 to $\widetilde{q_1}, \widetilde{q_2} \notin E$ and p_1, p_2 to $\widetilde{p_1}, \widetilde{p_2} \in \operatorname{Int}(E)$. Then $E \cap l$ is not connected, which contradicts that E is projectively convex.

 $E^c = \mathbb{RP}^n \setminus E$ and $\overline{E} = (\text{Int}(E^c))^c$ is projectively convex since E is projectively convex.

Proposition 2.22 (3). Let E be projectively convex and l be a projective line meeting IntE and IntE^c. Then $\#(bE \cap l) = 2$.

Proof. Again view the line l as a circle. Let $p_1 \in \text{Int}E$, $q_3, q_2 \in bE$, $p_2 \in \text{Int}E^c$, and $a_1 \in bE$ be points on l in order (going counterclockwise around the circle). Perturb the line l to \tilde{l} and the points so that q_2, q_3 move to E and E^c , respectively, and the rest of the points stay within their respective sets. Then $E \cap \tilde{l}$ is not connected, which is a contradiction.

Corollary 2.23 (1). Suppose that E is projectively convex and $n = \dim E > 1$. Then \overline{E} or $\overline{E^c}$ must contain a projective line.

Proof. Need l disjoint from either IntE or Int E^c . If IntE or Int E^c is empty, then this easily follows. Suppose the boundary of E has finitely many points (i.e. $\#bE < \infty$), then $\#bE^c = \infty$ and the proof is again easy. So assume that $\#bE, \#bE^c = \infty$. Choose points $p_j \in bE_j$ such that $p_j \to p \in bE$. If the line joining p_j to p, denoted $l_{p_j,p}$, does not meet IntE and Int E^c , then we are done so assume not. Then, by proposition 3, the long segment joining p_j to p lies in either IntE or Int E^c . By taking $j \to \infty$ and passing to an appropriate subsequence, these line segments will converge to a line. Since the line segments are contained in the interior of either E or E^c , passing to a subsequence and taking the limit will produce a line in either \overline{E} or $\overline{E^c}$.

Lecture 9. September 28, 2009

Corollary 2.24 (2). If $E \subset \mathbb{RP}^2$ is closed and projectively convex, then E or E^c contains a projective line.

Proof. Suppose that *E* contains no projective line.

Case 1: Suppose E is contained in a projective line. After a change of coordinates, Case 2; Prop $1 \Rightarrow E \subset \overline{\text{Int}E}$. Prop $2 \Rightarrow \text{Int}E$ projectively convex. Cor $1 \Rightarrow \overline{E^c} = (\text{Int}E)^c$ contains a projective line. After a LFT, IntE is an open convex subset of \mathbb{R}^2 . Affine hyperplane \Rightarrow IntE is intersection of open half-spaces.

Case 2a: The half-spaces are all parallel. Then Int E is a half-space or a strip. E does contain

a projective line.

Case 2b:Then E^c contains a projective line.

Corollary 2.25 (3). If $E \subset \mathbb{RP}^2$ is open, projectively convex, then E^c is closed, projectively convex and E or E^c contains a projective line.

Corollary 2.26 (4). If $E \subset \mathbb{RP}^2$ is (APS-)convex, open/closed, then E^c is a union of projective lines.

Proof. By corollaries 2/3, E^c contains a projective line. After LFT, $E \subset \mathbb{R}^2$. Quote affine Hanh-Banach.

Theorem 2.27. ("Projective Hahn-Banach," version 1) E (APS-)convex and open/closed, then E^c is union of projective hyperplanes.

Let $\mathbb{R}^{n+1} = V_1 \oplus V_2$. Then $\exists !Q : \mathbb{R}^{n+1} \longrightarrow V_2$ projective operator with kernel V_1 . This induces $\widetilde{Q} : \mathbb{R}\mathbb{P}^n \setminus \mathbb{P}V_a \longrightarrow \mathbb{P}V_2$ given by $l_a \mapsto l_{Qa}$ (note that $\widetilde{Q} = \widetilde{Q}^2$.

Lemma 2.28 (1). Let $l \subset \mathbb{RP}^n$ be a projective line. Then

$$\widetilde{Q}(l) = \begin{cases} \emptyset & \text{if } l \subset \mathbb{P}V_1 \\ \text{proj. line} & \text{if } l \cap \mathbb{P}V_1 = \emptyset \\ \text{point} & \text{else} \end{cases}$$

Proof. Let $l = \mathbb{P}W, W \subset \mathbb{R}^{n+1}$ (so dimension of W is 2). dim $W \cap V_1 = 2, 0, 1$.

Similar statement for line segments.

Corollary 2.29. Let E be projectively convex and open/closed. Then $\widetilde{Q}(E \setminus \mathbb{P}V_1)$ is projectively convex.

Lemma 2.30 (2). Let dim $V_1 = 1$ and $E \subset \mathbb{RP}^n \setminus \mathbb{P}V_1$ be (APS-)convex. Then $\widetilde{Q}(E)$ is convex.

Proof. Must show that $\widetilde{Q}(E) \not\supseteq \mathbb{P}W, W \subset V_2$ of dimension 2.

 $\widetilde{Q}^{-1}(\mathbb{P}W) = \mathbb{P}(V_1 \oplus W) \setminus \mathbb{P}V_1$ (note: $\mathbb{P}(V_1 \oplus W) \cong \mathbb{RP}^2$ and $\mathbb{P}V_1$ is a point in \mathbb{RP}^2). By corollary 4, \exists a projective line l such that $\mathbb{P}V_1 \subset l \subset \mathbb{P}(V_1 \oplus W) \setminus E$. $\widetilde{Q}(l)$ is a point in $\mathbb{P}W \setminus \widetilde{Q}(E)$, so $\mathbb{P}W \notin \widetilde{Q}(E)$.

Remark 2.31. This is true for higher dimensional V's (prove by induction).

Proof of Hahh-Banach. By induction on n, let $E \subset \mathbb{RP}^n$ be a convex, open/closed subset. Pick $a \notin E$. Want a projective hyperplane containing a in E^c . Pick a projective hyperplane H not containing a. $\widetilde{Q}_{a,H}(E)$ is a convex subset of E. Inductive hypothesis implies that $\exists \widetilde{H} \subset H$ an (n-2)-dimensional plane and $\widetilde{H} \cap \widetilde{Q}_{a,H}(E) = \emptyset$. E is disjoint from $\widetilde{Q}_{a,H}^{-1}(\widetilde{H}) \cup \{a\}$ projective hyperplane in \mathbb{RP}^n .

DUAL PROJECTIVE SPACE

$$\mathbb{RP}^{n} = \mathbb{R}^{n+1} \setminus \{0\}/a \sim \lambda a \text{ where elements are column vectors, i.e.} \begin{pmatrix} a_{0} \\ \ddots \\ \vdots \\ \ddots \\ a_{n} \end{pmatrix}$$

 $\mathbb{RP}^{n*} = \mathbb{R}^{n+1} \setminus \{0\}/a \sim \lambda a \text{ where elements are row vectors, i.e. } (b_0 : \dots : b_n)$ Then $\sum a_j b_j$ is not defined but $\sum a_j b_j = 0$ is a well-defined condition. $b \in \mathbb{RP}^{n*} \Rightarrow h_b = \{a \in \mathbb{RP}^n \mid \sum a_j b_j = 0\}$ is a projective hyperplane in \mathbb{RP}^n .
$$\begin{split} \mathbb{R}\mathbb{P}^{n*} &\leftrightarrow \{\text{proj. hyperplane in } \mathbb{R}\mathbb{P}^n\}\\ a \in \mathbb{R}\mathbb{P}^n \Rightarrow h_a^* = \{b \in \mathbb{R}\mathbb{P}^{n*} \mid \sum_{j} a_j b_j = 0\} = \{b \in \mathbb{R}\mathbb{P}^{n*} \mid a \in h_b\} \text{ is a projective hyperplane.}\\ \mathbb{R}\mathbb{P}^n &\leftrightarrow \{\text{proj. hyperplane in } \mathbb{R}\mathbb{P}^{n*}\} \end{split}$$

Definition 2.32. Let $E \subset \mathbb{RP}^n$. The **polar** of E, denoted E^o , is $\{b \in \mathbb{RP}^{n*} \mid h_b \in E^c\}$. Facts:

- (1) Always have $E \subset E^{oo}$
- (2) Theorem above if and only if E convex, open/closed, then $E = E^{oo}$.

Lecture 10. September 30, 2009

$$\mathbb{RP}^n$$
 where elements are column vectors $a = \begin{pmatrix} a_0 \\ \ddots \\ \vdots \\ \ddots \\ a_n \end{pmatrix}$

 \mathbb{RP}^{n*} = where elements are row vectors $b = (b_0 : \cdots : b_n)$

$$ba = \sum_{j=0}^{n} a_j b_j = 0 \Leftrightarrow a \in \mathfrak{h}_b \Leftrightarrow b \in \mathfrak{h}_a^*$$

where \mathfrak{h}_b is a hyperplane in \mathbb{RP}^n and \mathfrak{h}_a^* is the set of hyperplanes through a (i.e. a hyperplane in \mathbb{RP}^{n*}). $M = SL(n+1, \mathbb{R})$ induces

$$\psi_M : \mathbb{RP}^n \longrightarrow \mathbb{RP}^n \text{ given by } l_a \mapsto l_{Ma}$$
$$\psi_M^* : \mathbb{RP}^{n*} \longrightarrow \mathbb{RP}^{n*} \text{ given by } l_b \mapsto l_{bM}$$
$$a \in \mathfrak{h}_{\psi_M^* b} \Leftrightarrow b \in \mathfrak{h}_{\psi_M a}^* \Leftrightarrow bMa = 0 \Leftrightarrow \psi_M a \in \mathfrak{h}_b$$

 $\mathfrak{h}_{\psi_M^*b} = \psi_{M^{-1}}(\mathfrak{h}_b).$

 $E \subset \mathbb{RP}^n$

$$E^{o} = \text{polar of } E \equiv \{b \in \mathbb{RP}^{n*} \mid \mathfrak{h}_{b} \subset E^{c}\} = \{b \in \mathbb{RP}^{n*} \mid ba \neq 0, \forall a \in E\} = (\bigcup_{a \in E} \mathfrak{h}_{a}^{*})^{c}$$
$$(\psi_{M}E)^{o} = \psi_{M^{-1}}^{*}(E^{o}), E_{1} \subset E_{2} \Rightarrow E_{1}^{o} \subset E_{2}^{o}, (\cup E_{j})^{o} = \cap E_{j}^{o}. \text{ If } E \text{ is closed/open, then } E^{o}$$
is open/closed (respectively).

 $E^{oo} = (\bigcup_{b \in E^o} \mathfrak{h}_b)^c = (\text{union of all hyperplanes in } E^c)^c$

So $E \subset E^{oo}$.

PROJECTIVE HAHN-BANACH (Version 2) E (APS-)convex and open/closed $\Rightarrow E = E^{oo}$. Standard Affinization for \mathbb{RP}^n :

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n \leftrightarrow \begin{pmatrix} 1 \\ a_1 \\ \vdots \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{RP}^{n+1}$$

3 useful affinizations for \mathbb{RP}^{n*} :

(1). $(b_1, \ldots, b_n) \in \mathbb{R}^{n*} \leftrightarrow (1 : -b_1 : \cdots : -b_n) \in \mathbb{RP}^{n+1}, \ \mathfrak{h}_b = \{a \in \mathbb{R}^n \mid \sum_{j=1}^n a_j b_j = 1\}.$ Then $\mathbb{R}^{n*} \leftrightarrow$ all affine hyperplanes not passing through 0. Define $f_b(a) = ba$.

$$E \subset \mathbb{R}^n \Rightarrow E^o = \{ b \in \mathbb{R}^{n*} \mid f_b \neq 1 \text{ on } E \}$$

So by defining E^o like this, $0 \in E^o$, $0 \in E$ connected implies

 $E^{o} = \{b \in \mathbb{R}^{n*} \mid f_b < 1 \text{ on } E\}$ and $E^{oo} = \{a \in \mathbb{R}^n \mid f_b(a) < 1, \forall b \in E^o\} \supset E$ convex If E is convex and $0 \in E$, then $E^{oo} = E$.

Exercise 2.33. If E is a connected set and $0 \in E$, then E^{oo} is the smallest convex set containing E.

E open unit ball for some Banach norm on $\mathbb{R}^n \Leftrightarrow E \ni 0$ open, bounded, convex and E = -E.

This implies that E^{o} is a closed unit ball for the dual norm. By Hahn-Banach, the double dual norm is the same as the original norm.

Example 2.34. Let 1 .

$$E = \{ \sum |a_j|^p < 11 \} \Rightarrow E^o = \{ \sum |b_j|^{\frac{p}{p-1}} \le 1 \}$$

More standard: $E^o = \{b \in \mathbb{R}^{n*} | f_b \leq 1 \text{ on } E\}.$ $M \in \operatorname{GL}(n, \mathbb{R}) \Rightarrow (ME)^o = (E^o)^{M^{-1}}.$

Exercise 2.35. Let $T : \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \mapsto \begin{pmatrix} a_1 + 1 \\ a_2 \end{pmatrix}$ and $F : (b_1, b_2) \mapsto (\frac{b_1}{1+b_1}, \frac{b_2}{1+b_1})$. Then $(TE)^o = F(E^o)$.

(2). This case is for n = 1. $b \in \mathbb{R}^* \leftrightarrow (-b:1) \in \mathbb{RP}^{1*}$. So $(-b,1) \cdot \begin{pmatrix} 1 \\ a \end{pmatrix} = 0 \Leftrightarrow -b + a = 0 \Leftrightarrow a = b$. Therefore $\mathfrak{h}_b = \{b\}$. So $E \subset \mathbb{R} \Rightarrow E^o = \mathbb{R} \setminus E$ and $E^{oo} = E$ always. (3). Identify $b = (b_1, \ldots, b_n) \in \mathbb{R}^{n*}$ with $(b_n: -b_1: \cdots: -b_{n-1}; 1) \in \mathbb{RP}^{n*}$.

$$\mathfrak{h}_b = \{a \in \mathbb{R}^n \mid \sum_{j=1}^{n-1} a_j b_j = a_n + b_n\} = \{a \in \mathbb{R}^n \mid a_n = \sum_{j=1}^{n-1} a_j b_j - b_n\}$$

So $\mathbb{R}^{n*} \leftrightarrow$ non-vertical affine hyperplanes in \mathbb{R}^n . This is useful when studying graphs of functions on \mathbb{R}^{n-1} .

Definition 2.36. $\mathbb{R}^{n-1} \xrightarrow{f} \mathbb{R}$ is convex if epigraph $(f) \equiv \{a \in \mathbb{R}^n \mid a_n \ge f(a_1, \dots, a_{n-1})\}$ is convex.

$$(\text{epigraph}(f))^{o} = \left\{ b \in \mathbb{R}^{n*} \mid \sum_{j=1}^{n-1} a_{j}b_{j} < f(a_{1}, \dots, a_{n-1}) + b_{n}, \forall \vec{a} \in \mathbb{R}^{n-1} \right\}$$
$$= \left\{ b \in \mathbb{R}^{n*} \mid b_{n} > \sup_{\vec{a} \in \mathbb{R}^{n-1}} \left\{ \sum a_{j}b_{j} - f(a_{1}, \dots, a_{n-1}) \right\} \right\}$$
$$= \left\{ b \in \mathbb{R}^{n*} \mid b_{n} > f^{*}(b_{1}, \dots, b_{n-1}) \right\}$$

where $f^*(b_1, \ldots, b_{n-1})$ is the **Legendre transform** of f and is defined as:

$$f^*(b_1, \dots, b_{n-1}) = \sup_{\vec{a} \in \mathbb{R}^{n-1}} \{ \sum a_j b_j - f(a_1, \dots, a_{n-1}) \}$$

Exercise 2.37. Use Hahn-Banach to show that if f is convex, then $f^{**} = f$. Explain why exclusion of vertical hyperplane doesn't cause trouble.

 $\mathbb{R}^{n*} \leftrightarrow$ all affine hyperplanes in $\mathbb{R}^n = \mathbb{RP}^{n*} \setminus \{\text{point}\}$. Not homeomorphic unless n = 1.

Lecture 11. October 2, 2009

If $E \subset \mathbb{R}^n$, then let $E^o = \{b \in \mathbb{R}^{n*} \mid \sum_{j=0}^{n-1} a_j b_j \neq a_n + b_n, \forall a \in E\}$. **Problem** (unsolved): Which *E* are equivalent (via LFT/affine maps on a global/local scale) are equivalent to E^o ? See Barvinok, "Course on Convexity" (page 147) for more information. Work with $\binom{a}{a_n} \in \mathbb{R}^n$ and $(b, b_n) \in \mathbb{R}^{n*}$, where $a \in \mathbb{R}^{n-1}$ and $b \in \mathbb{R}^{n-1}$. Let $\mathbb{R}^{n-1} \xrightarrow{f} \mathbb{R} \cup \{\infty\}$. The epigraph of *f* is: $\{a_n \ge f(a)\}^o = \{b_n > f^*(b)\}$, where $f^*(b) = \sup_{a \in \mathbb{R}^{n-1}} (ba - f(a))$. *f* convex $\Leftrightarrow \{a_n \ge f(a)\}$ convex $\Rightarrow \{a_n \ge f_n\}^{oo} = \{a_n \ge f(a)\}$ by Hahn-Banach $\Leftrightarrow f^{**} = f$ $f^*(b) \ge ba - f(a) \Rightarrow f(a) \ge ba - f^*(b)$

$$\begin{split} & Example \ 2.38. \ \text{Let} \ f(a) = \frac{|a|^p}{p}, p > 1 \ \text{and} \ f^*(b) = \frac{|b|^q}{q}, q = \frac{p}{p-1}.\\ & f^*(b) = \sup_{a \in \mathbb{R}^{n-1}} (ba - f(a)) = \sup_{a \in \mathbb{R}^{n-1}} ba - \frac{|a|^p}{p}\\ & \frac{d}{dx} bz - \frac{z^p}{p} = b - z^{p-1} = 0 \Leftrightarrow z = b^{\frac{1}{p-1}}\\ & \text{Then} \ f^*(b) = bb^{\frac{1}{p-1}} - \frac{|b|^{\frac{1}{p-1}}|^p}{p} = b^{\frac{p}{p-1}} - \frac{|b|^{\frac{p}{p-1}}}{p} = b^q - \frac{|b|^q}{p} = \frac{|b|^q}{q}\\ & Example \ 2.39. \ f(a) = |a| \ \text{and} \ f^*(b) = \begin{cases} 0 & \text{if} \ |b| \le 1\\ \infty & \text{if} \ |b| > 1 \end{cases}. \end{split}$$

Now focus on "nice" situations: Assume that:

(1) $f^*(b) < \infty$ (2) f convex. (3) f is $C^1 \Rightarrow f^*(b) = ba - f(a)$, where a is the solution to f'(a) = b(4) f is $C^2 \Rightarrow \left(\frac{\partial^2 f}{\partial a_j \partial a_k}\right) > 0$

By the inverse function theorem, a is a C^1 function of b.

Recall:
$$ba - f^*(b)$$
 is $\begin{cases} \leq f(a) & \forall a, b \\ = f(a) & \text{for } a, b \text{ related as above} \end{cases}$

Hence $(f^*)'(b) = a$. All together, $f(a) + f^*(b) = ba$, f'(a) = b, $(f^*)'(b) = a$. For "unrelated" a, b we still have $ba \leq f(a) + f^*(b)$.

Example 2.40. For
$$1 , $f(a) = \frac{||a||_p}{p}$ and $f^*(b) = \frac{||b||_q}{q}$, where $q = \frac{p}{p-1}$.
 $ba \le \frac{||a||_p}{p} + \frac{||b||_q}{q} \le ||a||_p$, if $||a||_p = ||b||_q$$$

Exercise 2.41. Rescale to get Holder's inequality $ba \leq ||a||_p ||b||_q$.

Definition 2.42. Let $E \subset \mathbb{RP}^n$. Then E is \mathbb{R} -linearly convex if E^c is a union of projective hyperplanes. Equivalently, $E^{oo} = E$.

Note that linearly is sometimes replaced with lineally (same meaning). (APS)-convex implies:

- projectively convex, but not vice versa (for instance consider $\mathbb{RP}^n \setminus \{\text{point}\}$.
- R-linearly convex (Hahn-Banach), but not vice versa (for instance consider 2 points)

Projectively convex does not imply \mathbb{R} -linearly convex (consider $\mathbb{RP}^n \setminus \{\text{point}\}$) and \mathbb{R} -linearly convex does not imply projectively convex (consider 2 points).

Proposition 2.43. Let E be an \mathbb{R} -linearly convex, connected proper subset of \mathbb{RP}^n . Then E is convex.

Proof. \exists hyperplane in E^c . After a LFT, $E \subset \mathbb{R}^n$. So $a \in E^c \Rightarrow \exists$ hyperplane H through a such that $H \subset E^c$. Since E is connected, E lies on one side of H. Therefore E is an intersection of half-spaces and so E is convex. \square

Can also show: $E \subsetneq \mathbb{RP}^n \mathbb{R}$ -linearly convex, then each component of E is convex.

Lecture 12. October 5, 2009

 $f^*(b) = \sup_a (b \cdot a - f(a))$ Why?

- polarity
- inequalities (i.e. $b \cdot a \leq f^*(b) + f(a)$)
- useful for Hamiltonian mechanics (see Arnold's "Math Methods in Classical Mechanics")
- other areas of physics

• Fourier analysis: the Fourier transform is $\hat{g} = \int_{\mathbb{R}^n} e^{ix \cdot t} g(x) dx$ for $x, t \in \mathbb{R}^n$. If $g \in L^1 \Rightarrow g$ is continuous and $||\hat{g}||_{\infty} \leq ||g||_1$ If $q \in L^2 \Rightarrow \hat{q} \in L^2$

Suppose $\mathbb{R}^n \xrightarrow{f} \mathbb{R} \cup \{\infty\}$ is convex and $||e^f g||_1 \leq 1$ for some g.

 $||e^{-ix \cdot (t+is)}q(x)|| = e^{x \cdot s}|q(x)| < e^{f^*(s)}e^{f(x)}|q(x)|$

 $|\hat{g}(t+is)|$ is defined and $\leq e^{f^*(s)}$ when $f^*(s) < \infty$. $\hat{g}(t+is)$ is defined on $A \equiv$ $\mathbb{R}^n \times i\{s \in \mathbb{R}^n \mid f^*(s) < \infty\}$. *Exercise:* \hat{g} is holomorphic on the interior of A.

• see wikipedia for more

2.1. \mathbb{CP}^n .

Definition 2.44. Let $E \subset \mathbb{CP}^n$. E is C-linearly convex if $E^c = \mathbb{CP}^n \setminus E$ is a union of C-projective hyperplanes.

Example 2.45 (Examples of \mathbb{C} -linearly convex sets).

- $n = 1 \Rightarrow$ all E are \mathbb{C} -linearly convex
- $E \subset \mathbb{C}^n \Rightarrow \left(E \text{ is } \mathbb{C}\text{-linearly convex} \Leftrightarrow \mathbb{C}^n \setminus E \text{ is a union of } \mathbb{C}\text{-affine hyperplanes} \right)$
- $\{E_i\}$ are \mathbb{C} -linearly convex $\Rightarrow \cap E_i$ is \mathbb{C} -linearly convex
- $E_1 \subset \mathbb{C}^{n_1}, E_2 \subset \mathbb{C}^{n_2}$ are \mathbb{C} -linearly convex $\Rightarrow E_1 \times E_2$ is \mathbb{C} -linearly convex
- $E \subset \mathbb{CP}^n$ is \mathbb{C} -linearly convex \Rightarrow IntE is \mathbb{C} -linearly convex
- $E \subset \mathbb{CP}^n$ is \mathbb{C} -linearly convex does not imply \overline{E} is \mathbb{C} -linearly convex

Proposition 2.46. Let l be a \mathbb{C} -affine line and $l \subseteq E \subseteq \mathbb{C}^n$, where E is \mathbb{C} -linearly convex. Then $E \cong^{affine} \mathbb{C} \times E'$.

Proof. Assume that l is the z_1 -axis. Let $H \subset E^c$ be a \mathbb{C} -hyperplane. Then H par. to z_1 axis. E^c is union of hyperplanes par. to z_1 -axis. Therefore $E^c = \mathbb{C} \times G \Rightarrow E = \mathbb{C} \times E'$.

Lemma 2.47. If E is open and \mathbb{C} -linearly convex, then E is pseudo-convex. However, the converse is not true.

Proof. $E = \bigcap_{H \subset E^c} \text{hyperplane}(\mathbb{CP}^n \setminus H)$ *Example* 2.48. Let $E \subset \mathbb{C}^n$ be \mathbb{C} -linearly convex and $Q : \mathbb{C}^n \to \mathbb{C}^{n-1}$ projection. This does not imply that Q(E) is \mathbb{C} -linearly convex.

Setting up the definitions of projectively \mathbb{C} -convex and \mathbb{C} -convex.

Let $E \subset \mathbb{CP}^1$ = Riemann Sphere.

 $E \text{ is projectively } \mathbb{C}\text{-convex} \Leftrightarrow E, E^c \text{ are connected} \Leftrightarrow E^c \text{ projectively } \mathbb{C}\text{-convex}$

E is \mathbb{C} -convex $\Leftrightarrow E$ is projectively \mathbb{C} -convex and $E \neq \mathbb{CP}^1$

 $E \subset \mathbb{CP}^1$ open \Rightarrow (*E* is projectively \mathbb{C} -convex \Leftrightarrow *E* connected and simply connected)

 $E \subset \mathbb{CP}^1$ is open or closed and bE is a smooth manifold without boundary $\Rightarrow (E \text{ is } \mathbb{C}\text{-convex})$

 $\Leftrightarrow E = \emptyset \text{ or } bE \text{ is one simple closed curve })$

 $E \subset \mathbb{C}$ is \mathbb{C} -convex $\Leftrightarrow \mathbb{C} \setminus E$ has no boundary components.

Example 2.49. If $E_1, E_2 \subset \mathbb{C}$ are \mathbb{C} -convex, this does not imply that $E_1 \cap E_2$ is \mathbb{C} -convex.

Lecture 13. October 7, 2009

Definition 2.50. Let $E \subset \mathbb{CP}^n$. E is **projectively** \mathbb{C} -convex if $l \cap E$ and $l \setminus E$ are connected for all projective \mathbb{C} -lines l. E is \mathbb{C} -convex if E is projectively convex and E contains no projective \mathbb{C} -line. E is \mathbb{C} -linearly convex if $\mathbb{CP}^n \setminus E$ is a union of projective \mathbb{C} -hyperplanes.

All of these are invariant under LFTs.

Definition 2.51. Let $E \subset \mathbb{C}^n$. E is \mathbb{C} -convex if E is projectively \mathbb{C} -convex. Equivalently, $l \cap E$ is connected and $l \setminus E$ has no bounded components for affine \mathbb{C} -line l. E is \mathbb{C} -linearly convex if $C^n \setminus E$ is a union of affine \mathbb{C} -hyperplanes.

Example 2.52. Given $E \subset \mathbb{R} \subset \mathbb{C} \subset \mathbb{CP}^1$, then E is \mathbb{C} -convex $\Leftrightarrow E$ is connected.

Exercise 2.53. Intersections of any affine \mathbb{C} -line l with $\mathbb{R}^n \subset \mathbb{C}^n$ are empty, a point or an affine \mathbb{R} -line.

Corollary 2.54. Given $E \subset \mathbb{R}^n \subset \mathbb{C}^n \subset \mathbb{CP}^n$, then E is \mathbb{C} -convex $\Leftrightarrow E$ is \mathbb{R} -convex.

Exercise 2.55. Intersections of affine \mathbb{C} -hyperplanes with \mathbb{R}^n are empty, affine \mathbb{R} -hyperplanes, or (n-2)-dimensional affine \mathbb{R} -planes.

Corollary 2.56. Given $E \subset \mathbb{R}^n$, then E is \mathbb{C} -linearly convex $\Leftrightarrow \mathbb{R}^n \setminus E$ is a union of (n-2)-dimensional affine \mathbb{R} -planes.

Example 2.57. Let $\Delta \subset \mathbb{C}^n$ be the open unit disk. $\Delta \times \Delta, \overline{\Delta} \times \overline{\Delta}$ are \mathbb{C} -convex.

Theorem 2.58. Let $E_1 \subset \mathbb{C}^{n_1}, E_2 \subset \mathbb{C}^{n_2}$ both open or both compact, but neither a point, nor empty, nor all of \mathbb{C}^{n_j} . If $E_1 \times E_2$ is \mathbb{C} -convex, then E_1, E_2 are \mathbb{R} -convex.

Proof. See APS, Prop. 2.2.5.

We will show that if $E \subset \mathbb{CP}^n$ is \mathbb{C} -convex and open/closed, then E is \mathbb{C} -linearly convex. This is the complex projective version of the Hahn Banach theorem. However, if E is \mathbb{C} -linearly convex, this does not imply that E is \mathbb{C} -convex. We will also show that if E is \mathbb{C} -linearly convex and open/closed with C^1 boundary, then E is \mathbb{C} -convex.

What does C^1 boundary mean? If E is compact, this means that E is a 2n-dimensional manifold with boundary and bE is a (2n-1)-dimensional manifold without boundary.

$$\mathbb{CP}^{n} = (\mathbb{C}_{\text{col.}} \setminus \{0\}) / \sim \text{ and } \mathbb{CP}^{n*} = (\mathbb{C}_{\text{row}} \setminus \{0\}) / \sim \begin{pmatrix} a_{0} \\ \cdots \\ \vdots \\ \vdots \\ a_{n} \end{pmatrix} \in \mathbb{CP}^{n} \text{ and } (b_{0} : \cdots : b_{n}) \in \mathbb{CP}^{n*}$$

$$a \in h_b \Leftrightarrow b \in h_a^* \Leftrightarrow ba = \sum_{j=0}^n a_j b_j = 0$$

 \mathbb{CP}^{n*} is the set of \mathbb{C} -hyperplanes in \mathbb{CP}^n and h_a^* is the set of \mathbb{C} -hyperplanes through a.

Definition 2.59. Let $E \subset \mathbb{CP}^n$. The **dual complement** E^* of E is:

$$E^* = \{ b \in \mathbb{CP}^{n*} \mid h_b \subset E^c \} = \{ b \in \mathbb{CP}^{n*} \mid ba \neq 0, \forall a \in E \} = \left(\bigcup_{a \in E} h_a^* \right)^c$$

As before, $(\psi_M E)^* = \psi_{M^{-1}}^*(E^*)$, where $\psi_{M^{-1}}^* : l_b \to l_{bM^{-1}}$. If $E_1 \subset E_2$, then $E_1^* \supset E_2^*$. If E is open (closed), then E^* is closed (open). In addition, $(\cup E_j)^* = \cap E_j^*$.

$$E \subset E^{**}$$
 always and $E = E^{**} \Leftrightarrow E$ is \mathbb{C} -linearly convex

 E^* is always \mathbb{C} -linearly convex and $(E^*)^c = \bigcup_{a \in E} h_a^*$ so E^{**} is always \mathbb{C} -linearly convex. If $E \subset F$ and F is \mathbb{C} -linearly convex, then $E^* \supset F^* \Rightarrow E^{**} \subset F^* = F$. So E^{**} is the smallest \mathbb{C} -linearly convex set containing E (i.e. it is the \mathbb{C} -linear convex hull of E).

Proposition 2.60. If E is \mathbb{C} -linearly convex, then IntE is \mathbb{C} -linearly convex.

Proof. Int $E \subset (IntE)^{**} \subset E^{**} = E$ and $IntE)^{**}$ is open so $E = IntE)^{**}$.

Theorem 2.61. Suppose $E \subset \mathbb{C}^n$ is compact and \mathbb{C} -linearly convex, E^* is connected, and $a \notin E$. Then there exists a polynomial p such that $|p(a)| > \max_E |p|$.

Lecture 14. October 9, 2009

Definition 2.62. Let $E \subset C^m$ compact. Then E is **polynomial convex** if for $a \notin E, \exists$ a polynomial p such that $|p(a)| > \max_E |p|$.

Theorem 2.63. If E is polynomial convex, then all functions holomorphic on a neighborhood of E are E-uniform limits of polynomials.

Theorem 2.64. Let $E \subset \mathbb{C}^m$ be compact and \mathbb{C} -linearly convex. If E^* is connected, then E is polynomial convex.

Proof. Suppose $a \notin E$. Choose $f : [0,1] \to E^*$ with $h_{f(a)} =$ hyperplane at ∞ , $a \in h_{f(a)}$. $h_{f(t)} = \{g_t = 0\}$, where g_t is a 1st degree polynomial which depends continuously on t > 0. Let $S = \{t \in (0,1) \mid \frac{1}{q_t} \text{ is } (E \cup \{a\}) - \text{ uniform limit of polynomials}\}$. Then $(0,\epsilon) \subset S,S$ is

closed and S is open (for $t_0 \in S$ with $t_0 \approx t$, $\frac{1}{g_{t_0}} \sum_{j=0}^{\infty} \left(1 - \frac{g_t}{g_{t_0}}\right)^j = \frac{1}{g_{t_0}} \frac{1}{\frac{g_t}{g_{t_0}}} = \frac{1}{g_t}$ so $(E \cup \{\alpha\})$ uniform limit of polynomials $\Rightarrow t \in S$). Therefore S = (0, 1). $\left|\frac{1}{g_{1-\epsilon}(\alpha)}\right| > \max_E \left|\frac{1}{g_{t-\epsilon}}\right|$.
Approximate polynomials on $E \cup \{\alpha\}$ and get $|p(a)| > \max_E |p|$.

Remarks:

- Just need to pull some hyperplane through a to ∞ avoiding E
- E is polynomial convex \Rightarrow E is C-linearly convex.
- Example: $\{(z_1, z_2) \mid z_2 = z_1^2, |z_1| \leq 1\}$ is polynomial conve. E is not \mathbb{C} -linearly convex.
- (Stalzenberg, 1963) E is polynomial convex \Leftrightarrow all $a \notin E$ lie in an algebraic hyperplane that can be pulled to ∞ avoiding E.

Projective \mathbb{R} -planes in \mathbb{RP}^n :

- They are closed submanifolds
- They are flat with respect to any affinizations (equivalently, R-LFTs map affine R-planes to R-affine planes)

These properties also hold in \mathbb{CP}^n .

What about \mathbb{R} -projective planes in \mathbb{CP}^n ? Example: $\mathbb{R} \cup \{\infty\} \subset \mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$ is a closed submanifold byt it is not flat with respect to any affiniztations (real line maps to a circle).

Exercise 2.65. Let *E* be an affine \mathbb{R} -plane in $\mathbb{C}^n \cong \mathbb{R}^{2n}$. Let *F* be the closure of *E* in \mathbb{CP}^n .

- (1) F is a manifold $\Leftrightarrow E$ complex or totally real
- (2) F is flat with respect to all affinizations $\Leftrightarrow E$ is complex

Let $E \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ so that $E^* \subset \mathbb{CP}^{n*}$ and $E^o \subset \mathbb{RP}^{2n*}$. 3 affinizations for E^* are:

3: (~ Legendre transform) - discuss later

2: For
$$n = 1, b \in \mathbb{C} \leftrightarrow [-b:1] \in \mathbb{CP}^*$$
 and $a \in \mathbb{C} \leftrightarrow \begin{pmatrix} 1 \\ \ddots \\ a \end{pmatrix} \in \mathbb{CP}^1$. Then $h_a^* = \{b \mid -b+a=0\} = \{a\}$ and $E^* = \mathbb{C} \setminus E$.
1:
 $a \in \mathbb{C}^n \leftrightarrow \begin{pmatrix} 1 \\ \ddots \\ a_1 \\ \ddots \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{CP}^n$ and $b \in \mathbb{C}^{n*} \leftrightarrow [1:-b_1:\cdots:-b_n] \in \mathbb{CP}^{n*}$

 $h_b^* = \{a \in \mathbb{C}^n \mid \sum_{j=0}^\infty a_j b_j = 1\}$

The real dot product of a and b corresponds to the real part of the complex dot product of a and \overline{b} .

$$h_b^{*\mathbb{R}} = \{a \mid \operatorname{Re}\overline{b}a = 1 \text{ and } h_b^{*\mathbb{C}} = \{a \mid ba = 1\}$$

For n = 1,

$$h_b^{\mathbb{C}} = \{\frac{1}{b}\} \text{ and } h_b^{\mathbb{R}} = \{\frac{1_i t}{\overline{b}} \mid t \in \mathbb{R}\}$$

So $h_{\overline{b}}^{\mathbb{C}}$ is the point on $h_{\overline{b}}^{\mathbb{R}}$ closest to 0.

For
$$n > 1$$
,

 $h_b^{\mathbb{R}}$ is a disjoint union of \mathbb{C} -hyperplanes and $h_{\overline{b}}^{\mathbb{C}}$ is a \mathbb{C} -hyperplane in $h_b^{\mathbb{R}}$ closest to 0. If $f_b : a \mapsto ba$, then:

$$b \in E^* \Leftrightarrow 1 \notin f_b(E) \text{ and } b \in E^o \Leftrightarrow 1 \notin \operatorname{Re} f_{\overline{b}}(E)$$

 $E^o \subset \text{conjugate of } E^*.$

Lecture 15. October 14, 2009

 E^{o} ,* affine version (1) with $a \in \mathbb{C}^{n}$, $b \in \mathbb{C}^{n*}$ and $f_{b} : \mathbb{C}^{n} \to \mathbb{C}$ by $a \mapsto ba$. Suppose $E \subset \mathbb{C}^{n}$. Then

$$b \in E^* \Leftrightarrow 1 \notin f_b(E)$$
$$b \in E^o \Leftrightarrow 1 \notin \operatorname{Re} F_{\overline{b}}(E)$$

So E^* lines in $\operatorname{conj}(E^o)$.

Definition 2.66. *E* is circular if for $a \in E, \theta \in \mathbb{R} \Rightarrow e^{i\theta}a \in E$. *E* is complete circular if for $a \in E, |\lambda| \leq 1 \Rightarrow \lambda a \in E$.

If E is circular and $b \in \mathbb{C}^{n*}$, then

• $f_b(E)$ is a disk centered at 0 or all of $\mathbb C$

- $E^* = \operatorname{conj}(E^o)$
- if $E = \operatorname{conj}(E)$, then $E^* = E^o$

Definition 2.67. *E* is a **Reinhardt** domain if $(a_1, \ldots, a_n) \in E$ and $\theta_1, \ldots, \theta_n \in \mathbb{R}$, then $(e^{i\theta_1}a_1, \ldots, e^{6i\theta_n}a_n)inE$. *E* is a **complete Reinhardt** domain $(a_1, \ldots, a_n) \in E, |\lambda_j| \leq 1$, then $(\lambda_1a_1, \ldots, \lambda_na_n) \in E$.

E complete Reinhardt $\Rightarrow E$ complete circular, $E = \operatorname{conj}(E) \Rightarrow E^* = E^o$.

Example 2.68. If $E = \{\sum_j |a_j|^p \le 1\}, 1 , then <math>E^o = E^* = \{\sum_j |b_j||^q < 1\}, q = \frac{p-1}{p}$.

Proposition 2.69. If $E \subset \mathbb{C}^n$ is open and \mathbb{C} -convex, then E is connected and simply connected.

The converse is not true.

Proof. Any two points in E have a line connecting them in E so E is path connected \Rightarrow connected. Given $\gamma : [0,1] \to E, \gamma(0) = \gamma(1) = a$. Need $h : [0,1]^2 \to E$. Let S be a square with $\gamma(t)$ along the left edge and a along the rest of the edges with t as the variable from bottom to top and s is the variable from left to right. E is open and [0,1] is compact, so we can partition S into finitely many open sets. Partition the left edge as: $0 = t_0 < t_1 < \cdots < t_{n-1} < t_n = 1$ and $h_j = (t_j - t_{j-1}) \times [0,1]$. $h_j(s,t)$ is defined on h_j and $h_j(s,t)$ is contained in a \mathbb{C} -line for fixed t. We want to extend our definition of the h_j to one map h, but we don't know that $h_j(s,t_j) = h_j(s,t_{j-1})$. However, they are homotopic within $E \cap$ (line). Use this to assemble h.

Theorem 2.70. If $E \subset \mathbb{C}^2$ is open and \mathbb{C} -convex, then E is \mathbb{C} -linearly convex.

Proof. It suffices to prove that it $0 \in E^c$, then $0 \in l \subset E^c$, where l is a complex line. Suppose not. For each $\zeta \in \mathbb{C}$ (a slope), let $E_{\zeta} = \{z \mid (z, \zeta z) \in E\}$. The E_{ζ} are open, connected, simply-connected and non-empty with $0 \notin E_{\zeta}$. We can choose a continuous branch of arg z on E_{ζ} , in particular $\arg_{\zeta}(z)$ (determined up to $2\pi\mathbb{Z}$). The set of all possible choices forms a \mathbb{Z} -bundle over \mathbb{C} and a covering spaces over \mathbb{C} . We can choose $\arg_{\zeta}(z)$ to be continuous in ζ . We have been ignoring the vertical line in this so far, so let's fix that. Let $\widetilde{E}_{\zeta} = \{z \mid (\zeta z, z) \in E\}$. In the same way, we get $\widetilde{\arg_{\zeta}}(z)$. How do these relate?

Pick
$$\zeta \in \mathbb{C} \setminus \{0\} \Rightarrow (z \in \widetilde{E}_{\zeta} \Leftrightarrow \zeta z \in E_{\frac{1}{\zeta}})$$

 $z \in \widetilde{E}_{\zeta} \Rightarrow -\widetilde{\operatorname{arg}}_{\zeta}(z) + \operatorname{arg}_{\frac{1}{\zeta}}(\zeta z) = \operatorname{arg}(\zeta)$

This gives a continuous branch of the arg on $\mathbb{C} \setminus \{0\}$, which is a contradiction since there is no continuous branch of arg on $\mathbb{C} \setminus \{0\}$.

Proposition 2.71. Let $V \subset \mathbb{C}^n$ be an affine \mathbb{C} -plane and $E \subset \mathbb{C}^n$ be \mathbb{C} -convex. Then $E \cap V$ is \mathbb{C} -convex.

Proposition 2.72. Suppose $E \subset \mathbb{C}^n$ is open, \mathbb{C} -convex, V is an affine \mathbb{C} -plane, and $Q : \mathbb{C}^n \to V$ is an affine projection. Then Q(E) is \mathbb{C} -convex.

Theorem 2.73. If $E \subset \mathbb{C}^n$ is open and \mathbb{C} -convex, then E is \mathbb{C} -linearly convex.

Proof. By induction on *n* assuming the previous proposition. Let $a \in E^c$. When n = 1 this is clear and we already proved the case when n = 2. By the n = 2 case, $\exists a \in l \subset E^c$ line. Choose $Q : \mathbb{C}^n \to V$, where *V* is an affine hyperplane and *Q* collapses *l* to a point. Since $a \in l \subset E^c$, $Q(l) \notin Q(E) \subset V$ (note: $Q(E) \subset V$ is \mathbb{C} -convex). Get $Q(l) \subset W \subset V \setminus Q(E)$, where dim W = n - 2. Get $a \in Q^{-1}(W) \subset E^c$ with dimension n - 1.

Lecture 16. October 16, 2009

Last time:

Theorem 2.74. If $E \subset \mathbb{C}^n$ is open and \mathbb{C} -convex, then E is \mathbb{C} -linearly convex.

The proof used proposition 1:

Proposition 2.75 (1). $Q : \mathbb{C}^n \to V$ affine projection and $E \subset \mathbb{C}^n$ open, \mathbb{C} -convex, then Q(E) is \mathbb{C} -convex.

Proposition 2.76 (2). $E \subset \mathbb{C}^n$ is open and \mathbb{C} -convex, then E is connected and simplyconnected.

Proposition 2.77 (3). If $V \subset \mathbb{C}^n$ is an affine plane and $E \subset \mathbb{C}^n$ is \mathbb{C} -convex, then $V \cap E$ is \mathbb{C} -convex.

Proof of Proposition 1. Claim 1: Q(E) is connected

Claim 2: Q(E) is simply-connected: take a loop $\gamma \subset Q(E)$ and break it into arcs which when lifted to \mathbb{C}^n are arcs in E. Then connected the endpoints of these arcs in appropriate ways. We can do this so that the loop we get is inside E since E is \mathbb{C} -convex, so we get a loop $\tilde{\gamma}$ such that $Q(\tilde{\gamma})$ is homotopic to γ . By proposition 2, $\tilde{\gamma} \sim \text{point in } E$. Project the homotopy: then $\gamma \sim \text{point in } Q(E)$. Now consider a line $l \subset V$. $E \cap Q^{-1}(l)$ is \mathbb{C} -convex. Claims 1 and 2 imply that $Q(E \cap Q^{-1}(l)) = Q(E) \cap l$ is connected and simply-connected. \Box

Projections in Projective Space:

Given $a \notin H \subset \mathbb{CP}^n$, where H is a hyperplane, we get $Q : \mathbb{CP}^n \setminus \{a\} \to H$ such that for $b \in \mathbb{CP}^n \setminus \{a\}, b \mapsto a\vec{b} \cap H$, where $\vec{ab} \cap H$ is the point given by the line connecting a and b that intersects H.

Proposition 2.78 (4). For n = 2 and a, H, Q as above, $a \notin E$, where E is an open, \mathbb{C} -convex set. Then $Q(E) \neq H$.

Proof of Proposition 4. We may assume that $a = 0 \in \mathbb{C}^2 \subsetneq \mathbb{CP}^2$ and H =the line at $\infty = \mathbb{CP}^1$. Then $Q: (z_1, z_2) \mapsto (z_1: z_2)$. Suppose to the contrary that $Q(E) = \mathbb{CP}^1$. Use **Michael's theorem (1955):** Let X, Y be manifolds, $X \xrightarrow{\varphi} Y$ is continuous open and surjective, $\varphi^{-1}(y)$ is contractible $\forall y \in Y \Rightarrow \exists Y \xrightarrow{\psi} X$ continuous such that $\varphi \circ \psi = Id_Y$ (*i.e.* $\psi(y) \in \varphi^{-1}(y), \forall y \in Y$). So there is a continuous $\psi: \mathbb{CP}^1 \to E$ such that $Q \circ \psi = Id_Y$. Construct a "fiberwise universal cover" $E \setminus \psi(\mathbb{CP}^1)$. Mimicing what we did last lecture, we get a continuous branch of

$$\arg\left(\frac{z_1\psi_1\left(\frac{z_2}{z_1}\right)}{z_1-\psi_1\left(\frac{z_2}{z_1}\right)}\right) \text{ on } E \widetilde{\setminus \psi(\mathbb{CP}^1)} \setminus \{z_2\text{-axis.}$$

Do this again with the two variables switch. Following the same step as a proof proof from last lecture, we get a contradiction. $\hfill \Box$

Corollary 2.79. If $E \subset \mathbb{CP}^2$ is open and \mathbb{C} -convex, then E is \mathbb{C} -linearly convex.

Proof. By Prop. 4, \exists a line in E^c . Move it to ∞ and apply the affine result.

Addendum to Proposition 4: Q(E) is \mathbb{C} -convex.

Proof. We may assume that E is disjoint from the z_2 -axis (so $z_1 \neq 0$). Then $Q(z_1, z_2) = (z_1 : z_2) = \left(1 : \frac{z_2}{z_1}\right)$. Do a LFT change of coordinates: $w_1 = \frac{1}{z_1}w_2 = \frac{z_2}{z_1}$. New $E \subset \mathbb{C}^2$ and $Q(w_1, w_2) = w_2$. Apply the affine result from Proposition 1.

Proposition 2.80 (5). Let $Q : \mathbb{CP}^n \setminus \{a\} \to H$ as before with $a \notin E$ and $E \subset \mathbb{CP}^n$ an open, \mathbb{C} -convex set. Then Q(E) is \mathbb{C} -convex.

Proof. By induction on n:

Let $l \subset H$ be a line. Then $Q^{-1}(l) \cup \{a\}$ is a projective 2-plane. By the "projective proposition 3", $Q^{-1}(l) \cap E$ is \mathbb{C} -convex. By the addendum to proposition 4, $Q(Q^{-1}(l) \cap E)) = l \cap Q(E)$ is \mathbb{C} -convex $\Rightarrow Q(E)$ is \mathbb{C} -convex.

Corollary 2.81. $E \subset \mathbb{CP}^n$ is open and \mathbb{C} -convex, then E is \mathbb{C} -linearly convex.

Proof. Fix $a \notin E$. Choose a projection $Q : \mathbb{CP}^n \setminus \{a\} \to H$, where H is a hyperplane. $Q(E) \subset H$ is \mathbb{C} -convex. By the inductive hypothesis, $\exists W \subset H \setminus Q(E)$ of dimension n-2. $Q^{-1}(W) \cup \{a\}$ is a projective hyperplane in E^c that contains a. Therefore every point outside E belongs to a projective hyperplane outside of $E \Rightarrow E$ is \mathbb{C} -linearly convex. \Box

Lecture 17. October 21, 2009

Given an open set $E \subset \mathbb{CP}^1$. E is \mathbb{C} -convex $\Leftrightarrow E$ is connected, simply connected, and $E \neq \mathbb{CP}^1 \Leftrightarrow E$ contractible (i.e. Id: $E \to E$ homotopic to constant within E).

Theorem 2.82. Given $E \subset \mathbb{CP}^1$ closed, non-empty. E is \mathbb{C} -convex $\Leftrightarrow E$ is connected, $H^1(E) = 0, H^2(E) = 0 \Leftrightarrow H^0(E) = \mathbb{R}$ and $H^k(E) = 0, \forall k > 0 \Leftrightarrow E$ has the cohomology of a point.

 $H^k(E)$ is the kth cohomology of E. If the cohomology has coefficients in \mathbb{R} , then E connected is equivalent to $H^0(E) = \mathbb{R}$. $H^2(E) = 0$ ensures that E is not the Riemann sphere. Let $E = \bigcup_j U_j$ be a relatively open cover of E, $f_{j,k} : U_j \cap U_k \to \mathbb{R}$ locally constant, $f_{j,k} + f_{k,l} + f_{l,j} = 0 \Rightarrow \exists f_j : U_j \to \mathbb{R}$ locally constant such that $f_{j,k} = f_j - f_k$. $f_{j,k,l} : U_j \cap U_k \cap U_l \to \mathbb{R}$ is locally constant, $f_{j,k,l} - f_{j,k,m} + f_{j,l,m} - f_{k,l,m} = 0 \Rightarrow \exists f_{j,k} : U_j \cap U_k \to \mathbb{R}$ is locally constant such that $f_{j,k,l} = f_{j,k} + f_{k,l} + f_{l,k}$.

Proof. Refer to the APS monograph.

Proposition 2.83. Given $E_1, E_2 \subset \mathbb{CP}^1$ both \mathbb{C} -convex and both open/both closed. $E_1 \cup E_2$ is \mathbb{C} -convex $\Leftrightarrow E_1 \cap E_2 \neq \emptyset$ is \mathbb{C} -convex.

Proof. Use the Mayer-Vietoris sequence.

Proposition 2.84 (2'). If $E \subset \mathbb{CP}^n$ is closed and \mathbb{C} -convex, then E has the cohomology of a point.

Proof. Use Mayer-Vietoris and Vietoris-Begle "blowing-up."

Proposition 2.85 (5'). Suppose $a \notin E \subset \mathbb{CP}^n$, where E is a closed C-convex set. Let H be a hyperplane and $Q: E \to H$ a projection. Then Q(E) is C-convex.

Proof. Use Vietoris-Begle Mapping Theorem.

Theorem 2.86. $E \subset \mathbb{CP}^n$ closed and \mathbb{C} -convex, then E is \mathbb{C} -linearly convex.

Theorem 2.87. Let $E \subset \mathbb{CP}^n$ be \mathbb{C} -convex, non-empty, and open/closed. Then E^* is \mathbb{C} -convex and non-empty.

Proof. Recall that:

 $E^* = \{ b \in \mathbb{CP}^{n*} \mid h_b \subset E^c \} = \{ b \in \mathbb{CP}^{n*} \mid ba \neq 0, \forall a \in E \} = \left(\bigcup_{a \in E} h_a^* \right)^c$

By the previous theorem, E is \mathbb{C} -linearly convex $\Rightarrow E^* \neq \emptyset$. $\alpha \in E \Rightarrow E^*$ disjoint from $h^*_{\alpha} \Rightarrow E^*$ contains no projective line. Assume this is true for dimension n-1. It suffices to show that $E^* \cap h^*_a$ is \mathbb{C} -convex, $\forall a \in \mathbb{CP}^n$.

Case 1: $E^* \cap h_a^* = \emptyset$, so nothing to prove.

Case 2: $E^* \cap h_a^* \neq \emptyset \Rightarrow$ some $b \in h_a^*$ and $h_b \subset E^c \Rightarrow ba = 0$ but $b\tilde{a} \neq 0, \forall \tilde{a} \in E \Rightarrow a \notin E$. Let H be a hyperplane and $\mathbb{CP}^n \setminus \{a\} \to H$. By proposition 5 or 5', Q(E) is \mathbb{C} -convex.

 $h_a^* =$ set of hyperplanes in \mathbb{CP}^n through a and $Q: h - a^* \to$ set of hyperplanes within H(the dual of H). By induction, $Q(E)^*$ (the dual within H) is \mathbb{C} -convex. So $Q(E)^*$ is the set of hyperplanes in H that do not intersection Q(E). Identify Q(E) with $E^* \cap h_a^*$. \Box

Consider $\subset \mathbb{CP}^n$ open with C^1 boundary.

Given: $p \in bE \cap \mathbb{C}^n$, we have a real tangent hyperplane $p \in T_p(bE) \subset \mathbb{C}^n$. $T_p(bE)$ contains a unique \mathbb{C} -hyperplane $H_p(BE)$ passing through $p \to H_p(bE)$ is the unique \mathbb{C} -hyperplane tangent to bE at p. The T_p construction will not behave well under LFTs, but the H_p will behave well.

$$F$$
 is a LFT $\Rightarrow H_{F(p)}(b(F(E)) = F(H_p(bE))$

In particular, also have $H_p(bE)$ for $p \text{ at } \infty$. Now suppose that E is \mathbb{C} -linearly convex. Then each $p \in bE$ must lie in a \mathbb{C} -hyperplane $\widetilde{H} \subset E^c$ (in particular it must be the hyperplane $H_p(bE)$). Suppose $\widetilde{H} \neq H_p(bE)$.. Then \widetilde{H} meets bE transversally at p. \widetilde{H} has \mathbb{R} -dimension 2n-2 so \widetilde{H} has smooth boundary of \mathbb{R} -dimension 2n-3. So $H_p(bE) \subset E^c$.

Lecture 18. October 23, 2009

General assumptions for this lecture: $E \subset \mathbb{CP}^n$ is open and bE is C^1 . Last lecture we showed:

- $p \in bE \Rightarrow \exists$ a unique projective \mathbb{C} -hyperplane H_p tangent to bE at p
- E is \mathbb{C} -linearly convex $\Rightarrow H_p \in E^c$

Assumptions that we will use at some point during this lecture:

(*): E is connected and $\forall p \in bE$ we have $p \notin H_p(bE) \cap E$

(**): $\exists p \in bE$ such that p is isolated in $H_p(bE) \cap \overline{E}$ (or in $H_p(bE) \cap bE$)

Claim 1: $(*) \Rightarrow$ each line l meets bE transversally along $b(l \cap E)$.

Proof. If l is not transverse to bE at p, then $l \in H_p(bE) \Rightarrow p \in b(l \cap E)$.

Claim 2: $(*) \Rightarrow l \cap E$ is connected $\forall \mathbb{C}$ -lines l

Proof. Consider $p, q \in l \cap E$. Since E is connected, there is a path $\gamma : [0, 1] \to E$ such that $\gamma(0) = p, \gamma(1) = q$, and $\gamma(t) \neq p$ for $t \neq 0$. Let $\Omega_t = p$ -component of $E \cap ($ line through $p, \gamma(t))$. Transversality implies that $b\Omega_t$ is a union of C^1 curves varying continuously with t. Let $S = \{t \in (0, 1] \mid \gamma(t) \in \Omega_t\}$. S is open in $(0, 1], (0, 1] \setminus S$ is open in (0, 1], and $(0, \epsilon) \subset S$ for some $1 \leq \epsilon > 0$. Therefore $S = (0, 1] \Rightarrow \gamma(1) \in \Omega_1$.

Claim 3: $(*) \Rightarrow \text{each } H_p \in E^c$

So all non-empty $l \cap E$ are connected and bounded by a fixed number, k, of C^1 curves. Claim 4: $(*), (**) \Rightarrow k = 1$

Proof. wlog, assume that p = 0 is the point given by (**), $T_p(bE) = \mathbb{C}^{n-1} \times \mathbb{R}$ and $H_p(bE) = \mathbb{C}^{n-1} \times \{0\}$. Locally, $E = \{\operatorname{Im} z_n > \varphi(z_1, \ldots, z_{n-1}, \operatorname{Re} z_n)\}$, where φ is C^1 . $bE \cap (\mathbb{C}^{n-1} \times \{0\}) = \{0\} \Rightarrow \varphi(0) = 0, \varphi > 0$ at other nearby points. Let

$$\Omega_{\epsilon} = \{ z \in \mathbb{C} \mid (z, 0, \dots, 0, i\epsilon) \in E \} = \{ z \in \mathbb{C} \mid \varphi(z, 0, \dots, 0) < \epsilon \}$$

For $0 < \epsilon < \epsilon_0 \Rightarrow \Omega_{\epsilon}$ is non-empty, connected, and bounded by k-smooth curves. For $0 < \epsilon_1 < \epsilon_2 < \epsilon_0 \Rightarrow \Omega_{\epsilon_1} \subset \Omega_{\epsilon_2}$. So $\bigcap_{0 < \epsilon < \epsilon_0} \Omega_{\epsilon} = \{0\}$. Since the boundary curves vary continuously with ϵ , it is not possible that $\bigcap_{0 < \epsilon < \epsilon_0} \Omega_{\epsilon}$ is a point unless k = 1. \Box

Theorem 2.88. $(*), (**) \Rightarrow E$ is \mathbb{C} -convex $\Rightarrow E$ is \mathbb{C} -linearly convex $\Rightarrow (*)$.

Remarks about (**):

- (1) If $E \subset \mathbb{C}^n \mathbb{C}$
 - p^n bounded, then (**) is automatic.

Proof. Choose $p \in E$ farthest from the origin (ties are ok). $H_p \setminus \{p\} \subset E^c$.

- (2) (**) may be a consequence of \mathbb{C} -convexity
- (3) If $E \subset \mathbb{C}^2$ strongly pseudoconvex with bEC^3 , then (**) fails $\Leftrightarrow E \simeq^{\text{affine}}$ (convex domain in \mathbb{R}^2) $\times i\mathbb{R}^2$ (Result due to Bolt, 2009). This implies that E does not have smooth boundary in \mathbb{CP}^2 .

How do we verify condition (*)? Reduce to the case $\mathbb{C}^{n-1} \times \mathbb{R}$. Locally $E = \{ \operatorname{Im} z_n > \varphi(z_1, \ldots, z_{n-1}, \operatorname{Re} z_n) \}$. (*) at $0 \Leftrightarrow \varphi(z_1, \ldots, z_{n-1}, 0)$ has a strict local minimum at $0 \Rightarrow$ Hessian of φ at 0 with respect to $x_1, \ldots, x_{n-1}, y_1, \ldots, y_{n-1}$ is ≥ 0 . If the Hessian is > 0, then (**) holds.

Lecture 19. October 26, 2009

Recall: $\psi : \mathbb{R}^n \to \mathbb{R}$, $\operatorname{Hess}_p \psi(x) = \sum \frac{\partial^2 \psi}{\partial x_j \partial x_k}(p) x_j x_k$. $E \subset \mathbb{CP}^n$ is open and bE is C^2 .

For $p \in bE$ with $T_p(bE)$ and $H_p(bE)$ we can apply a linear transformation to move p to 0 with $T_0 = \mathbb{C}^{n-1} \times \mathbb{R}$ and $H_0 = \mathbb{C}^{n-1} \times \{0\}$. Let $z_n = u + iv$ and $v > \varphi(z_1, \ldots, z_{n-1}, u)$. (*) holds at $0 \Rightarrow \varphi(z_1, \ldots, z_{n-1}, 0)$ has a local minimum at $0 \Rightarrow \operatorname{Hess}_0 \varphi \ge 0$ on $\mathbb{C}^n n - 1 \times \{0\}$. Also, $\operatorname{Hess}_0 \varphi > 0$ on $\mathbb{C}^{n-1} \times \{0\} \Rightarrow \varphi(z_1, \ldots, z_{n-1}, 0)$ has a strict local minimum at $0 \Rightarrow (*), (**)$ hold at p.

How does the choice of LFT affect Hessians? Let n = 2

$$\Phi: \begin{pmatrix} z_1\\ z_2 \end{pmatrix} \mapsto \begin{pmatrix} \underline{D+Ez_1+Fz_2}\\ \underline{A+Bz_1+Cz_2}\\ \underline{G+Hz_1+Iz_2}\\ \underline{A+Bz_1+Cz_2} \end{pmatrix}$$

If we want $\begin{pmatrix} 0\\0 \end{pmatrix} \mapsto \begin{pmatrix} 0\\0 \end{pmatrix}$, then we need D = G = 0. For (A - B - C)

$$\det \begin{pmatrix} A & B & C \\ D & E & F \\ G & H & I \end{pmatrix} \neq 0$$

we insist that A = 1. If

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \approx \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \Phi \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \approx \begin{pmatrix} Ez_1 + Fz_2 \\ Hz_1 + Iz_2 \end{pmatrix}$$

So $\Phi' \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} E & F \\ H & I \end{pmatrix}$. Need $\Phi' \begin{pmatrix} 0 \\ 0 \end{pmatrix} : \mathbb{C} \times \mathbb{R} \to \mathbb{C} \times \mathbb{R} \Leftrightarrow H = 0, I > 0.$
$$\begin{pmatrix} 1 & B & C \\ 0 & D & E \\ 0 & 0 & I \end{pmatrix} = \Phi = \Phi_1 \circ \Phi_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & D & E \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} 1 & B & C \\ 0 & 1 & 0 \\ 0 & 0 & I \end{pmatrix}$$

So $\Phi_1 : \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \mapsto \begin{pmatrix} Dz_1 + Ez_2 \\ Iz_2 \end{pmatrix}$. Let $v = \varphi(z_1, u)$ pullback via Φ_1 to $v = \widetilde{\varphi}(z_1, u)$

$$Iv = \varphi(Dz_1 + Ez_2, Iu), \tilde{\varphi} = \frac{1}{I}\varphi(Dz_1 + E_2 2, Iu), \operatorname{Hess}_0 \tilde{\varphi} \begin{pmatrix} z_1 \\ u \end{pmatrix} = \frac{1}{I}\operatorname{Hess}_0 \varphi \left(\Phi_1'(0) \begin{pmatrix} z_1 \\ u \end{pmatrix}\right)$$

Do the same pullback with Φ_2 .

$$\operatorname{Im} \frac{z_2}{1 + Bz_1 + Cz_2} = \varphi \left(\operatorname{Re}^{\frac{z_1}{1 + Bz_1 + Cz_2}}_{\operatorname{Re} \frac{z_2}{1 + Bz_1 + Cz_2}} \right) = \frac{1}{2} \operatorname{Hess}_0 \varphi \begin{pmatrix} z_1 + \cdots \\ u + \cdots \end{pmatrix} + \cdots = \frac{1}{2} \operatorname{Hess}_0 \varphi \begin{pmatrix} z_1 \\ u \end{pmatrix} + \cdots$$
$$\operatorname{Im} \frac{z_2}{1 + Bz_1 + Cz_2} = \operatorname{Im}(z_2 - Bz_1 z_2 - Cz_2^2 + \cdots) = v - \operatorname{Im}(Bz_1 z_2 + Cz_2^2) + \cdots = v - \operatorname{Im}(Bz_1 u + Cu^2) + \cdots$$

Re-arranging these equations,

$$v = \frac{1}{2} \operatorname{Hess}_{0} \varphi \operatorname{Im} \begin{pmatrix} z_{1} \\ u \end{pmatrix} + \operatorname{Im} (Bz_{1}z_{2} + Cu^{2}) + \cdots$$
$$\operatorname{Hess}_{0} \widetilde{\varphi} \begin{pmatrix} z_{1} \\ u \end{pmatrix} = \operatorname{Hess}_{0} \varphi \begin{pmatrix} z_{1} \\ u \end{pmatrix} + 2 \operatorname{Im} (Bz_{1}z_{2} + Cu^{2})$$
$$\operatorname{Hess}_{0} \widetilde{\varphi} \begin{pmatrix} z_{1} \\ 0 \end{pmatrix} = \operatorname{Hess}_{0} \varphi \begin{pmatrix} z_{1} \\ 0 \end{pmatrix}$$

Combine: $\Phi = \Phi_1 \circ \Phi_2$ so that

$$\operatorname{Hess}_{0}\widetilde{\varphi}\begin{pmatrix}z_{1}\\0\end{pmatrix} = \frac{1}{I}\operatorname{Hess}_{0}\varphi\left(\Phi'(0)\begin{pmatrix}z_{1}\\u\end{pmatrix}\right)$$

• Remaining terms of $\operatorname{Hess}_0 \widetilde{\varphi} \begin{pmatrix} z_1 \\ u \end{pmatrix}$ may be prescribed arbitrarily.

Option 1:

$$\begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

so the Taylor expansion of $\widetilde{\varphi}$ contains no u terms until at least the 3rd order. Option 2:

$$\begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

If $\text{Hess}_0 \varphi > 0$ on H_0 get $\text{Hess}_0 \tilde{\varphi} > 0$ on T_0 .

Exercise 2.89. Show that this generalizes to higher dimensions.

Let $E \subset \mathbb{R}^n$ be connected, open and bounded with C^2 boundary.

$$E = \{x \mid \rho(x) < 0\}, \rho \text{ is } C^2, d\rho \neq 0 \text{ on } bE$$

Suppose E has another defining function, $\tilde{\rho}$, $\tilde{\rho} = \eta \rho$ where $\eta > 0$ on bE.

$$\operatorname{Hess}_{p}\widetilde{\rho}(x) = \eta(p)\operatorname{Hess}_{p}\rho(x) + \rho(p)\operatorname{Hess}_{p}\eta(x) + d_{p}\rho(x)d_{p}\eta(x)$$

If $p \in bE$ and x is tangent to bE at p, then $\operatorname{Hess}_p \widetilde{\rho}(x) = \eta(p) \operatorname{Hess}_p \rho(x)$.

Lecture 20. October 28, 2009

When we have been discussing T_a (the real tangent space at a) and H_a (the complex tangent space at $a, H_a \subset T_a$), they are affine spaces, not necessarily vector spaces. † Assume $E \subset \mathbb{R}^n$ or \mathbb{C}^n is bounded, connected and open with C^2 boundary. E has a C^2 defining function ρ satisfying $d\rho \neq 0$ on bE and $E = \{x \mid \rho(x) < 0\}$.

Theorem 2.90 (1). In \mathbb{R}^n , TFAE

- (1): $Hess_a \rho \ge 0$ on $T_a^0(bE), \forall a \in bE$
- (2): E is convex
- (3): $u: E \to \mathbb{R}$ given by u(x) = -d(x, bE) is convex
- (4): u is convex near bE
- (5): $\exists C^{\infty}\psi: E \to \mathbb{R}$ such that $\psi(x) \to \infty$ as $x \to bE$ and $Hess_a\psi > 0$
- (6): $E = \bigcup E_j, E_1 \subset \subset E_2 \subset \subset E_3 \subset \cdots$ all strongly convex (note the notation " $\subset \subset$ " means that $\overline{E_i} \subset E_{i+1}$ is compact or E_i is relatively compact in E_{i+1}).

Definition 2.91. *E* is strongly convex if $\operatorname{Hess}_a \rho > 0$ on $T_a^0(bE), \forall a \in bE$.

Definition 2.92. $\psi : E \to \mathbb{R}$ is strongly convex if $\text{Hess}_a \psi > 0, \forall a \in bE$.

Note that this is sometimes referred to as strictly convex.

 $\{\text{domains satisfying } \} \supset^{\text{closed}} \{\text{convex domains satisfying } \} \supset^{\text{open}} \{\text{strongly convex domains}\}$ The first set is a Banach manifold.

Theorem 2.93 (2). In \mathbb{C}^n , TFAE

- (1'): $Hess_a \rho \geq 0$ on $H^0_a(bE), \forall a \in bE$

- (2'): $E \text{ is } \mathbb{C}\text{-convex} (and \mathbb{C}\text{-linear convexity})$ (4'): $Hess_a u(w) \geq \frac{||d_a u(w)||^2 + ||d_a(u)(iw)||^2}{u}, \forall a \text{ near } bE, w \in \mathbb{C}^n$ (6'): $E = \cup E_j, E_1 \subset \subset E_2 \subset \subset E_3 \subset \cdots$ all strongly $\mathbb{C}\text{-convex}$

Definition 2.94. E is strongly \mathbb{C} -convex if $\operatorname{Hess}_a \rho > 0$ on $H^0_a(bE), \forall a \in bE$. Equiva*lently,* E is strongly \mathbb{C} -convex if $\forall a \in bE, \exists a \text{ LFT } \Phi$ such that $\Phi(E)$ strongly convex in a neighborhood of $\Phi(a)$.

f is convex if $f(tx + (1-t)y) \ge tf(x) + (1-t)f(y), \forall x, y, 0 \le t \le 1$. Equivalently, f is **convex** if the epigraph of f is convex. If f is C^2 , then f is **convex** \Leftrightarrow Hess_a $f \ge 0, \forall a$.

Definition 2.95. E is strongly pseudoconvex if the strict inequality holds in condition (1") when $w \neq 0$. Equivalently, E is strongly pseudoconvex if $\forall a \in bE, \exists \Phi$ biholomorphic near a such that $\Phi(E)$ is strongly pseudoconvex in a neighborhood of $\Phi(a)$.

Theorem 2.96 (3). In \mathbb{C}^n , TFAE

(1"): $Hess_a\rho(w) + Hess_a\rho(iw) \ge 0, \forall a \in bE, \forall w \in H^0_a(bE)$ (2"): E is pseudoconvex (3"): u is locally a clear limit of C^2 functions satisfying \ddagger (4"): $\ddagger Hess_a u(w) + Hess_a u(iw) \ge 2 \frac{|d_a u(w)|^2 + |d_a u(iw)|^2}{u}, \forall a \ near \ bE, w \in \mathbb{C}^n$ (5"): $\exists \psi : E \to \mathbb{R} \ C^{\infty} \ such \ that \ \psi(z) \to \infty \ as \ z \to bE \ and \ Hess_a \psi(w) + Hess_a \psi(iw) > 0$ $0, \forall a \in E, w \neq 0$ (6"): $E = \bigcup E_i, E_1 \subset \subseteq E_2 \subset \subseteq E_3 \subset \subseteq \cdots$ all strongly pseudoconvex

These three theorems are all assuming that the boundary is smooth.

Lecture 21.

October 30, 2009 Let $\psi : \mathbb{C}^n \to \mathbb{R}$,

$$\operatorname{Hess}_{a}\psi(v) = \sum j, k \frac{\partial^{2}\psi}{\partial z_{j}\partial\overline{z}_{k}}(a)v_{j}\overline{v}_{k} + \operatorname{Re}\sum_{j,k} \frac{\partial^{2}\psi}{\partial z_{j}\partial z_{k}}(a)v_{j}v_{k}$$
$$\operatorname{Hess}_{a}\psi(v) + \operatorname{Hess}_{a}\psi(iv) = 2\sum_{j,k} \frac{\partial^{2}\psi}{\partial z_{j}\partial\overline{z}_{k}}(a)v_{j}\overline{v}_{k}$$
$$\operatorname{Hess}_{a}\psi(v) - \operatorname{Hess}_{a}\psi(iv) = 2\operatorname{Re}\sum_{j,k} \frac{\partial^{2}\psi}{\partial z_{j}\partial z_{k}}(a)v_{j}v_{k}$$

These terms are not standardized, but we shall call: $\frac{\partial^2 \psi}{\partial z_i \partial \overline{z}_k}(a)$ the \mathbb{C} – Hess_a ψ and $\frac{\partial^2 \psi}{\partial z_i \partial z_k}(a)$ the holomorphic-Hess_a ψ .

 $\operatorname{Hess}\psi = \mathbb{C} - \operatorname{Hess}\psi + \operatorname{Re}(\operatorname{holomorphic-Hess}\psi)$

We can now write the conditions in the previous lecture as: $(5'')\mathbb{C} - \text{Hess}_a \psi > 0$, " ψ strongly plurisubharmonic" $(4'')\mathbb{C} - \text{Hess}_a(-\log(-u)) \ge 0$, " $-\log(-u)$ plurisubharmonic" $(1'')\mathbb{C} - \mathrm{Hess}_a \rho \ge 0 \text{ on } H^0_a$

Recall: H_a^0 is the \mathbb{C} -tangent vector space at a, while H_a is the affine \mathbb{C} -tangent spaces at a. Transformations for Hessians:

Let $M \xrightarrow{\Phi} N \xrightarrow{u} \mathbb{R}$. General rule:

 $\operatorname{Hess}_{a}(u \circ \Phi)(v) = \operatorname{Hess}_{\Phi(a)}u(\Phi'(a)v) + u'(\Phi(a)) \cdot \operatorname{Hess}_{a}\Phi(v)$

Usually mathematicians prefer when the second term vanishes because the first term is more reminiscent of the standard chain rule. The second term vanishes if:

• Φ is affine (so composing a convex function with an affine function returns a convex function):

Conditions (1), (5), (6) are directly affine invariant, while (2), (3), (4) are indirectly affine invariant.

Conditions (1'), (6') are directly \mathbb{C} -affine invariant, while (4') is indirectly affine invariant.

• Φ is holomorphic $\Rightarrow \mathbb{C} - \text{Hess}_a \Phi = 0$

$$\Rightarrow \mathbb{C} - \operatorname{Hess}_{a}(u \circ \Phi)(v) = \mathbb{C} - \operatorname{Hess}_{\Phi(a)}u(\Phi'(a)v)$$

so the composition of a plurisubharmonic function with a holomorphic map is plurisubharmonic. Therefore,

- Conditions (1''), (5''), (6'') are directly holomorphically invariant.
- What if Φ is a LFT? (composition of a convex function with a LFT is not convex) For real x, $\Phi(x) = \frac{\text{affine mapping of } f}{A_{0,0}+A_{0,1}x_1+\cdots+A_{0,n}x_n}$.

Lemma 2.97. $Hess_a\Phi(v) = -2\frac{A_{0,1}v_1 + \dots + A_{0,n}v_n}{A_{0,0} + A_{0,1}a_1 + \dots + A_{0,n}a_n}\Phi'(a)v.$

Let $a \in M$ and look at the level surfaces through a and $\Phi(a)$. The level surface through a is $(u \circ \Phi)^{-1}(u(\Phi(a)))$.

v is tangent at a to $(u \circ \Phi)^{-1}(u(\Phi(a))) \Leftrightarrow (u \circ \Phi)'(a)v = u'(\Phi(a))\Phi'(a)v = 0$

 $\Leftrightarrow \Phi'(a)v$ is tangent at $\Phi(a)$ to $u^{-1}(u(\Phi(a)))$

So condition (1), (6) are directly LFT-invariant, while the conditions (2), (3), (4), (5) are all indirectly LFT-invariant.

Complex Case:

The same argument works if the vector $v \in H_a^0$. Then Conditions (1'), (6') are directly LFT-invariant.

Definition 2.98. bE is strongly \mathbb{C} -convex at a if $\operatorname{Hess}_a \rho > 0$ on H^0_a .

bE is strongly \mathbb{C} -convex at $a \Rightarrow \mathbb{C} - \text{Hess}_a \rho > 0$ on H_a^0 . Re(holo.-Hess_a $\rho) = \text{Re}(\sum \cdots z_j z_k)$ has no particular sign.

We need $\mathbb{C} - \text{Hess}_a \rho(z) + \text{Re}(\text{holo.-Hess}_a \rho(x) > 0, \forall z.$

$$C - \text{Hess}_a \rho(e^{i\theta} z) + \text{Re(holo.-Hess)}_a \rho(e^{i\theta}) > 0$$

For certain chose of θ , \mathbb{C} – Hess_a $\rho(e^{i\theta}z)$ – |holo.-Hess_a $\rho(z)$ |. Need: |holo.-Hess_a $\rho(z)$ | < \mathbb{C} – Hess_a $\rho(z)$, \forall non-zero $z \in H_a^0$.

Lecture 22. November 2, 2009

Let $E = \{\rho < 0\}$ with a C^2 boundary. Recall: bE is **strongly** \mathbb{C} -**convex** (or \mathbb{C} -convex) at $a \in bE \Leftrightarrow \operatorname{Hess}_a \rho > 0$ (or $\operatorname{Hess}_a \rho \ge 0$) on $H^0_a \Leftrightarrow |\operatorname{holo.-Hess}_a \rho(z) < \mathbb{C} - \operatorname{Hess}_a \rho(z), \forall z \in H^0_a$ non-zero $\Leftrightarrow \frac{|\operatorname{holo.-Hess}_a \rho(z)|}{\mathbb{C} - \operatorname{Hess}_a \rho(z)} < 1, \forall z \in H^0_a$ nonzero $\Rightarrow bE$ strongly pseudoconvex at a. Replace ρ by $\tilde{\rho} = \eta \rho$, ($\eta > 0$ on bE) \Rightarrow Hess $_a \tilde{\rho} = \eta \operatorname{Hess}_a \rho$ on $T^0_a, \mathbb{C} - \operatorname{Hess}_a \tilde{\rho} = \eta \mathbb{C} \operatorname{Hess}_a \rho$ on H^0_a , and holo.-Hess $_a \rho = \eta$ holo.-Hess $_a \rho$ on H^0_a . For n = 2, dim_{\mathbb{C}} $H^0_a = 1$. (*) Independent of ρ , invariant under rotation, dibdr on z independent of choice of $z \in$

 $H_a^0 \setminus \{0\}$. So (*) defines a scalar invariant depending on $a \in bE$. Simple choice of $z = \left(\frac{\partial \rho}{\partial z_2}, -\frac{\partial \rho}{\partial z_1}\right) \in \mathbb{C}^2 \leftrightarrow \frac{1}{2} \left(\frac{\partial \rho}{\partial x_2}, -\frac{\partial \rho}{\partial y_2}, -\frac{\partial \rho}{\partial x_1}, \frac{\partial \rho}{\partial y_1}\right) \in \mathbb{R}^4$. Check that $z, iz \perp \operatorname{grad} \rho$ so $z \in H_a^0$. Need:

$$1 > \frac{\left| \left(\rho_{2} - \rho_{1}\right) \begin{pmatrix} \rho_{1,1} & \rho_{1,2} \\ \rho_{2,1} & \rho_{2,2} \end{pmatrix} \begin{pmatrix} \rho_{2} \\ -\rho_{1} \end{pmatrix} \right|}{\left(\rho_{2} - \rho_{1}\right) \begin{pmatrix} \rho_{1,\overline{1}} & \rho_{1,\overline{2}} \\ \rho_{2,\overline{1}} & \rho_{2,\overline{2}} \end{pmatrix} \begin{pmatrix} \overline{\rho_{2}} \\ -\overline{\rho_{1}} \end{pmatrix}} = \frac{\left| -\det \begin{pmatrix} 0 & \rho_{1} & \rho_{2} \\ \rho_{1} & \rho_{1,1} & \rho_{1,2} \\ \rho_{2} & \rho_{2,1} & \rho_{2,2} \end{pmatrix} \right|}{-\det \begin{pmatrix} 0 & \overline{\rho_{1}} & \overline{\rho_{2}} \\ \rho_{1} & \rho_{1,\overline{1}} & \rho_{1,\overline{2}} \\ \rho_{2} & \rho_{2,ol1} & \rho_{2,\overline{2}} \end{pmatrix}}$$

Independent of choice of ρ . LFT-invariant.

What happens without absolute values in the norm?

$$M \xrightarrow{\phi} N \xrightarrow{\rho} \mathbb{R} \text{ and } M \xrightarrow{\rho} \mathbb{R}$$
$$\begin{pmatrix} 0 & \hat{\rho}_{\overline{k}} \\ \hat{\rho}_{j} & \hat{\rho}_{j,\overline{k}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \Phi_{j,k} \end{pmatrix} \begin{pmatrix} 0 & \rho_{\overline{k}} \\ \rho_{j} & \rho_{j,\overline{k}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \overline{\Phi}_{k,j} \end{pmatrix}$$

Just need Φ holomorphic. Denominator picks up a factor of $|\det' \Phi|^2$.

$$\det \begin{pmatrix} 0 & \hat{\rho}_k \\ \hat{\rho}_j & \hat{\rho}_{j,k} \end{pmatrix} = \det \begin{pmatrix} 0 & \sum_l \rho_l \Phi_{l,k} \\ \sum_l \rho_l \Phi_{l,j} & \sum_{l,m} \rho_{l,m} \Phi_{l,j} \Phi_{m,k} - \sum_l \rho_l \frac{A_{0,j} \Phi_{l,k} + A_{0,k} \Phi_{l,j}}{A_{0,0} + A_{1,0} a_1 + \dots + A_{0,n} a_n} \end{pmatrix}$$
$$= \det \begin{pmatrix} 1 & 0 \\ 0 & \Phi_{j,k} \end{pmatrix} \det \begin{pmatrix} 0 & \rho_j \\ \rho_k & \rho_{j,k} \end{pmatrix} \det \begin{pmatrix} 1 & 0 \\ 0 & \overline{\Phi}_{k,j} \end{pmatrix}$$

The numerator picks up a factor of $(\det' \Phi)^2$ and the quotient picks up $\frac{\det' \Phi}{\det' \Phi}$.

$$\mathcal{B}_{bE} \equiv \frac{\det \begin{pmatrix} 0 & \rho_k \\ \rho_j & \rho_{j,k} \end{pmatrix}}{-\det \begin{pmatrix} 0 & \rho_{\overline{k}} \\ \rho_j & \rho_{j,\overline{k}} \end{pmatrix}} \frac{dz_1 \wedge dz_2}{dz_1 \wedge dz_2}$$

is LFT invariant.

Compare on \mathbb{C} to the Betrami differential $\mu(z)\frac{d\overline{z}}{dz}$. Suppose $f:\mathbb{C}\to\mathbb{C}$ is an orientationpreserving diffeomorphism. Then $\frac{\overline{\partial}f}{\partial f} = \frac{f_{\overline{z}}}{f_z} \frac{d\overline{z}}{dz}$, where $\left| \frac{f_{\overline{z}}}{f_z} \right| < 1$. Beltrami Equation: Given $|\mu(z)| < 1$, solve $\frac{\overline{\partial}f}{\partial f} = \mu(z)\frac{d\overline{z}}{dz}$. Special case: Teichmuler differential is $c \frac{\overline{h(z)}}{h(z)} \frac{d\overline{z}}{dz}$, where c is a constant.

Lecture 23. November 4, 2009

Example 2.99. In \mathbb{C}^2 :

(1) Let $E = \{|z_1|^p + |z_2|^p < 1\}$. Then

$$\mathcal{B}_{bE} = \frac{2-p}{p} \frac{\overline{z_1 z_2}}{z_1 z_2} \frac{dz_1 \wedge dz_2}{dz_1 \wedge dz_2} = \frac{2-p}{p} \frac{dz_1 \wedge dz_2}{z_1 z_2} \frac{\overline{z_1 z_2}}{dz_1 \wedge dz_2}$$

This is strongly \mathbb{C} -convex off the axes when 1 .

(2) Let $E = \{ \text{Im} z_2 > |z_1|^{\gamma} \}$. Then

$$\mathcal{B}_{bE} = \frac{\gamma - 2}{\gamma} \frac{\overline{z_1}}{z_1} \frac{dz_1 \wedge dz_2}{dz_1 \wedge dz_2} = \frac{\gamma - 2}{\gamma} \frac{dz_1 \wedge dz_2}{z_1} \frac{\overline{z_1}}{dz_1 \wedge dz_2}$$

This is strongly \mathbb{C} -convex off of $z_1 = 0$ for $\gamma > 1$.

(3) Let $E = \{ \text{Im} z_2 > \alpha | z_1 |^2 + \text{Re} \beta z_i^2 \}$. Then

$$\mathcal{B}_{bE} = \frac{\beta}{\alpha} \frac{dz_1 \wedge dz_2}{dz_1 \wedge dz_2}$$

This is strongly convex for $|\beta| < \alpha$. Note that the (2,0) form $dz_1 \wedge dz_2$ has a pole in projective space at ∞ .

• \mathcal{B}_{bE} is defined on bE, but in these examples we get an extension of the form: rational (2,0) form_____

 $\overline{\text{conjugate of rational } (2,0) \text{ form}}$

- In these examples, $|\mathcal{B}_{bE}|$ is constant, but this is not typical.
- bE in \mathbb{CP}^n is not everywhere smooth and strongly \mathbb{C} -convex unless in example 1) p = 2, 2 $|\gamma| = 2, 3$ $\beta = 0.$

Theorem 2.100 (deTraz-Trepeau/Bolt). Suppose $\mathcal{B}_{bE} \equiv 0$. Then E is LFT-equivalent to a ball (also local).

Theorem 2.101 (Bolt). Suppose $\mathcal{B}_{bE} = k \frac{dz_1 \wedge dz_2}{dz_1 \wedge dz_2}$ and 0 < |k| < 1. Then E is affineequivalent to example 3 (also local).

A similar result holds for example 1. Problems:

- (1) When is $|\mathcal{B}_{bE}$ constant?
- (2) When is $\mathcal{B}_{bE} = \frac{\text{rational } (2,0)}{\text{conjugateofrational}(2,0)}$?

What does \mathcal{B} tell us? Let $a \in E \rightsquigarrow T_o bE = \mathbb{C} \times \mathbb{R}$ and $(z_1, z_2) = (z, u + iv)$. be is given locally by

$$v = f(z, u) = \alpha |z|^2 + \operatorname{Re}\beta z^2 + O(|u|^2) + O(|\beta|^3) + O(|u| \cdot |z|)$$

Recall (from Lecture 19), that we can improve this to:

$$v = f(z, u) = \alpha |z|^{2} + \operatorname{Re}\beta z^{2} + O(|u|^{3}) + O(|\beta|^{3})$$

$$\begin{split} \rho(z,w) &= f(z,u) - v. \ \mathrm{Hess}_0 \rho \begin{pmatrix} z \\ 0 \end{pmatrix} = \alpha |z|^2 + \mathrm{Re}\beta z^2. \ \mathrm{If} \ \mathrm{you} \ \mathrm{do} \ \mathrm{not} \ \mathrm{want} \ \mathrm{the} \ \mathrm{defining} \ \mathrm{function} \\ \mathrm{in} \ \mathrm{this} \ \mathrm{formula}, \ \mathrm{you} \ \mathrm{can} \ \mathrm{use} \ \mathrm{the} \ \mathrm{second} \ \mathrm{fundamental} \ \mathrm{form} \ \mathrm{to} \ \mathrm{make} \ \mathrm{it} \ \mathrm{independent} \ \mathrm{of} \ \mathrm{the} \\ \mathrm{defining} \ \mathrm{function}. \ \mathrm{The} \ \mathrm{new} \ (\mathrm{equivalent}) \ \mathrm{equation} \ \mathrm{is}: \ \mathbb{I}_0 \begin{pmatrix} z \\ 0 \end{pmatrix} = (\alpha |z|^2 + \mathrm{Re}\beta z^2) \begin{bmatrix} d \\ dV \end{bmatrix}, \ \mathrm{where} \\ \mathbb{I}_0 \ \mathrm{is} \ \mathrm{the} \ \mathrm{second} \ \mathrm{fundamental} \ \mathrm{form}. \\ \mathcal{B} &= \frac{\beta}{\alpha} \frac{dz_1 \wedge dz_2}{dz_1 \wedge dz_2} \ (\ \mathrm{at} \ 0) \ \mathrm{and} \ |\mathcal{B}| = \frac{|\beta|}{\alpha}. \ \mathcal{B} \ \mathrm{is} \ \mathrm{strongly} \ \mathbb{C} \text{-convex} \ \mathrm{at} \ 0 \Leftrightarrow a > 0, \frac{|\beta|}{\alpha} < 1. \ \mathrm{The} \\ \mathrm{levels} \ \mathrm{sets} \ \mathrm{of} \ \mathbb{I}_0 \ \mathrm{are} \ \mathrm{ellipses}. \ \ \mathrm{The} \ \mathrm{major-to-minor} \ \mathrm{axis} \ \mathrm{ratio} \ (\frac{1}{\sqrt{1-\mathrm{ecc}^2}}, \ \mathrm{where} \ \mathrm{ecc} \ \mathrm{is} \ \mathrm{the} \\ \mathrm{eccentricity}) \ \mathrm{is}: \ \sqrt{\frac{\alpha+|\beta|}{\alpha-|\beta|}} = \sqrt{\frac{1+\frac{|\beta|}{\alpha}}{1-\frac{|\beta|}{\alpha}}} = \sqrt{\frac{1+|\mathcal{B}|}{1-|\mathcal{B}|}}. \ \ \mathrm{The} \ \mathrm{minor} \ \mathrm{axis} \ \mathrm{is} \ \mathrm{given} \ \mathrm{by} \ \beta z^2 > 0, \ \mathrm{i.e.} \\ 2 \ \mathrm{arg}(\mathrm{minor} \ \mathrm{axis}) = - \ \mathrm{arg} \beta. \\ Claim: \ \mathrm{This} \ \mathrm{determines} \ \ \mathrm{arg} \beta^n \ \mathrm{at} \ 0. \\ \mathrm{In} \ \mathrm{general}, \ \mathcal{B}_a = b(a) \frac{dz_1 \wedge dz_2}{dz_1 \wedge dz_2} \ \mathrm{determines} \ \mathrm{amp} \end{split}$$

$$\mathcal{B}_a: \{(x,y) \in T^0_a \mathbb{C}^2 \mid x, y \mathbb{C} - \text{linear ind}\} \to \mathbb{C} \text{ given by } (x,y) \mapsto b(a) \frac{\det(X \vdots Y)}{\det(X \cdots Y)} = \frac{\det^2(X \cdots Y)}{|\det(X \vdots Y)|^2}$$

 $\mathcal{B}_a(x,y) = \mathcal{B}_a(y,x) = \mathcal{B}_a(x+y,y) \text{ and } \mathcal{B}_a(\lambda x,y) = \frac{\lambda}{\overline{\lambda}} \mathcal{B}_a(x,y) = \mathcal{B}_a(x,\lambda y).$ Back to particular situation: Pick any $y = \begin{pmatrix} \phi \\ t \end{pmatrix} \in T_0 \setminus H_0 \text{ and } x = \begin{pmatrix} z \\ 0 \end{pmatrix} \in H_0 \text{ for } t \in \mathbb{R} \setminus \{0\}$ and $z \neq 0$.

$$\mathcal{B}_0(x,y) = \frac{\beta}{\alpha} \frac{(tz)^2}{|tz|^2} = \frac{\beta z^2}{\alpha |z|^2}$$

We can replace the \mathcal{B} 's by $\widetilde{\mathcal{B}}$. Note that $\alpha |z|^2 > 0$. Conclude that $\mathcal{B}_0(x, y) > 0 \Leftrightarrow x \in \text{minor}$ axis. This determines "arg \mathcal{B} ."

Exercise 2.102. This geometric description of \mathcal{B} works at all $a \in bE$ and is LFT-invariant.

Lecture 24. November 6, 2009

Let S be a $C^2\mathbb{R}$ -hypersurface in a 2-dimensional \mathbb{C} manifold M. For $a \in S \subset M$,

$$b(a) \frac{dz_1 \wedge dz_2}{dz_1 \wedge dz_2}, |b(a)| < 1 \longleftrightarrow$$
 family of similar ellipses in H_a^0

Two ellipses are similar if they are equivalent via a dilation. In the above equivalence, we can get circles $\Leftrightarrow b(a) = 0$. If |b(a)| = 1 we get a family of parallel lines and if |b(a)| > 1then we get a family of hyperbolas.

Suppose $S \subset \mathbb{CP}^2$ is a strongly \mathbb{C} -convex hypersurface. $\mathcal{B}_S \longrightarrow$ family of similar ellipses centered at a in H_a , LFT-invariant.

Problem: What "compatibility condition" must \mathcal{B}_S satisfy? Special Case: Given $\varphi(z_1) \frac{dz_1 \wedge dz_2}{dz_1 \wedge dz_2}$, is this \mathcal{B}_S for some strongly \mathbb{C} -convex $\mathbb{S} = \{ \operatorname{Im}(z_2) = f(x_1) \}$ "rivid hum any formula \mathbb{C} . $f(z_1)$ "rigid hypersurface."

Theorem 2.103. This happens if and only if

$$Im\left(\varphi_{\overline{z}\overline{z}} - \overline{\varphi}\varphi_{z\overline{z}} + \frac{\overline{\varphi}\varphi_{\overline{z}}^2 + \varphi\varphi_{\overline{z}}\overline{\varphi}_{\overline{z}} - \overline{\varphi}\varphi_{z}\varphi_{\overline{z}}}{1 - \varphi\overline{\varphi}}\right) = 0$$

(this is an underdetermined non-linear hyperbolic PDE).

 $\mathbb{S} \setminus \{\mathcal{B}_S = 0\}$ is folliated by real curves tangent to the minor axis. Examples?

Returning to \mathbb{C}^1 : Metrics on $\mathbb{R}^2 = \mathbb{C}$: $g = \alpha(z)|dz|^2 + \operatorname{Re}(\beta(z)dz^2)$, with $|\beta| < \alpha$ (written as the hermitian part plus the antihermitian part) $\mathcal{B}_g = \frac{\beta(z)dz^2}{\alpha(z)|dz|^2} = \frac{\beta(z)dz}{\alpha(z)d\overline{z}}$

Definition 2.104. Metrics g, \tilde{g} are conformally equivalent if $\tilde{g} = \lambda g$, where λ is a positive function of z. Equivalently, $\mathcal{B}_{\tilde{g}} = \mathcal{B}_g$.

Can we change coordinates so that g is conformally equivalent to the standard metric? Yes, but it is important that we are in \mathbb{R}^2 .

$$(\mathbb{C},g) \xrightarrow{f} (\mathbb{C},|dw|^2) \text{ has pull-back } f^*(|dw|^2) = (|w_z|^2 + |w_{\overline{z}}|^2)|dz|^2 + \operatorname{Re}(2w_z\overline{w}_z)dz^2$$
$$\mathcal{B}_{f^*(|dw|^2)} = \frac{2w_z\overline{w}_z}{|w_z|^2 + |w_{\overline{z}}|^2}\frac{dz}{d\overline{z}}$$

Definition 2.105. A conformal dilation of f, μ_f , is

$$\mu_f = \frac{\overline{\partial}f}{\partial f} = \frac{w_{\overline{z}}d\overline{z}}{w_z dz} = \frac{\overline{\mathcal{B}}_g}{1 + \sqrt{1 - |\mathcal{B}_g|^2}}.$$

Ahlfors-Bers: Assume that $||\mathcal{B}_g||_{\infty} < 1$ on \mathbb{C} . Then \exists an orientation preserving (i.e. the real Jacobian determinant is positive) homeomorphism/difeomorphism $f: \mathbb{C} \to \mathbb{C}$ solving $\frac{\overline{\partial}f}{\partial f} = \frac{\overline{\mathcal{B}}_g}{1 + \sqrt{1 - |\mathcal{B}_g|^2}}. f \text{ is a diffeomorphism if } \mathcal{B}_g \text{ is } C^1.$ Note that $\frac{\overline{\partial}f}{\partial f} = \frac{\overline{\mathcal{B}}_g}{1+\sqrt{1-|\mathcal{B}_g|^2}}$ is called a **Beltrami equation**.

Returning to higher-dimensions: \mathbb{C} -dimension ≥ 2 Let $S \subset \mathbb{CP}^n$ a smooth \mathbb{R} -hypersurface. $\mathcal{D}_{\mathbb{S}} : \mathbb{S} \to \mathbb{CP}^{n*}$ given by $a \mapsto H_a(\mathbb{S})$. Define $S^* = \mathcal{D}(S)$.

Proposition 2.106. If S = bE, where E is open and C-convex, then $S^* = b(E^*)$.

Let's study \mathcal{D}_S (using affinization 3).

$$\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n \longleftrightarrow \begin{pmatrix} 1 \\ \ddots \\ z_1 \\ \vdots \\ \vdots \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{CP}^n$$

 $(\eta_1,\ldots,\eta_n)\in\mathbb{C}^{n*}\longleftrightarrow(\eta_n:-\eta_1:\cdots:-\eta_{n-1},1)\in\mathbb{CP}^{n*}$

$$h_{\eta} = \{ z \in \mathbb{C}^n \mid \sum_{j=1}^{n-1} z_j \eta_j = z_n + \eta_n \} = \{ z \in \mathbb{C}^n \mid \eta \cdot z = 0 \}$$

Why? We like to work near $0 \in S$. $T_0 = \mathbb{C}^{n-1} \times \mathbb{R}, H_0 = \mathbb{C}^{n-1} \times \{0\}$. Let $\eta = \mathcal{D}_S(z)$. Then $z \in H_z = h_\eta$, i.e. $\sum_{j=1}^{n-1} z_j \eta_j = z_n + \eta_n$.

Lecture 25. November 9, 2009

 $S \subset \mathbb{CP}^n$ is a C^2 , \mathbb{R} -hypersurface with defining function ρ . $\mathcal{D}_S : S \to \mathbb{CP}^{n*}$ is given by $z \mapsto H_z(s)$. $S^{(*)} = \mathcal{D}_S(S) \subset \mathbb{CP}^{n*}$. Let Γ_S be the graph of \mathcal{D}_S , so $\Gamma_S \subset \{(z,\eta) \in \mathbb{CP}^n \times \mathbb{CP}^{n*} \mid z \in h_\eta\}$ = the incidence submanifold of $\mathbb{CP}^n \times \mathbb{CP}^{n*}$. Using affinization 3,

$$\{(z,\eta) \in \mathbb{CP}^n \times \mathbb{CP}^{n*} \mid z \in h_\eta\} = \{(z,\eta) \in \mathbb{C}^n \times \mathbb{C}^{n*} \mid \sum_{j=1}^{n-1} z_j \eta_j = z_n + \eta_n\}$$

Affinization 3 excludes vertical hyperplanes so it is fine for local but not global purposes, while affinization 1 is better for global than local purposes. Focus on n = 2.

Work near $0 \in S, T_0 S = \mathbb{C} \times \mathbb{R}, H_0 S = \mathbb{C} \times \{0\}.$

$$T_z S = \left\{ (\zeta_1, \zeta_2) \middle| 2\operatorname{Re}\left(\frac{\partial\rho}{\partial z_1}(z)(z_1 - \zeta_1) + \frac{\partial\rho}{\partial z_2}(z)(z_2 - \zeta_2)\right) = 0 \right\}$$
$$H_z S = \left\{ (\zeta_1, \zeta_2) \middle| \frac{\partial\rho}{\partial z_1}(z)(z_1 - \zeta_1) + \frac{\partial\rho}{\partial z_2}(z)(z_2 - \zeta_2) = 0 \right\}$$
$$= \left\{ (\zeta_1, \zeta_2) \middle| -\frac{\frac{\partial\rho}{\partial z_1}}{\frac{\partial\rho}{\partial z_2}}(z)\zeta_1 = \zeta_2 - z_2 - \frac{\frac{\partial\rho}{\partial z_1}}{\frac{\partial\rho}{\partial z_2}}(z)z_1 \right\}$$
$$= \left\{ (\zeta_1, \zeta_2) \middle| \eta_1 \zeta_1 = \zeta_2 + \eta_2 \right\}$$

 $(\eta_1, \eta_2) \in \mathcal{D}_S(z)$. Let $z_2 = u + iv$. Choose

$$\rho = v - f(z, u) = \frac{z_2 - \overline{z_2}}{2i} - \alpha z_1 \overline{z_1} - \frac{\beta}{2} z_1^2 - \frac{\overline{\beta}}{2} \overline{z_1} z + 3rd \text{ order terms}$$

$$\mathcal{D}_S(z_1, u + if(z_1, u)) = (2i\alpha \overline{z_1} + 2i\beta z_1 + \cdots, -u + \cdots) \text{ and } \mathcal{D}'_S(0) : \begin{pmatrix} z_1 \\ u \end{pmatrix} \mapsto \begin{pmatrix} 2i\alpha \overline{z_1} + 2i\beta z_1 \\ -u \end{pmatrix}$$
$$\mathcal{D}_S \text{ is diffeo. near } 0 \Leftrightarrow z_1 \mapsto 2 - \alpha \overline{z_1} 2i\beta z_1 \text{ invariant}$$

 $\Leftrightarrow |\alpha| \neq |\beta|$ $\Leftrightarrow \text{strongly } \mathbb{C} - \text{convex or strongly } \mathbb{C} \text{-concave (i.e. } |\beta| > |\alpha|)$ $\Rightarrow S^{(*)} \text{ is smooth near } 0, \mathcal{D}_S(0) = 0 \in S^{(*)}, T_0 S^{(*)} = \mathbb{C} \times \mathbb{R},$ $H_0 S^{(*)} = \mathbb{C} \times \{0\}, \mathcal{D}_{S^*}(\mathcal{D}_S(0)) = 0$

 $\mathcal{D}'_S(0): H_0S \to H_0S^*$ in the strongly \mathbb{C} -convex case (i.e. $|\alpha| > |beta|$), this map is orientation reversing (since $2i\alpha\overline{z_1}$ dominates $2i\beta z_1$) and not \mathbb{C} -linear. In general (this in the strongly \mathbb{C} -convex case), $\mathcal{D}'_S(z): H^0_z(S) \to H^0_z(S^{(*)})$ is orientation reversing and not \mathbb{C} -linear. $\mathcal{D}_{S^*} \circ \mathcal{D}_S = I$. \mathcal{D}_S is **contact** or quasi- conformal map for sub-Riemannian metrics on S, S^* . All $\mathcal{D}'_S(z)$'s are conjugate linear $\Leftrightarrow \mathcal{B}_S \equiv 0 \Leftrightarrow S$ is LFT-equivalent to part of a sphere.

Remark 2.107. For the sphere, $\beta = 0$ so in some sense the sphere is the most severe strongly \mathbb{C} -convex space we can have.

Strongly \mathbb{C} -concave case (i.e. $|\beta| > |\alpha|$). Still have \mathcal{D}_S contact, $\mathcal{D}_{S^*} \circ \mathcal{D}_S = I_S$.

Definition 2.108. \mathcal{D}_S is CR if all $\mathcal{D}'_S(z) : H^0_z \to H^0_z S^*$ is \mathbb{C} -linear.

 \mathcal{D}_S is CR $\Leftrightarrow \mathbb{I}_z$ is anti-hermitian on each $H_z^0 S \Leftrightarrow S$ is Levi-flat $\Leftrightarrow^{\text{Frobenius}} S$ is foliated by 1-dimensional \mathbb{C} -manifolds.

Remark 2.109. For Levi-flat surfaces, $\alpha = 0$ so in some sense they are the most severe strongly \mathbb{C} -concave spaces we can have.

Theorem 2.110. Suppose $\mathcal{D}_S(U)$ is a C^2 3-dimensional manifold for all relatively open $U \subset S$. Then $\mathcal{D}'_S(z)$ is invertible $\forall z \in S$ (which occurs $\Leftrightarrow S$ is strongly \mathbb{C} -convex/concave).

Proof. Let $V = \{z \in S \mid \mathcal{D}'_S(z) \text{ invertible}\} W = S \setminus \overline{V}$ is relatively open in S. Show that $W = \emptyset$. det $\mathcal{D}'_S(z) \equiv 0$ on W by definition of W. By Sard's theorem, $\mathcal{D}_S(W)$ has no zero in $S^* \Rightarrow W = \emptyset$. So V is dense in S. $\mathcal{D}_{S^*} \circ \mathcal{D}_S = I$ on $V \Rightarrow \mathcal{D}_{S^*} \circ \mathcal{D}_S = I$ on $S \Rightarrow \text{each } \mathcal{D}'_S(z)$ is invertible. \Box

Lecture 26. November 11, 2009

Brief Look at the Real Case: Let $S \subset \mathbb{RP}^2$ be a smooth curve. $\mathcal{D}_S : S \to \mathbb{RP}^{2*}$ is given by $x \mapsto T_x S$. $\Gamma_S = \{(x,\eta) \in \mathbb{RP}^2 \times \mathbb{RP}^{2*} \mid \eta = \mathcal{D}_S(x)\}$ and $S^{(*)} = \mathcal{D}_S(S)$. Affine version: $\Gamma_S = \{(x,\eta) \in \mathbb{R}^2 \times \mathbb{R}^{2*} \mid T_x S$ is given by $x_1\eta_1 = x_2 + \eta_2\}$ $x \in T_x S \Rightarrow x_1\eta_1 = x_2 + \eta_2$ on Γ_S η_1 =slope of $T_x S \Rightarrow dx_2 = \eta_1 dx_1$ on Γ_S pulls back to equation on $T_x S$ $x_1\eta_1 = x_2 + \eta_2 \Rightarrow x_1 d\eta_1 + \eta_1 dx_1 = dx_1 + d\eta_2 \Rightarrow x d\eta_1 = d\eta_2$ So $d\eta_2 = x_1 d\eta_1$ on Γ_S pulls back to hold on $T_\eta S^{(*)}$ when $S^{(*)}$ is smooth. So the three equations we have are:

- (1) $x_1\eta_1 = x_2 + \eta_2$ on Γ_S
- (2) $dx_2 = \eta_1 dx_1$ on Γ_S and pulls back to $T_x S$
- (3) $d\eta_2 = x_1 d\eta_1$ on Γ_S and pulls back to $T_\eta S^{(*)}$

The Legendre transform: S =graph of $f \longrightarrow S^* =$ graph of f^* (where f^* is the Legendre transform of f)

Returning to \mathbb{C} :

Let $S \subset \mathbb{CP}^2$ be a smooth real hypersurface. $\mathcal{D}_S : S \to \mathbb{CP}^{2*}$ is given by $z \mapsto H_z S$. $\Gamma_S = \{(z, \eta) \in \mathbb{CP}^2 \times \mathbb{CP}^{2*} \mid \eta = \mathcal{D}_S(z)\}$ and $S^{(*)} = \mathcal{D}_S(S)$. Affine version: $(z, \eta) \in \Gamma_S \Leftrightarrow H_z S$ is given by $z_1\eta_1 = z_2 + \eta_2$. $z \in H_z S \Rightarrow z_1 \eta_1 = z_2 + \eta_2 \text{ on } \Gamma_S \Rightarrow dz_2 = \eta_1 dz_1$ $\widetilde{H}_{(z,\eta)} \Gamma_S \equiv \{(\varphi, \mathcal{D}'_S(\varphi)) \mid \varphi \in H_z S\}$ has \mathbb{R} -dimension 2. So $dz_2 = \eta_1 dz_1$ on $\widetilde{H}_{(z,\eta)} \Gamma_S$. Repeat the argument from the real case: $d\eta_2 = z_1 d\eta_1$ on $\widetilde{H}_{(z,\eta)} \Gamma_S$ and on $H_\eta S^{(*)}$ when this is defined. So the three equations we have are:

- (1) $z_1\eta_1 = z_2 + \eta_2$ on Γ_S
- (2) $dz_2 = \eta_1 dz_1$ on $\widetilde{H}_{(z,n)} \Gamma_S$
- (3) $d\eta_2 = z_1 d\eta_2$ on $\widetilde{H}_{(z,\eta)} \Gamma_S$ and on $H_\eta S^{(*)}$ when this is defined

 \mathbb{C} -Legendre transform: $S = \{v = f(z, u)\} \Rightarrow S^{(*)} = \{v = f^*(z, u)\}$, where f^* is the \mathbb{C} -Legendre transform.

Returning to material from the previous lecture:

Let $z_2 = u + iv$ and $S = \{v = \alpha | z_1 |^2 + \operatorname{Re}\beta z_1^2 + \cdots\} \Rightarrow \mathcal{D}_S(0) = 0, \mathcal{D}'_S(0) : \begin{pmatrix} z_1 \\ u \end{pmatrix} \mapsto \begin{pmatrix} 2i\alpha \overline{z}_1 + 2i\beta z_1 \\ -u \end{pmatrix}$

 $S^{((*)}$ "locally smooth" $\Leftrightarrow |\beta| < |\alpha|$ or $|\alpha| < |\beta| \Leftrightarrow$ strongly \mathbb{C} -concave/convex Get $T_0 S^{(*)} = \mathbb{C} \times \mathbb{R}$ Want second order data for $S^{(*)}$ at 0.

Get
$$T_0 \mathcal{S}^{(\gamma)} = \mathbb{C} \times \mathbb{R}$$
. Want second order data for $\mathcal{S}^{(\gamma)}$ at 0.
 $\eta_2 = z_1 \eta_1 - z_2 = z_1 (2i\alpha \overline{z}_1 + 2i\beta z_1 + \cdots) - u - i\alpha |z_1|^2 - i\operatorname{Re}\beta z_1^2 + \cdots$
Using $z_1 = \frac{-i\alpha \overline{\eta}_1' - i\overline{\beta}\eta_1}{2(\alpha^2 - |\beta|^2) + \cdots}$:
 $\operatorname{Im} \eta_2 = \alpha |z_1|^2 + \operatorname{Re}\beta z_1^2 + \cdots = \cdots = \frac{\alpha |\eta_1|^2 + \operatorname{Re}(\overline{\beta}\eta_1^2)}{4(\alpha^2 - |\beta|^2)} + \cdots$

This looks similar to the way S is defined (i.e. $\alpha |z_1|^2 + \operatorname{Re}\beta z_1^2$ is similar to $\frac{\alpha |\eta_1|^2 + \operatorname{Re}(\overline{\beta}\eta_1^2)}{4(\alpha^2 - |\beta|^2)}$): $\mathcal{D}'_S(0)$ maps ellipses in H_0S determined by \mathbb{I}_0S to ellipses in $H_0S^{(*)}$ determined by $\mathbb{I}_0S^{(*)}$. $|\mathcal{B}_S(0)|| = \frac{|\beta|}{\alpha} = |\mathcal{B}_{S^{(*)}}(0)|$. In general, $|\mathcal{B}_{S^{(*)}}(z)| \circ \mathcal{D}_S = |\mathcal{B}_S(z)|$. Therefore, $S^{(*)}$ is strongly \mathbb{C} -convex/concave $\Leftrightarrow S$ is strongly \mathbb{C} -convex/concave.

We want to further restrict our choice of projective coordinates:

- we could rotate z_1 so that $\beta \ge 0$ (this gets rid of the issue of $\operatorname{Re}\beta$ versus $\operatorname{Re}\overline{\beta}$)
- we could dilate z_1 (by a real constant) so that $\alpha^2 |\beta|^2 = \frac{1}{4}$ (this gets rid of the denominator)

Now $S^{(*)} = \{v = \alpha | z_1 | + \operatorname{Re}\beta z_1^2 + \operatorname{Re}\gamma z_1^3 + \operatorname{Re}\delta z_1^2 \overline{z}_1 + \cdots \}$, note that there are no $u^2, z_1 u$ terms. We still have the freedom:

$$\begin{pmatrix} z \\ w \end{pmatrix} \mapsto \begin{pmatrix} \frac{Dz_1 + Ez_2}{1 + Bz_1 + Cz_2} \\ \frac{D^2 z_2}{1 + Bz_1 + Cz_2} \end{pmatrix}, \text{ for } D, C \in \mathbb{R}$$

Theorem 2.111 (Hammond). Can choose B, E such that $Re\gamma z_1^3, Re\delta z_1^2 \overline{z_1}$ match for $S, S^{(*)}$.

Can't always pin down D:

$$S = \{v = \alpha | z_1 |^2 + \operatorname{Re}\beta z_1^2\} \mapsto S$$
 given by $(z, u + iv) \mapsto (D^2 z, Du + iDv)$ for $D > 0$

Lecture 27. November 13, 2009

Let $S \subset \mathbb{CP}^n$ be a $C^2\mathbb{R}$ -hypersurface. For $p \in S$, using a LFT we can map $p \mapsto 0$, the \mathbb{R} tangent space to $\mathbb{C}^{n-1} \times \mathbb{R}$ and the \mathbb{C} tangent space to $\mathbb{C}^{n-1} \times \{0\}$. Let $z_n = u + iv$ and $z' = (z_1, \ldots, z_{n-1})$.

$$v = f(z', u) = \sum_{1 \le j,k \le n-1} (\alpha_{j,k} z_j \overline{z}_k + \operatorname{Re} \left(sum_{1 \le j,k \le n-1} \beta_{j,k} z_j z_k \right) + o(||z'||^2 + u^2)$$

 \mathbb{C} -convex $\Leftrightarrow |\beta_{j,k}z_jz_k| \leq \sum \alpha_{j,\overline{k}}z_jz_{\overline{k}}$ for all $p \in S$. strongly \mathbb{C} -convex $\Leftrightarrow |\beta_{j,k}z_jz_k| < \sum \alpha_{j,\overline{k}}z_jz_{\overline{k}}$ (for all $p \in S$) when $z' \neq 0 \Rightarrow$ strongly pseudoconvex. Assume strongly \mathbb{C} -convex. Can convert the matrix $(\alpha_{j,k})$ to I. "Diag. of quadratic form" \Rightarrow can convert $(\beta_{j,k})$ to diagonal matrix without changing $(\alpha_{j,k})$. Get $v = \sum_{1 \leq j \leq n-1} |z_j|^2 + \operatorname{Re} \sum_{1 \leq j \leq n-1} \beta_j z_j^2$. Relax the normalization to $\sum \alpha_j |z_j|^2 + \operatorname{Re} \sum \beta_j z_j^2$ (instead of assuming the $\alpha_i = 1$). Note that we have been assuming that the α_j 's are real. Get;

$$\mathcal{D}'_{S}(0): \begin{pmatrix} z_{1} \\ \vdots \\ z_{n-1} \\ u \end{pmatrix} \longrightarrow \begin{pmatrix} 2i\alpha_{1}\overline{z}_{1} + 2i\beta_{1}z_{1} \\ \vdots \\ 2i\alpha_{n-1}\overline{z}_{n-1} + 2i\beta_{n-1}z_{n-1} \\ -u \end{pmatrix}$$

Note that the first vector is in $\mathbb{C}^{n-1} \times \mathbb{R}$.

strong \mathbb{C} -convexity \Rightarrow $S^{(*)}$ is "locally smooth" $\Leftrightarrow \mathcal{D}_S$ is a local diffeomorphism $\Leftrightarrow |\beta_1| \neq |\alpha_1|, \dots, |\beta_{n-1}| \neq |\alpha_{n-1}|$

This implies $S^{(*)}$ is given by:

$$\mathrm{Im}\beta_n = \sum \frac{\alpha_j |\eta_J|^2}{4(\alpha_j - |\beta_j|^2)} + \mathrm{Re} \sum \frac{\overline{\beta_j} \eta_J^2}{4(\alpha_j - |\beta_j|^2)} + \cdots$$

Use coordinate rotations to get all $\beta_j \geq 0$. Use coordinate dilations to get $\alpha_j - |\beta_j|^2 = \frac{1}{4}$. Now $S^{(*)}$ satisfies same normalizations as S. Also, \mathcal{D}'_S maps $H_z S$ to $H_\eta S^{(*)}$, but it is not \mathbb{C} -linear in the \mathbb{C} -convex case (we would need $\alpha_j = 0, \forall j$). After the change in coordinates, $\eta_n = \sum \alpha_j |\eta_j|^2 + \operatorname{Re} \sum \beta_j |\eta_j^2 + \cdots + \mathcal{D}'_S$ preserves $\mathbb{I}_z S|_{H_z S}$ up to a multiplicative constant.

Exercise 2.112. Define $\varphi_S : S \to \mathbb{R}$ by $\varphi_S(0) = \prod_{j=1}^{n-1} \left(1 - \frac{|\beta_j|^2}{\alpha_j^2}\right) = \prod_{j=1}^{n-1} \frac{1}{4\alpha_j^2}$ (after the normalization).

(1) General formula (using affine coordinates) for φ_S :

$$\varphi_{S}(z) = \frac{\det \begin{pmatrix} 0 & 0 & \rho_{k} & 0\\ 0 & 0 & 0 & \rho_{\overline{k}} \\ \rho_{j} & 0 & \rho_{j,k} & \rho_{j,\overline{k}} \\ 0 & \rho_{\overline{j}} & \rho_{\overline{j},k} & \rho_{\overline{j},\overline{k}} \end{pmatrix}}{\det^{2} \begin{pmatrix} 0 & \rho_{\overline{k}} \\ \rho_{j} & \rho_{j,\overline{k}} \end{pmatrix}}$$

where the matrix in the numerator is $(2n+2) \times (2n+2)$ and in the denominator is $(n+1) \times (n+1)$, ρ is the defining function and ρ_k is the $\frac{\partial \rho}{\partial z_k}$.

- (2) φ_S is LFT-invariant
- (3) $n = 2, \varphi_S = 1 |\mathcal{B}_S|^2$

Global Considerations:

 $S = bE, E \subset \mathbb{CP}^n$ open and connected. As we have seen previously, S strongly \mathbb{C} -convex $\Rightarrow E\mathbb{C}$ -convex, \mathbb{C} -linearly convex and E^* closed, \mathbb{C} -convex, \mathbb{C} -linearly convex, $S^{(*)} = b(E^*)$, and we will show today that $S^{(*)}C^2$, is strongly \mathbb{C} -convex immersed.

Theorem 2.113. Let S be given as above. Then $S^{(*)}$ has no self-intersections.

Lecture 28. November 16, 2009

Lecture 29. November 18, 2009

Bergman Kernel for the unit ball: thinking of the kernel as holomorphic forms and zero,

$$c_n = \frac{dz_1 \wedge \dots \wedge dz_n \wedge d\overline{w}_1 \wedge \dots \wedge d\overline{w}_n}{(1 - z\overline{w})^{n+1}}$$

is an (n, n)-form on $B \times B$ invariant under $(z, w) \mapsto (Tz, Tw), T \in \operatorname{Aut}(B)$. Let $\Omega \subset \subset \mathbb{C}^n$ be an open, connected, strongly \mathbb{C} -convex subset and $S = b\Omega$. Let $A(\Omega) = C(\overline{\Omega}) \cap \operatorname{Holo}(\Omega)$ and let μ be a positive cont. multiple of surface measure on S.

Theorem 2.114. $K \subset \Omega$ compact $\Rightarrow \max_K |f| \leq C_K ||f||_{L^2(S,\mu)}, \forall f \in A(\Omega).$

$$H(S,\mu) = A(\Omega)|_S = L^2(S,\mu)$$
-closure of $A(\Omega)|_S$

Corollary 2.115. Each $f \in H(S, \mu)$ has a natural holomorphic extension to Ω .

Arguing as in the Bergman case, we get a Szegö kernel $k_{S,\mu}^{Sz.}(z,w)$ (abbreviate to k(z,w)), which satisfies:

- holomorphic in z with L^2 b.v.
- conjugate holomorphic in w with L^2 b.v.
- k(w,z) = k(z,w)
- $P^{Sz.}_{S,\mu}: L^2(S,\mu) \xrightarrow{\text{ortho.}} H(S,\mu)$ given by $Pf(z) = \int_S f(w)k(z,w)d\mu(w), z \in \Omega$

There is a problem with the transformation law, which is fixable with a good choice of μ .

Example 2.116. Let Ω =unit ball and μ =Euclidean surface measure. The Szegö kernel turns out to be: $\frac{(n-1)!}{2\pi^n} \frac{(dz_1 \wedge \cdots \wedge dz_n \wedge d\overline{w}_1 \wedge \cdots \wedge d\overline{w}_n)^{\frac{n}{n+1}}}{(1-z\overline{w})^n}$. This is invariant under Aut*B*. Alternatively, we could work with functions: $T^*f = (f \circ T)(\det T')^{\frac{n}{n+1}}$. When n = 1, this agrees with the LFT-transformation law from lecture 2.

Exercise 2.117. A LFT T can be written as
$$\begin{pmatrix} A_{0,0} & \cdots & A_{0,n} \\ \vdots & & \vdots \\ A_{n,0} & \cdots & A_{n,n} \end{pmatrix}$$
. Show that
$$\det T' = \frac{-\det(\sim)}{(A_{0,0} + A_{0,1}z_1 + \cdots + A_{0,n}z_n)^{n+1}},$$

where the numerator is usually normalized to 1. Note that the matrix for T is not unique. We need to be able to interpret $f(z)(dz_1 \wedge \cdots dz_n)^{\frac{n}{n+1}}$. This works out nicely on projective space.

2.2. Line Bundles on \mathbb{CP}^n .

Define a **line bundle**, $\mathcal{O}(j,k)$, on \mathbb{CP}^n as follows: Let $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$. For $E \subset \mathbb{CP}^n = \mathbb{C}^{n+1} \setminus \{0\}/\zeta \sim \lambda\zeta$, let $\tilde{E} = \pi^{-1}(E) \subset \mathbb{C}^{n+1} \setminus \{0\}$, which is invariant under multiplication by non-zero scalars.

section of
$$\mathcal{O}(j,k)$$
 over $E \leftrightarrow F : \widetilde{E} \to \mathbb{C}$ where $F(\lambda \zeta) = \lambda^j \overline{\lambda}^k F(\zeta)$

Usually $j, k \in \mathbb{Z}$ but it is enough to assume that $j - k \in \mathbb{Z}$ since $\lambda^{j}\overline{\lambda}^{k} = |\lambda|^{j+k}e^{i(j-k)\arg\lambda}$, For holomorphic sections, we would need k = 0. Charts for \mathbb{CP}^{n} : $\mathbb{CP}^{n} = U_{0} \cup \cdots \cup U_{n}$ where $U_{m} = \{ [\zeta_{0} : \cdots : \zeta_{n}] \in \mathbb{CP}^{n} \mid \zeta_{m} \neq 0 \}$. Define $F_{m} : E \cap U_{m} \to \mathbb{C}$ by $[\zeta_{0} : \cdots : \zeta_{n}] \mapsto F\left(\frac{\zeta_{0}}{\zeta_{m}}, \ldots, 1, \ldots, \frac{\zeta_{n}}{\zeta_{m}}\right)$.

Check that $F_l(\zeta) = \left(\frac{\zeta_m}{\zeta_l}\right)^j \overline{\left(\frac{\zeta_m}{\zeta_l}\right)^k} F_m(\zeta)$ is the transition function for $\zeta \in E \cap U_m \cap U_l$.

Important special case: j = -n - 1, k = 0 so that $F_l(\zeta) = \left(\frac{\zeta_m}{\zeta_l}\right)^{-n-1} F_m(\zeta)$. There is a one to one correspondence:

Sections of
$$\mathcal{O}(-n-1,0)$$
 on $E \leftrightarrow (n,0)$ – forms on E

Lecture 30. November 20, 2009

$$E \subset \mathbb{CP}^n \leftrightarrow \widetilde{E} \subset \mathbb{C}^{n+1} \setminus \{0\}, \lambda \widetilde{E} = \widetilde{E} \text{ for } \lambda \neq 0$$

 $\Gamma(E, j, k) = \{ \text{ sections of } \mathbb{O}(j, k) \text{ over } E \} \leftrightarrow \{F : \widetilde{E} \to \mathbb{C} \mid F(\lambda\zeta) = \lambda^j \overline{\lambda}^k F(\zeta) \}$ F could be holomorphic if k = 0. F could be positive if j = k. Given two sections

 $F \text{ could be holomorphic if } k = 0. \quad F \text{ could be positive if } j = k. \quad \text{Given two sections}$ $F_1 \in \Gamma(E, j_1, k_1), F_2 \in \Gamma(E, j_2, k_2) \Rightarrow F_1F_2 \in \Gamma, j_1 + j_2, k_1 + k_2), \overline{F}_1 \in \Gamma(E, k_1, j_1), F_1\overline{F}_1 \in \Gamma(E, j_1 + k_1, j_1 + k_1), F_1\overline{F}_1 \ge 0. \quad \text{For } G \in \Gamma(E, j, j), G \ge 0 \Rightarrow G^{\alpha} \in \Gamma(E, j\alpha, k\alpha). \quad \text{For } H \in \Gamma(E, j, k), |H| \equiv \sqrt{H\overline{H}} \in \Gamma\left(E, \frac{j+k}{2}, \frac{j+k}{2}\right).$

Consider $M \in SL(n+1, \mathbb{C})$ and ψ_M is the LFT associated to M. Let

$$\Gamma(\psi_M E, j, k) \xrightarrow{M} \Gamma(E, j, k)$$
 be given by $(M^*F)(\zeta) = F(M\zeta)$.

Recall that ψ_M does not uniquely determine M (i.e. two matrices could both give rise to ψ_M). In particular,

$$\psi_M = \psi_{\widetilde{M}} \Leftrightarrow \widetilde{M} = \omega M, \omega^{n+1} = 1 \Leftrightarrow \widetilde{M}^* F = \omega^{j-k} M^* F$$

The lift to $\Gamma(E, j, k)$ is unique $\Leftrightarrow j - k \in (n + 1)\mathbb{Z}$. Claim: There is a natural correspondence:

$$\Gamma(E, -n-1, 0) \leftrightarrow (n, 0)$$
 – forms over E

How does this work? On $E \cap U_0$ write (n, 0)-form as:

$$f(z_1, \dots, z_n)dz_1 \wedge \dots \wedge dz_n$$

$$= f\left(\frac{\zeta_1}{\zeta_0}, \dots, \frac{\zeta_n}{\zeta_0}\right) d\frac{\zeta_1}{\zeta_0} \wedge \dots \wedge \frac{\zeta_n}{\zeta_0}$$

$$= \frac{f\left(\frac{\zeta_1}{\zeta_0}, \dots, \frac{\zeta_n}{\zeta_0}\right)}{\zeta_0^{n+1}} \left(\zeta_0 d\zeta_1 \wedge \dots \wedge d\zeta_n - \zeta_1 d\zeta_0 \wedge d\zeta_2 \wedge \dots \wedge d\zeta_n + \dots + (-1)^n \zeta_n d\zeta_0 \wedge \dots \wedge d\zeta_{n-1}\right)$$
Let $\eta = \zeta_0^{n+1} dz_1 \wedge \dots \wedge dz_n$.

Exercise 2.118. $dl \wedge \eta = ld\zeta_0 \wedge \cdots \wedge d\zeta_n, \forall l$ linear.

$$f(z_1, \ldots, z_n) = F(1, z_1, \ldots, z_n)$$
 and $F(\zeta_0, \ldots, \zeta_n) \in \Gamma(E \cap U_0, -n - 1, 0).$

Exercise 2.119. This construction give consistent results on each U_m .

Remark 2.120. The bundle associated to (n, 0)-forms is called the canonical bundle by algebraic geometers.

Alternate argument: η is $\mathbb{O}(n+1,0)$ -valued (n,0)-form on \mathbb{CP}^n . Then $F \in \Gamma(E, -n-1,0) \Rightarrow F\eta$ is an (n,0)-form.

Given $F \in \Gamma(E, j, k)$ on $E \cap U_0$ write F as $f(z_1, \ldots, z_n)(dz_1 \wedge \cdots \wedge dz_n)^{\frac{-j}{n+1}} (d\overline{z}_1 \wedge \cdots \wedge d\overline{z}_n)^{\frac{-k}{n+1}}$. Note that the multiple-valued problem (of taking fractional powers) is only an issue when we

change coordinates. Given $f(z_1, \ldots, z_n) = F(1, z_1, \ldots, z_n)$ and $F(\zeta_0, \ldots, \zeta_n) = \zeta_0^j \overline{\zeta}_0^k f\left(\frac{\zeta_1}{\zeta_0}, \ldots, \frac{\zeta_n}{\zeta_0}\right)$

Example 2.121. Beltrami differential $\mathcal{B}_S = \frac{\beta}{\alpha} \frac{dz_1 \wedge dz_2}{d\overline{z}_1 \wedge d\overline{z}_2} \in \Gamma(S, -3, 3)$ and $|\mathcal{B}_S| \in \Gamma(S, 0, 0)$.

Let $S \subset \mathbb{CP}^n$ be a strongly \mathbb{C} -convex hypersurface. Need:

- Norm on $\Gamma(S, -n, 0)$ (since for an invariant norm we need $\Gamma(S, j, k)$ such that j+k = -n and for this to be holomorphic we need k = 0)
- C-bilinear pairing between $\Gamma(S, -n, 0)$ and $\Gamma(S^{(*)}, -n, 0)$

For n = 1, let γ be a curve in the Riemann sphere. The canonical bundle is $\Gamma(\gamma, -2, 0)$ so $\Gamma(\gamma, -1, 0)$ is the square-root of the canonical bundle. So

$$f(z)\sqrt{dz} \in \Gamma(\gamma, -1, 0), \int_{\gamma} f(z)\sqrt{dz}\overline{f(z)}\sqrt{dz} = \int |f|^2 |dz|, \text{ and } \int f(z)\sqrt{dz}g(z)\sqrt{dz} = \int fgdz$$

For n = 2, $F \equiv f(z)(dz_1 \wedge dz_2)^{\frac{2}{3}} \in \Gamma(S, -2, 0)$ so $F\overline{F} \in \Gamma(S, -2, -2)$ and we want $F\overline{F}\mu$ to be a non-negative 3-form. So μ is a positive 3-form on S with values in $\mathbb{O}(2, 2)$. $\int_S F\overline{F}\mu$