
Random Walks on Groups

Notes by: Sara Lapan

1These are notes from a course that used Random Walks on Infinite Graphs and Groups by Wolfgang

Woess as its primary text.
2These notes were typed during lecture and edited somewhat, so be aware that they are not error free.

if you notice typos, feel free to email corrections to swlapan@umich.edu.
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Lecture 1. September 9, 2009

Let Ω be a σ-algebra on X and µ a probability measure (so that µ is a measure and
µ(Ω) = 1). Then χ : Ω - U is a random variable.
Random Walks:

(1) Riemmanian manifold (e.g. sphere, torus, Rn) - if you take a series of random
walks (along different geodesics) you want to end up returning to the start, which
is recurrence.

(2) Let G be a finitely generated group generated by S ⊂ G and assume that S is
symmetric (i.e. s ∈ S ⇒ s−1 ∈ S). A Cayley graph of (G,S) has vertices G with
an edge between δ, γ ∈ G if δ = γs for some s ∈ S

Sterling’s Formula: k! ∼ kke−k
√

2πk as k →∞.

Let µ be a probability measure on G and assume that Supp(µ) = {g ∈ G | µ(g) > 0}
generates G. A random walk goes from γ to δ with probability µ(δγ−1).

Example 0.1. Let G = Z and S = {±1}.
L2n, the # of paths of length 2n, is 22n.
R2n, the # of path of length 2n that come back to the starting point at time 2n, is

(
2n
n

)
µ2n ≡ probability return at time 2n =

R2n

L2n
=

number returns of length2n
number of paths of length2n

=
2n!

22nn!2

Using Sterling’s formula, µn ∼ 1√
πn

so that
∑
µn =

∑
1√
πn

= ∞. Hence you return infin-
itely many times (with probability 1) to your starting point, this is known as recurrence.

Example 0.2. Let G = Z2, S = {±(1, 0),±(0, 1)}.
L2n = 42n

R2n =
∑n
k=0

(2n)!
k!2(n−k)!2

Since k-times to the right and n− k-times up ⇒ k-times to the left and n− k-times down.

µ2n =
1

42n

n∑
k=0

(2n)!
(k!(n− k)!)2

=∗
1

42n

(2n)!
n!2

(
2n
n

)
∼ 1
πn

by Sterling’s formula

*Note:
(

2n
n

)
=
∑n
k=0

(
n
k

)(
n

n−k
)

Example 0.3. Let G = Z3, S = {±ei}, where ei is 1 in the ith place.
L2n = 62n

R2n =
∑n
k=0

∑n−k
j=0

(2n)!
(k!j!(n−j−k)!)2

µ2n =
1

62n

∑
0≤k,j&k+j≤n

(2n)!
k!2j!2(n− k − j)!2

∼
√

2
n1.5

(
2π
3

)
1
3 .

So that
∑
µn <∞⇒ this is not recurrent.

Theorem 0.4 (Polya). A simple random walk on Zd is recurrent if and only if d ≤ 2.

Theorem 0.5 (Varoponlos). Let G be finitely generated. A symmetric random walk by µ
(where the support of µ generates G) is recurrent if and only if G is finite, G ⊃ Z or G ⊃ Z2

as a subgroup of finite index.
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Definition 0.6. A probability measure is symmetric if µ(g) = µ(g−1).

Theme 1: Properties of random walks and how they relate to properties of G

Lecture 2. September 11, 2009

Harmonic functions satisfy the averaging property:

Definition 0.7. Let f : G - R and Pf(x) =
∑
γ∈G µ(γ−1x)f(x). Then f is harmonic

if f = Pf and f is superharmonic if Pf ≤ f .

Each term in the sum for Pf is a point times the likelihood that point is reached.

Theorem 0.8. (G,µ) is recurrent if and only if every superharmonic function is constant.

Conversely, there are lots of harmonic functions. Let f is harmonic on D2:

f(x) =
∫
S1
P (x, ζ)f(ζ)dλ(ζ), where dλ(ζ) is the Lebesgue measure

P (x, ζ) =
1− |x|2

|x− ζ|
ω, where ω is a constant and P (x, ζ) is the Poisson kernel,

Theme 2: Boundaries of groups and the Poisson representation of harmonic functions If
we start a random walk, we expect that it will go towards the boundary.

Example 0.9. Let G = π1( compact surface ). Then the Poisson boundary is a circle.

Example 0.10. Let Γ ⊂ Isom(H2) = PSL(2,R). Then

∂Γ = ∂(PSL(2,R) = S1 = PSL(2,R)/(upper triangular matrices.)

If G/Γ is compact and G is locally compact, then Γ is discrete subgroup of G.

Definition 0.11. Γ is a cocompact lattice in G if G/Γ is compact.

Definition 0.12. Γ ⊂ G is a lattice in G if vol(G/Γ) <∞, where the volume is given by
the Haar measure.

Example 0.13. Suppose Γ ⊂ G1, G2 is a lattice of both G1 and G2. Then ∂G1 = ∂G2 and
so G1 and G2 must be close (Mostow-Marquilis rigidity theorem).

Law of Large Numbers:
Classical probability: Let χ : Ω - R (function for random variables) and µ be a proba-
bility measure. Given a sequence of random variables x1, x2, . . . , xn, . . ., assume that the xi
are independent

µ{ω | xi(ω) < a and xj(ω) < a} = µ{ω | xi(ω) < a} · µ{ω | xj(ω) < a}
and identically distributed

(xi)∗(µ) = (xj)∗(µ)

Then xi(µ)(A) = µ(x−1
i (A)).

Theorem 0.14. Suppose α ≡
∫

Ω
xidµ <∞ (finite first moments). Then

1
n

(x1 + x2 + · · ·+ xn)→ α =
∫

Ω

xidµ =
∫

Ω

xjdµ is the expectation of xi

Theorem 0.15 (Ergodic theorem). Let Z be a measure space, µ a probability measure, and
T : Z - Z such that T∗µ = µ. Let f be a measurable function on Z. Then

1
n

(
f(x) + f(Tx) + · · ·+ f(Tnx)

) a.e.
ptwise
- f+ =

{
constant, if T is Ergodic∫
Z
fdµ = E(f), otherwise
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Definition 0.16. T is Ergodic if the only T -invariant measurable sets in X have measure
equal to 0 or 1.

Theorem 0.17. limn→∞
1
n log ||x1x2 · · ·xn|| → λ = Lyapunov exponent

Remark 0.18. The multiplicative Ergodic theorem is a similar to the Ergodic theorem. It
provides the theoretical background for computation of Lyapunov exponents of a nonlinear
dynamical system.

Theme 3: Random Groups.
Let S be a finite set and let m be the number of elements in S.
Let Γ have an S-finite set of generators with finite presentation.
Assume that all relations have length 3. For instance, if S = {a1, . . . , an}, then all relations
can be written with 3 elements as in the equation a1a7a3 = 1.
Let d be the density and let (2n− 1)3d be approximate the number of relations.

Theorem 0.19. Let d < 1
2 and P(n, d) be the set of groups describable by the set-up above.

lim
m→∞

#{Γ ∈ P(n, d),Γ is an infinite Gromov hyperbolic group}
#P(n, d)

= 1

If 1
3 < d < 1

2 , then each Γ is a Kazdan group.

Lecture 3. September 14, 2009

Definition 0.20. Let X be a finite or countable set, called the state space. Let P =(
p(x, y)

)
x,y∈X , where 0 ≤ p(x, y) ≤ 1 is the probability to go from x to y and

∑
y∈X p(x, y) =

1. This is a Markov chain.

Definition 0.21 (Alternative). A Markov chain is a sequence of random variables x1, x2, x3, . . .
with the Markov property that given the present state, the future and past states are
independent. Formally,

Pr(xn+1 = y | x1 = y1, x2 = y2, . . . , xn = yn) = Pr(xn+1 = y|xn = yn).

The possible values of xi form a countable set X called the state space of the chain.

Remark 0.22. Markov chains are often described by a directed graph, where the edges are
labeled by the probabilities of going from one state to the other states.

Let Ω = XN and Zn : Ω - X be the projection of Ω to its nth factor. Let x ∈ X be the
“starting point.” Endow Ω with the following probability measure:

Px[z0 = x0, z1 = x1, . . . , zn = xn] = δx(x0)p(x0, x1)p(x1, x2) · · · p(xn−1, xn)

Let Ex be the the expectation of Px and f : Ω - R a measurable function. Then
Ex(f) =

∫
Ω
fdPx (X,P ) (or {Zn}) is a Markov Chain. Define p(n)(x, y) as the probability

of going from state x to state y in n steps, ∀n ∈ N. Formally,

p(n)(x, y) = Px[zn = y | z0 = x]

Notice that,

p(1)(x, y) = p(x, y), p(2)(x, y) =
∑
z∈X

p(x, z)p(z, y), p(n)(x, y) =
∑
z∈X

p(k)(x, z)p(n−k)(z, y),∀0 < k < n

Definition 0.23. (X,P ) is irreducible if ∀x, y ∈ X,∃n such that p(n)(x, y) > 0.

Remark 0.24. From now on we shall assume that all Markov chains are irreducible.
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Definition 0.25. Let X be a state space, x, y ∈ X, and z ∈ C.

G(x, y|z) ≡
∞∑
n=0

p(n)(x, y) · zn and G(x, y) ≡ G(x, y|1)

G(x, y|z) is Green’s function.

Green’s functions are functions which, in some sense, generate harmonic functions.

Lemma 0.26. Let z ∈ R>0. Then ∀x1, x2, y1, y2 ∈ X,
G(x1, y1|z) converges ⇔ G(x2, y2|z) converges.

Proof. By irreducibility of (X,P ), ∃k, l ∈ N such that p(k)(x1, x2) > 0 and p(l)(y2, y1) > 0.
Hence for z > 0,

G(x1, y1|z) =
∞∑
n=0

p(n)(x1, y1) · zn

≥
∞∑
n=0

p(k)(x1, x2)p(n)(x2, y2)p(l)(y2, y1) · zn+k+l

= p(k)(x1, x2)p(l)(y1, y2)G(x2, y2|z) · zk+l

G(x2, y2|z) =
∞∑
n=0

p(n)(x2, y2) · zn

≥ p(k)(x1, x2)p(l)(y2, y1)
∞∑
n=0

p(n)(x2, y2) · zn+k+1

≥
∞∑
n=0

p(n+k+l)(x1, x2) · zn+k+l

The last term is all except for a finite set of the elements in the sum that gives G(x1, y1),
so if that is bounded, so is G(x1, y1|z). Hence if one of these is finite, so is the other. �

Corollary 0.27. All G(x, y|z) have the same radius of convergence, which is given by
τ(P ) ≡ 1

ρ(P ) , where ρ(P ) = lim sup p(n)(x, y)
1
n ∈ [0, 1] is the spectral radius of (X,P ).

Remark 0.28. ρ(P ) > 0 and p(r)(x, x) > 0 for some r. Therefore

p(nr)(x, x) ≥ p(r)(x, y)n and ρ(P ) ≥ p(r)(x, x)
1
r

Definition 0.29. The period of P , denoted d(P ), is gcd{n | p(n)(x, x) > 0}. The period
is independent of x.

Example 0.30. For a simple random walk on Z, d = 2.

Definition 0.31. P is aperiodic if d(P ) = 1.

Fix o ∈ X and set Yj = {x ∈ X | p(nd+j)(o, x) > 0 for some n ≥ 0}. Then o ∈ Y0.

Lemma 0.32. p(n)(x, x) ≤ ρ(P )n and limn→∞ p(nd)(x, x)
1
nd = ρ(P ).

Proof. Let an = p(nd)(x, x), where 0 ≤ an ≤ 1.

p(nd)(x, x)p(md)(x, x) ≤
∑
y∈X

p(nd)(x, y)p(md)(y, x) = p(m+n)d(x, x)

Therefore the a1 satisfy the crucial “sub additive/multiplicative” property:

am · an ≤ am+n
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(1) Claim: ∃n0 such that an > 0,∀n ≥ n0.
Let Nx = {n | an > 0}. Then if a, b ∈ Nx ⇒ a + b ∈ Nx ⇒ 1 = gcdNx = n1 − n2,
where n1, n2 ∈ Nx. Indeed, can write gcdNx = a ·n1 ∗−b ·n2∗ for some n1∗, , n2∗ ∈
Nx.
If n2 = 0, then n1 = 1 (Nx = N). If n2 6= 0, then set n0 = n2

2. If n ≥ n0, write
n = qn2 + r = (q − r)n2 + rn1 = qn2 + r(n1 − n2) = qn2, where q ≥ n2 > r and
since n1 − n2 = 1.

(2) Fix m ∈ Nx. Let n ≥ n0 + m. Write n − n0 = qnm + rn∗, with 0 ≤ rn∗ < m.
Then n = qnm + (n0 + rn∗). Let rn ≡ n0 + rn∗. Then n0 ≤ rn < n0 + m. Set

b = b(m) = min{ar | n0 ≤ r < n0 + m}. Note: an ≥ aqnm arn . Then a
1
n
n ≥ a

qn
n
m a

1
n
rn .

As n → ∞, qnn →
(

1
m

)m ⇒ a
1
m
m ≤ lim inf a

1
n
n ≤ ρ(P )d. Let m → ∞. Then

lim sup a
1
m
m ≤ ρ(P )

1
d ≤ lim inf a

1
n
n . Thus a

1
m
m converges.

�

Lecture 4. September 16, 2009

Example 0.33. A simple random walk on Z with generators ±1 has d = 2 and

ρ(2n) = µ2n ∼
1√
πn
⇒ p(2n)(x, x)

1
2n ∼

(
1√
πn

) 1
2n

→ 1 as n→∞

Markov chain: Let X = Z, then p(x, y) =

{
1

elements in gen. set if xy−1 ∈ Generators

0 else
.

More generally, suppose X is a graph.

Definition 0.34. A simple random walk on X is the Markov chain with:

state space {vertices of X} and p(x, y) =

{
1

deg x if y adjacent to x
0 else

Definition 0.35. (X,P ) is recurrent if the Green’s function G(x, y) = ∞,∀x, y ∈ X.
Otherwise (X,P ) is transient.

If ρ(P ) < 1⇒ G(x, y|1) converges ⇒ (X,P ) is transient.

Corollary 0.36. If ρ(P ) < 1⇒ (X,P ) is transient.

The converse fails, for instance a simple random walk on Z2 is a counter-example.
Let (X,P ) be a Markov chain. Given f : X - R, define

P (f)(x) =
∑
y

p(x, y)f(y), where we assume P (f)(x) is finite.

Definition 0.37. f is harmonic if Pf = f and superharmonic if Pf ≤ f .

Example 0.38. Constant functions are harmonic and Gy(x) = G(x, y) is superharmonic for
any fixed y ∈ X.
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Proof. That Gy(x) is superharmonic

Gy(x) =
∞∑
n=0

p(n)(x, y)

P (Gy)(x) =
∑
x

p(x, z)Gy(z) =
∑
z

p(x, z)
( ∞∑
n=0

p(n)(z, y)
)

=
∞∑
n=0

∑
z

p(x, y)p(n)(z, y) ≤
∞∑
n=0

p(n+1)(x, y)

≤ Gy(x)

�

Lemma 0.39. Let Pn = P ◦ · · · ◦ P (n-times). Then Pn(f)(x) =
∑
y p

(n)(x, y)f(y).

Proof. Use induction on n. For n = 1 this is by definition. Assume this is true for n.

P (Pn(f))(x) =
∑
z

p(x, z)Pn(f)(z)

=
∑
z

∑
t

p(x, z)p(n)(z, t)f(t)

=
∑
t

p(n+1)(x, t)f(t)

�

Minimum Principle:
Suppose f is superharmonic and ∃x0 ∈ X such that f(x0) ≤ f(x),∀x ∈ X ⇒ f is constant.

Proof. Note that f ≥ g ⇒ Pf ≥ Pg. So, f ≥ Pf ≥ P 2f ≥ · · · . Therefore, f(x0) ≥∑
y p

(n)(x0, y)f(y),∀n ∈ N⇒ ∃y such that f(y) < f(x0). Contradiction. �

Theorem 0.40. (X,P ) is recurrent ⇔ all non-negative superharmonic functions are con-
stant.

Proof. Error in proof: wrote α > βα ⇒ β = 1 in proof that Markov process transient
implies there exists a superharmonic h ≥ 0 non-constant.
Claim: (⇐) Assume (X,P ) is transient. Then ∞ > Gy(x) ≥ 0 is superharmonic. Gy(x) is
not harmonic since:

PGy(x) =
∑
z

p(x, z)Gy(z) =
∑
z

∞∑
n=0

p(x, z)p(n)(z, y)

=
∞∑
n=0

p(n+1)(x, y) = G(x, y)− p(0)(x, y) ≤ G(x, y)

Now we need to show that Gx(y) is non-constant. Suppose p(k)(x, x) > 0 and p(l)(y, x) > 0
for some k, l. Then G(x, x) ≥ p(k)(x, x)p(l)(y, x)G(x, y), since
p(n)(x, x) ≥ p(k)(x, x)p(n−k−l)(x, y)p(l)(y, x). IfG(x, x) = G(x, y), then p(k)(x, x) = p(l)(x, y) =
1 and p(2k)(x, x) = 1⇒ G(x, x) =∞⇒ (X,P ) is recurrent. Contradiction.
(⇒) Suppose that (X,P ) is recurrent and f ≥ Pf and f is non-constant. Set g = f − Pf .
Claim: P = c (i.e. f is harmonic). Suppose g(y) > 0 for some y ∈ X. Let x ∈ X. Then

n∑
k=1

p(k)(x, y)g(y) ≤
n∑
k=0

P k(g)(x) = −Pn+1(f)(x) + f(x) ≤ f(x).
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Hence G(x, y) ≤ f(x)
g(y) . Since we can take limn→∞−Pn+1(f)(x) + f(x). So G(x, y) is finite,

but we assumed recurrent. Contradiction. �

Stopping Time:
Sy(x) ≡ min{n ≥ 0|Zn = y}, where Z0 = x. Set

f (n)(x, y) = Px[sy = n], F (x, y|z) =
∑
−n = 0∞f (n)(x, y)zn and Fy(x) = F (x, y) = F (x, y|1)

Fy(x)is the probability of ever reaching y starting from x. Note that F (x, x|z) = 1. Set
tx = min{n ≥ 1 | zn = x}. Note: similar to Sy but not the same since n = 0 is not allowed.
Set

U(x, x|z) =
∞∑
n=0

Px[tx = n]zn, U(x, x) = U(x, x|1) = the probability of ever returning x from x

Properties:
(1) G(x, x|z) = 1

1−U(x,x|z) ∈ [0,∞]
(2) G(x, y|z) = F (x, y|z)G(y, y|z)
(3) U(x, x|z) =

∑
y p(x, y)zF (y, x|z)

(4) If y 6= x: F (x, y|z) =
∑
w p(x, , w)zF (w, y|z)

Lecture 5. September 18, 2009

P is recurrent, then every superharmonic function is constant. We proved last time

Lemma 0.41. Every superharmonic function is harmonic. f is superharmonic implies
G(x, y) ≤ f(x)

g(y) , where g = f − Pf and y such that g(y) > 0.

Finish proof: Step 2 -
Claim: Every harmonic function is constant.
Let f be harmonic and M = f(x) for some x ∈ X. Set h(y) = min{M,f(y)}.

Lemma 0.42. h is superharmonic

h is harmonic⇒ −h is harmonic. −h has a max/min so ±h has a positive minimum, there-
fore h is constant.

Proof of lemma:
(Ph)(x) =

∑
y

p(x, y)h(y) ≤
∑
y

p(x, y)M = M

(Ph)(x) =
∑
y

p(x, y)h(y) ≤
∑
y

p(x, y)f(y) = f(y)

Hence, Ph ≤ h.

Stopping Time
See handout.

Proof Of Properties. Property 1: If n ≥ 1

p(n)(x, x) =
n∑
k=0

Px[tx = k]p(n−k)(x, x), p(0)(x, x) = 1, and Px[tx = 0] = 0

Equation 1 is equivalent to: G(x, x|z) = G(x, x|z)U(x, x|z) + 1.

p(n)(x, x)zn =
∑
k

P[tx = k]zkp(n−k)(x, x)zn−k

Property 2-4:
Similar proofs �
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Corollary 0.43. Fy(x) ≡ F (x, y) is superharmonic.

Proof. Use property 4: Assume x 6= y

P (Fy)(x) =
∑
z

p(x, z)Fy(z)

=
∑
z

p(x, z)F (z, y)

= Fy(x)

If x = y, then Fy(x) = F (x, x) = 1, so

1 =
∑
z

p(y, z) ≥
∑
x

p(y, z)Fy(z) = (PFy)(y) = Fy(y)

�

Corollary 0.44. (X,P ) is recurrent if and only if U(x, x) = 1.

Proof. Use equation 1. If U(x, x) = 1, then G(x, x) =∞. �

Proposition 0.45.

(1) If (X,P ) is recurrent, then F (x, y) = 1 and Px
[
zn = y for ∞−many n

]
= 1

(2) If (X,P ) is transient, then ∀ finite A ⊂ X,∀x ∈ X,

Px
[
zn ∈ A for infinitely many n

]
= 0.

Proof.

(1) (X,P ) is recurrent and Fy is superharmonic, so Fy is constant (all non-negative
superharmonic functions are constant). Hence Fy(x) = Fy(y) = 1. Set
V (x, y) = Px

[
zn = y for infinitely many m

]
. V (x, y) = F (x, y)V (y, y) ≤ V (y, y)

(this is intuitively clear). Set Vm(x, x) = Px
[
zn visits x at least m-times

]
. Then

V1(x, x) = 1, Vm(x, x) = U(x, x)Vm−1(x, x).

V (x, x) = lim
m→∞

Vm(x, x) = lim
m→∞

Um−1(x, x)V1(x, x) = lim
m→∞

Um−1(x, x) =

{
1 if U(x, x) = 1
0 else

(2) Let A ⊂ X finite and recall V (x, x) =

{
1 if recurrent
0 if transient

. Then:

Px[zn ∈ A infinitely many times] ≤
∑
y∈A

V (x, y) ≤
∑
y∈A

V (y, y) = 0 if transient.

�

Lecture 6. September 21, 2009

Corollary 0.46. If X is finite, then it is recurrent.

Example 0.47. Tree Tm with x ∈ Tm,deg(x) = m (i.e. m edges at every vertex). For
x, y ∈ Tm, π(x, y)-“geodesic” from x to y (where the geodesic is the connection by edges of
the shortest length).

Lemma 0.48. w ∈ π(x, y), i.e. w is a vertex on the geodesic from x to y. F (x, y|z) =
F (x,w|z)F (w, y|z), i.e. a random walk from x to y has to pass through w. f (n)(x, y) =∑n
k=0 f

(k)(x,w)f (n−k)(w, y). This implies the claim.
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Proposition 0.49. Simple random walk on Tm has

G(x, y|z) =
2(M − 1)

M − 2 +
√
M2 − 4(M − 1)z2

(
M −

√
M2 − 4(M − 1)z2

2(M − 1)z

)d(x,y)

ρ(P ) =
2
√
M − 1
M

and z >
M

2
√
M − 1

⇒ is not in R

Proof. F (x, y|z) is independent of x and y as long as they are adjacent (by symmetry of the
homogeneous tree). So F (x, y|z) = F (z). Let w ∼ x denote that w is adjacent to x.

F (z) = F (x, y|z)

=
∑
w

p(x,w)zF (w, y|z)( by formula 4 on the Stopping Time handout.)

=
∑
w∼x

1
M
zF (w, y|z)

=
∑
w∼x

1
M
F (z)d(y,x) *see below

=
z

M
+
M − 1
M

zF (z)2 when w = y

0 =
M − 1
M

zF (z)2 − F (z) +
z

M
F (0) = 0

F (z) =
M

2(M − 1)z
(1−

√
1− 4

M − 1
M

z2) by quadratic formula , z 6= 0

*Since F (z) = F (x, y|z) and (by earlier lemma) F (x, y|z) = F (x,w|z)F (w, y|z)⇒

F (z) = F (x, y|z) = F (x,w1|z)F (w1, w2|z) · · ·F (wk−1, y|z) = F (z)k = F (z)d(x,y)

�

Corollary 0.50. For m ≥ 3, simple random walks on Tm are transient.

Lecture 7. September 23, 2009

Reversible Markov Chain

Definition 0.51. (X,P ) is reversible if ∃X m- (0,∞) such that

a(x, y) = m(x)p(x, y) = m(y)p(y, x).

Example 0.52. Cayley graph with symmetric random walk and m ≡ 1.

Note: a in the above definition is called the conductance and m(x) =
∑
y a(x, y) =∑

ym(x)p(x, y) is the total conductance.
Oriented Graphs
(X,E) is an oriented graph with the property that ~xy ∈ E ⇔ a(x, y) > 0 (i.e. we assume
there is a reversible Markov chain with state space X and this last property). Think of
functions on E as flows. The resistance of e ∈ E is r(e) ≡ 1

a(e−,e+) , where e = ~e−e+. Let
N = (X,E, r) be the network. N is recurrent/transient if X is recurrent/transient.
Let

∇ : {functions on X} - {functions on E} be given by (∇f)(e) =
f(e+)− f(e−)

r(e)
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We can think of this as the gradient. The adjoint is:

(∇∗u)x =
1

m(x)

( ∑
e s.t.e+=x

u(e)−
∑
e−=x

u(e)
)

If you think about this as a flow, then this tells you how much is going out versus how much
is coming in (i.e. the net loss).

Finite Energy Flow:

Definition 0.53. Let x ∈ X, i0 ∈ R. A “function u on E” ( i.e. u is in L2(E, r)) is a finite
energy flow from x to ∞ with input i0 at x if ∇∗(u)(y) = − i0

m(x)δx(y).

l2(X,m) = {f : X → R |
∑
f(x)2m(x) <∞ and < f, g >=

∑
f(x)g(x)m(x)}

l2(E, r) = {u : E → R |
∑
u(e)2r(e) <∞}

Note: ||∇|| <
√

2,∇f(e) = f(e+)−f(e−)
r(e) , ||∇f(e)|| =

∑ (f(e+)−f(e−))2

r(e)

Adjoint: If H1
u- H2 and H1

�u
∗

H2 such that < uf, g >=< f, u∗g >, then u∗ is
adjoint to u.

Lemma 0.54. ∇,∇∗ are adjoint operators.

Proof. Check that < ∇f, u >=< f,∇∗u >

RHS =< f,
1

m(x)

( ∑
e+=x

u(e)−
∑
e−=x

u(e)
)
>

=
∑
x

1
m(x)

( ∑
e+=x

f(x)u(e)−
∑
e−=x

f(x)u(e)
)
m(x)

=
∑
e

u(e)
(
f(e+)− f(e−)

)
=
∑

u(e)∇f(e) · r(e)
= LHS

�

The Laplacian is L = −∇∗∇

Proposition 0.55. −∇∇ = P − I, where I is the identity matrix and P is a matrix on X
given by (Pf)(x) =

∑
y p(x, y)f(y).

Proof.

(−∇∗∇f)(x) = − 1
m(x)

( ∑
e+=x

(∇f)(e)−
e−=x∑

(∇f)(e)
)

=
1

m(x)
( ∑
e+=x

f(e−)− f(x)
r(e)

+
∑
e−=x

f(e+)− f(x)
r(e)

)
=
∑
e+=x

a(x, e−)
m(x)f(e−)

− a(e−, x)
m(x)

f(x) +
∑
e−=x

a(x, e+)
m(x)f(e+)

− a(e+, x)
m(x)

f(x)

=
∑
e+=x

p(x, e−)f(e−)− p(e−x)f(x) +
∑
e−=x

p(x, e+)f(e+)− p(x, e+)f(x)

=
∑
y

p(x, y)f(y)
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�

Definition 0.56. D(N) = {f : X - R | s.t. ∇f ∈ l2(E, r)}

Note: do NOT require f ∈ l2(X,m). Endow D(N) with the Dirichlet sum norm.

D(f) =< ∇f,∇f >=
∑
e

(f(e+)− f(e−))2

r(e)
=

1
2

∑
x,y∈X

(f(x)− f(y))2m(x)p(x, y)

Note that D(f) = 0⇒ f is constant (P irreducible).
Fix o ∈ X. Define an inner product on D(N) 3 f, g as:

< f, g >=< ∇f,∇g > +f(o)g(o)

Lecture 8. September 25, 2009

r is resistance in L2(E, r) and P is potential in (X,P ).
Hilbert space: vector space with inner product that is complete

Lemma 0.57. D(N) is a Hilbert space and
(1) changing the base point leads to equivalent norms
(2) convergence in D(f) implies pointwise convergence
(3) f ∈ D(N)⇒ ∇∇∗ is defined.

.

Two norms || · || and || · ||a are equivalent if ∃c such that ∀f, 1
c ||f ||a ≤ ||f || ≤ ||f ||a.

Proof. Basic inequality. Let x ∈ X,x 6= o. Then there are edges ei+1 = xixi+1 from o to x
(between points xi and xi+1). Let C1(x) =

∑n
i=1 r(ei). Then for f ∈ D(N),

(f(x)− f(o))2 ≤ [f(x)− f(xn−1 + f(xn−1)− f(xn−2) + · · · − f(o)]2

=
( n∑
i=1

(f(xi)− f(xi−1))√
r(ei)

√
r(ei)

)2

≤
( n∑
i=1

(f(xi)− f(xi−1))2

r(ei)

)( n∑
i=1

r(ei)
)

Cauchy-Schwartz

≤
( n∑
i=1

r(ei)
)
D(f)

�

l0(X) is all functions that are finitely supported on X and D0(N) = l0(X) in D(N). Dpk is
the Markov process where p is replaced (in Dp) by pk.

Lemma 0.58. Dpk(f) ≤ k2D(f),∀f ∈ l0(X) (or D0(N)).

Proof. Use Cauchy-Schwartz �

Proposition 0.59. If (X,P ) is transient, then G(·, X) ∈ D0(N).

Idea of Proof. Show that the Green’s function can be approximated by finitely supported
functions. Approximate G by something like a Green’s functions from finite subsets A ⊂ X.
Let A ⊂ X be finite.

pA(x, y) =

{
p(x, y) if x, y ∈ A
0 else

and p
(n)
A (x, y) = Px[zn = y, zk ∈ A,∀0 ≤ k ≤ n]
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This looks like a Markov process, but it is not quite one.

GA(x, y|z) =
∞∑
n=0

P
(n)
A (x, y)zn, GA(x, y) = GA(x, y|1)

Warning: GA(x, y) 6= G(x, y) even if both x, y ∈ A.

Let A,B ⊂ X be finite subsets containing x and let f = GB(·, x), g = GA(·, x).

D(g − f) = D
(
GB(·, x)−GA(·, x)

)
=< ∇(GB(·, x)−GA(·, x)),∇(GB(·, x)−GA(·, x)) >

=< ∇GB(·, x),∇GB(·, x) > + < ∇GA(·, x),∇GA(·, x) > −2 < ∇GB(·, x),∇GA(·, x) >

= m(x)GB(x, x) +m(x)GA(x, x)− 2m(x)GB(x, x)

= m(x)[GA(x, x)−GB(x, x)]

Let X = ∪An, where the An are finite and increasing (i.e. · · · ⊂ An ⊂ An+1 ⊂ · · · is an
exhaustion). Then GAn(x, x) converges to G(x, x) by monotone convergence. �

IA(x, y) =

{
1 if x = y ∈ A
0 else

and † (IA − PA)GA = IA

So that ((IA − PA)GA)(·, x) = δx(·). More explanation:

(PAGA)(y, x) =
∑
z

PA(y, z)GA(z, x)

=
∑
z

PA(y, z)
∞∑
n=0

P
(n)
A (z, x)

=
∞∑
n=0

∑
z

PA(y, z)P (n)
A (z, x)

=
∞∑
n=0

P
(n+1)
A (y, x)

= GA(y, x)− δx(y)

Also note that (IA(f))(y) = f(y) if y ∈ A and (IA(GA(·, x))(y) = GA(y, x) if y ∈ A

Lemma 0.60. If f ∈ l0(X) and suppf ⊂ A, then < ∇f,∇GA(·, x) >= m(x)f(x).

Proof.

< ∇f,∇GA(·, x) > =< f.∇∗∇GA(·, x0 >

=< f, (I − P )GA(·, x) >

=< f, (I − PA)GA(·, x) > since outside A,GA ≡ 0
=< f, δx >

= m(x)f(x)

�

Lecture 9. September 28, 2009

Definition 0.61. Let A ⊂ X. The capacity of A, capA, is:

capA = inf{D(f) | f ∈ l0(X), f ≡ 1 on A} = min{D(f) | f ∈ D0, f ≡ 1 on A}
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Basic fact from Hilbert space: Let E be closed, convex subset of a Hilbert space. Then
∃!e ∈ E which minimizes the norm.

Theorem 0.62. Let (X,P ) be a reversible Markov chain. Then TFAE:
(1) (X,P ) is transient
(2) for some (all) x ∈ X,∃ a finite energy flow from x to ∞ with non-zero input
(3) for some (all) x ∈ X, capx > 0
(4) f ≡ 1 /∈ D0(N)

Proof. (1)⇒ (2):
Want u ∈ L2(E, r), ∇∗u = − i0

m(x) . Have G(·, x) ∈ D0(N). Set u = −i0
m(x)∇G(·, x).

∇∗u = ∇∗∇G(·, x) =
−i0
m(x)

δx

Assume (2)⇒ (3). Show (3)⇔ (4).
capx = 0⇔ ∃f ∈ D0(N) with f(x) = 1 and D(f) = 0 (i.e. f ≡ 1) ⇔ 1 ∈ D0(N).
(3)⇒ (1) “Make the Green’s function converge.” �

Idea: Do a funny approximation scheme using GA’s for a finite A ⊂ X.
Let A ⊂ X finite and f = GA(·,X)

GA(x,x) , GA(·, x) =
∑
y p

(n)
A (x, y).

cap(x) ≤ d(f) =
1

G(x, x)2
〈∇GA(·, x),∇GA(·, x)〉 =

1
GA(x, x)2

m(x)GA(x, x) =
m(x)

GA(x, x)

Therefore GA(x, x) ≤ m(x)
cap(x) .

Since this works for any finite A, let An ⊂ An+1 ⊂ · be an exhaustion of X by finite sets.
Then G(x, x)← GA(x, x) ≤ m(x)

cap(x) so this is bounded and hence converges.

Corollary 0.63. If a subnetwork N is transient, then the network is transient.

Proof. Use (4). �

Shorting:
Let (X,P ) be an irreducible Markov chain, N a network, and 1Xi = χXi characteristic
functions. X = tiXi a partition with 1Xi ∈ D0(N),∀i.
Shorted Network: Collapse Xi and set:

a′(Xi, Xj) =

{∑
x∈Xi,y∈Xj a(x, y) i 6= j

0 i = j
and m′(i) =

∑
j

a′(i, j) = D(1Xi) <∞

Theorem 0.64. Let (X,P ) be a reversible Markov chain and X ′ a shorted network. If
(X ′, P ′) is recurrent then so is (X,P ).

Proof. For f ∈ D(N ′), lift f to N by f(x) = f(i),∀x ∈ Xi. Then

DN (f) =
1
2

∑
x,y∈X

(
f(x)− f(y)

)
a(x, y)

=
1
2

∑
i,j∈X′

∑
x∈Xi,y∈Xj

(
f(i)− f(j)

)2
a(x, y)

=
1
2

∑
i,j

∈ X
(
f(i)− f(j)

)2
a′(i, j)

= DN ′(f)

This last argumet works for D0(N ′) just as well so 1 ∈ D0(N ′) ⇒ 1 ∈ D0(N). f =∑
f(i)1Xi ∈ D0(N). 1 =constant on X ′ ⇒ ∃fn ∈ l0(X ′) such that fn 3 2 in DN ′ norm. �
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Lecture 10. September 30, 2009

Nearest Neighbor Random Walk:
X = N, edges= {[u, u+ 1]}
Transition probabilities: p(m,u) = 0 if |m − n| ≥ 2, p(m,m + 1), p(m,m − 1) > 0 and
p(m,m) ≥ 0⇒ reversible.
a(x, y) = m(x)pp(x, y) = m(y)p(y, x) and m(k)p(k, k − 1) = m(k − 1)p(k − 1, k)

m(k) = m(k − 1)
p(k − 1, k)
p(k, k − 1)

= · · · = p(0, 1)p(1, 2) · · · p(k − 1, k)
p(1, 0)p(2, 1) · · · p(k, k − 1)

= m(k)

ek ≡ [k − 1, k] and r(ek) = 1
a(k−1,k) = p(k−1,k−2)···p(1,0)

p(0,1)···p(k−1,k) .
The only flow from 0 to ∞ with input 1 is u ≡ 1.

< u, u >=
∞∑
k=1

1 · 1 · r(ek) =
∞∑
k=1

r(ek)

{
=∞ if recurrent
<∞ if transient

Shortenings:
(X,P ) rev Markov chain, N -network. X = ∪ixi with χxi = 1xi ∈ D0(N). Collapse Xi. Get

X ′ = {i} and a′(i, j) =

{∑
x∈Xi,y∈Xj a(x, y) if i 6= j

0 if i = j
.

Proposition 0.65. If the shortening X ′ is recurrent then X is recurrent.

Proof. If X ′ is recurrent, then 1X′ ∈ D0(N ′). X ′
f- lifts to X

f- R. We want to
show that 1X = 1X′ . Why is 1x ∈ D0(N)? Approximate 1X′ by fh ∈ l0(X ′). Note that
fh in D

- 1X′ = 1X , where fh ∈ D0(N). D(1X′ − fh) = D(1X′ − fh)→ 0. �

Nash-Williams Recurrence Criterion:
Suppose X ′ = N and a′(i.j) = 0 if |i− j| ≥ 2. Then

∑
1

a′(i−1,i) =∞⇒ (X,P ) ie recurrent.

Let Γ be a finitely generated group and S a generataing set. dword is the word metric
(depends on S). dword(1, γ) = d(1, γ) =the minimum size of a word in S that expresses γ.
d(a, b) = d(1, a−1b). #B(1, n) ≡ V (n) =“volume of a ball of size n.”

Example 0.66. G = Z, S = {±1}. Then V (n) = 2n + 1. If instead S = {±1,±2}, then
V (n) ∼ 4n.

Example 0.67. G = F2, S = {a, b, a−1, b−1}. Then V (n) =
∑n
k=1 4 · 3k−1 ∼ 4 · 3n−1 =

Cen log 3, for some constant C. If instead S = {a±1, b±1, a±2, b±2}, then V (n) ∼ C ′ · 9n−1 =
C ′en log 9, for some constant C ′.

Exponential growth depends on S.

Lemma 0.68. If growth is exponential for S so it is for S∗.

Given Γ, is there a lower bound for the exponent of exponential growth? Typically yes, but
not always.

Example 0.69. G = Z2, S = {±e1,±e2}. Then a ball of volume n roughly looks like a square
and V (n) ∼ Cn2.

Basic Observation: In Z2, for all S growth is quadratic. In Zn, for all S growth is of order
n.
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Example 0.70. Heisenberg Group:

Heis =

{1 a c
0 1 b
0 0 1

∣∣∣∣∣a, b, c ∈ R

}

HeisZ =

{1 a c
0 1 b
0 0 1

∣∣∣∣∣a, b, c ∈ Z

}

a =

1 1 0
0 1 0
0 0 1

, b =

1 0 0
0 1 1
0 0 1

 and c = [a, b] = aba−1b−1 =

1 0 1
0 1 0
0 0 1

.

δn-dilation:

δn

1 a c
0 1 b
0 0 1

 =

1 na n2c
0 1 nb
0 0 1


δn([a, b]) = δn(c) = n2c and δn([a, b]) = [δna, δnb] = n2c. So V (n) ∼ cn4.

Lecture 11. October 2, 2009

Let M be a compact Riemannian manifold (with no boundary) with Riemannian metric g.
Let M̃ be the universal cover of M and Γ = π1(M) be finitely generated. Γ acts on M̃ by
deck transformations. So ∀p ∈M , gp(v, w) is an inner product on M . This leads to a metric
g̃ on M̃ and an inner product g̃ep(ṽ, w̃) = gp(v, w) on M̃ .
Volume growth of M̃ : Let Bp(r) = {y | d(p, y) ≤ r}. Then vol(Bp(r)) = Ṽ (r). This does
not depend on the particular p.

Proposition 0.71. Ṽ (r) and VΓ(r) have “similiar” growth:
• Either both have exponential growth
• Or both have polynomial growth of the same degree
• Or not

Corollary 0.72. If M is closed Riemannian manifold with k < 0 (k ≤ 0 except for flat
manifolds), then π1(M) has exponential growth.

Definition 0.73. Let (X, dX), (Y, dY ) be metric spaces. A map X
ϕ- Y is a quasi-

isometry if ∃A,B > 0 such that:
(1) ∀x1, x2 ∈ X, 1

Ad(x1, x2)−B ≤ d(ϕ(x1), ϕ(x2)) ≤ Ad(x1, x2) +B
(2) ∀y ∈ Y,∃x ∈ X such that d(y, ϕ(x)) < B

Lemma 0.74 (Milnor, Svarc). Let (M, g) be a Riemannian manifold. Let Γ = π1(M) with
word metric for some finite set of generators and let M̃ have lifted Riemannian metric.
Then Γ and M̃ are quasi-isometric: Γ - M̃ is given by γ 7→ γ ◦ 0

Lemma 0.75. For Γ = π1(M), let S, T both be finite generating sets and let dS , dT be the
word metrics for S, T (respectively). Then id : (Γ, dS)→ (Γ, dT ) is a quasi-isometry.

Theorem 0.76 (Tits alternative). Let Γ ⊂ GL(n,R) be finitely generated. Then either
Γ ⊃ F2 or Γ is solvable.

Lemma 0.77. If Γ ⊃ F2, then Γ has exponential growth.

Sketch of Proof. Let (wlog) S be the generating set of Γ and take it to contain a, b such
that < a, b >= F2. �

Lemma 0.78 (Milnor, Wolf). Let Γ ⊂ GL(n,R) be solvable. Then either Γ has exponential
growth or Γ has a nilpotent subgroup of finite index.



Sara W. Lapan 17

Idea of Proof. Prime example: Suppose ∃ϕ ∈ GL(k,Z), Zk ϕ- Zk an automorphism,
Γ = Z o Zk (semi-direct product) given by (m, z) · (n, t) = (m+ n, ϕn(z) + t). �

Dichotomoy: Either all eigenvalues of ϕ have absolute value 1 or ∃ a value λ of ϕ with
|λ| > 1. For the first situation, either the image of ϕk is dense (not possible) or finite
⇒ ϕl = id for some l.

Theorem 0.79. Let Γ be finite generated subset of GL(n,R). Then either Γ has exponential
growth or Γ ⊃ N is a nilpotent subgroup of finite index and it has polynomial growth.

Theorem 0.80 (Gromov). Γ has polynomial growth ⇔ Γ ⊃ N , where N is nilpotent of
finite index.

Warnng: ∃Γ finitely generated with non-polynomial growth but non-exponential growth.

Lecture 12. October 5, 2009

Application of Shortocomings and Volume Growth:
Let Γ be a finitely generate group with volume growth. V (n) ≤ cn2 for some constant c (so
Γ has at most quadratic growth). Then the simple random walk on Γ is recurrent.

Corollary 0.81 (Gromov). Γ must contain 1,Z, or Z2 as a subgroup of finite index to have
quadratic growth.

Proof of Application. Partition Γ into spheres Sn = S(n) = {γ | d(γ, 1) = n}. Consider
shorening attached, i.e. collapse S(n) to n for all n.

a′(n, n+ 1) ≤
∑

x∈Sn,y∈Sn+1

1 ≤ d#Sn = d(V (n)− V (n− 1)), where d# generators

Hence,
2n∑
k=n

1
a′(k, k + 1)

≥∗ n2∑2n
k=n a

′(k, k + 1)
≥ 1
d

n2

V (2n)
≥ 1
dc

> 0

(*) Use Cauchy-Schwarz inequality.
⇒
∑∞

0
1

a′(k,k+1) =∞⇒(Nash-Williams) recurrence of shortening and hence of Γ.
Note: these are shortenings since the Sn are finite. �

Goal: Show that recurrence is quasi-isometry invariant by comparing Markov chains.
Let (X,P ) be a Markov chain, action on measure on X, and ν be a measure on X.

(νp)(y) =
∑
x∈X

ν(x)p(x, y) (assume finite)

f : X → R⇒ Pf =
∑
z f(z)p(y, z)

Definition 0.82. Let (X,P ) be a Markov chain on X and ν a measure on X. Then ν is
invariant if νp = ν. If νp ≤ ν (pointwise) then ν is excessive.

Remark 0.83. If ν is excessive and ν(x) = 0 for some x, then ν ≡ 0 (irreducibility).

Proposition 0.84. (X,P ) is recurrent ⇔ ∃ invariant measure ν 6= 0 such that all excessive
measures are multiples of ν.

Idea of Proof. Set Q(x, y) = ν(y)
ν(x)P (y, x) for ν P -invariant. Then Q is a Markov chain:∑

y

Q(x, y) =
1

ν(x)

∑
y

P (y, x) =
1

ν(x)
ν(x) = 1

Given (X,P ) recurrent, how to constuct an invariant measure ν: Fix a base point σ.

ν(x) = expected number of visits to state x before returning to σ

We need recurrence for this to be finite. �
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Definition 0.85. Let H be a Hilbert space. T : H → H is a contraction if < Tf, f >≤<
f.f >, ∀f .

Lemma 0.86. If ν is an excessive measure for (X,P ), then P is a contraction on l2(X, ν).

Proof.

< Pf, f > =
∑
x∈X

(Pf)(x)f(x) · ν(x)

=
∑
x∈X

∑
y∈X

ν(x)f(x)f(y)P (x, y)

≤
∑
x,y∈X

ν(x)P (x, y)
(
f(x)2

2
+
f(y)2

2

)

≤
∑
x∈X

f(x)2

2
ν(x) +

∑
y∈X

f(y)2

2
ν(y) by (*)

=
< f, f >

2
+
< f, f >

2
=< f, f >

(*) Since
∑
x∈X ν(x)P (x, y) ≤ ν(y).

Hence P is a contraction. �

Note: P ∗ is the adjoint of P and is given by: P ∗(x, y) = ν(y)
ν(x)P (x, y).

Lemma 0.87 (Hilbert Space). Let H be a Hilbert space with inner product 〈, 〉. Let T1, T2 :
H → H be invertible linear operators such that:

(1) T1 is self-adjoint
(2) 〈T2f, f〉 ≥ 〈T1f, f〉 ≥ 0,∀f ∈ H

Then ∀f ∈ H, 〈T−1
1 f, f〉 ≥ 〈T−1

2 f, f〉.

Proof. Define a new inner product: 〈〈f, g >>= 〈f, T1g〉.

〈〈g, f〉〉 = 〈g, T1f〉 =∗ 〈T1f, g〉 = 〈g, T1f〉 = 〈〈f, g〉〉
(*) Since T1 is self-adjoint.
Use Cauchy-Schwartz on 〈〈, 〉〉:

† 〈f, T1g〉2 = 〈〈f, g〉〉2 ≤ 〈〈f, f〉〉〈〈g, g〉〉 = 〈f, T1f〉〈g, T1g〉
Hence,

〈T−1
2 f, f〉2 = 〈〈T−1

2 f, T1T
−1
1 f〉

≤† 〈T−1
2 f, T1T

−1
2 f〉 · 〈T−1

1 f〉
≤ 〈T−1

2 f, T2T
−1
2 f〉 · 〈T−1

1 f, f〉
= 〈T−1

2 f, f〉 · 〈T−1
1 f, f〉

�

Lecture 13. October 7, 2009

We are on our way to understand quasi-isometries of currents.

Theorem 0.88. Suppose P is irreducible, ν is an excessive measure, and Q is reversible
with m =total conductance. Assume that C ≡ sup m(x)

ν(x) <∞ and ∃ε0 > 0 such that P ≥ ε0Q
(point-wise). If (X,P ) is recurrent, then (X,Q) is recurrent.
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Proof. Set-up Set P = 1
2 (I + P ), u(x) ≡ m(x)

ν(x) , Q = (1 − 1
2cu)I + 1

2cuQ, where I is the
identity. ν is excessive for P (easy calculation). Q is reversible with total conductance = ν

since ν(x)m(x)
ν(x) Q(x, y) = ν(y)m(y)

ν(y) Q(x, y), Q is reversible, and m is total conductance.
Step 1 of Proof: P recurrent ⇒ Q recurrent
Set ε = min{ 1

2 , ε0} ⇒ P > ε1Q (show):
u
c ≤ 1 so ε1 u2cQ ≤ ε1

1
2Q < 1

2P

ε1(1− 1
2cu)I ≤ 1

2I

So ε1Q = ε1(1− 1
2cu)I + 1

2cuQ < 1
2 (P + I) = P

In addition, 1
1−ε1 (P − ε1Q) is Markov with excessive measure ν.

∑
y P (x, y)− ε1Q(x, y) =

1− ε1. By last lecture,

< (P − ε1Q)f, f >ν≤ (1− ε1) < f, f >ν ,∀f ∈ L2(x, ν)

∀0 ≤ z ≤ 1, 〈z(P − ε1Q)f, f〉ν ≤ 〈(1 − ε1)I(F ), f〉ν Rightarrow〈(I − zP )f, f〉ν ≥ 〈ε1(I −
zQ)f, f〉ν †
zP − zε1Q ≤ (1− ε1)I, ε1I − zε1Q ≤ I − zP
Let T1 = ε1(I − zQ) and T2 = I − zP . P ,Q are contactions on l2(X, ν). Recall (1−α)−1 =∑∞
n=0 α

n and GP (x, y|z) =
∑∞
n=0 P

(n)
(x, y)zn =

∑∞
n=0(zP )n(x, y).

(I − zP )−1f)(x) =
∑
y

GP (x, y|z)f(y)

((I − zQ)−1f)(x) =
∑
y

GQ(x, y|z)f(y)

Let f = δx. GP (x, x|z) ≤ 1
ε1
GQ(x, x|z). By †:

GP (x, x|z) = ((I − zP )−1δx)(x)

1
ε1
GQ(x, x|z) = ((I − zQ)−1δx)(x)

Recall: Let L be a Hilbert space, T1, T2 are invariant and T1 self-adjoint. So

〈T2f, f〉 ≥ 〈T1f, f〉,∀f ⇒ 〈T−1
1 f, f〉 ≥ 〈T−1

2 f, f〉

Step 2 of Proof: P recurrent ⇒ P recurrent
Calculation: GP (x, x| z2−z ) = (1− z

2 )GP (x, x|z) so for z = 1, Gp(x, x) = 1
2GP (x, x). Indeed:

(2− z)
∑∞
n=0 P

(n)(·, x) zn

(2−z)n − zP
∑∞
n=0 P

(n)(·, x) zn

(2−z)n =∑∞
n=1 P

(n)(·, x) zn

(2−z)n−1 + (2− z)δx(·)−
∑∞
n=0 P · P (n)(·, x) zn+1

(2−z)n =
(2− z)δx =
(2− z)GP (·, x| z2−z )− zPGP (·, x| z2−z ) =
(2− z − zP )GP (·, x| z2−z )

And Gp(·, x| z2−z ) = 2−z
2−z−zP δx = 1− z2

1−zP = (1− z
2 )GP (x, x|z).

Step 3 of Proof: Q recurrent ⇒ Q recurrent

DQ(f) =
1

2C
DQ(f)

DQ(f) =
1
2

∑
x,y

(
f(x)− f(y)

)2
ν(x)q(x, y)

=
1
2

∑
x,y

(
f(x)− f(y)

)2
ν(x)

u(x)
2C

q(x, y)

=
1

2C
DQ(f)
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where the second equality for DQ(f) follows since δx(y) = 0 unless x = y, in which case
f(x)− f(y) = 0. �

Lecture 14. October 9, 2009

Remark 0.89. On existence of invariant measures (νp = ν): νp(y) =
∑
x∈X ν(x)p(x, y)

Suppose (X,P ) is reversible. Conductance a(x, y) = m(x)p(x, y) = m(y)p(y, x). Total
conductance

m(x) =
∑
y

a(x, y) =
∑
y

m(y)p(x, yy) = mD(x)

m is an invariant measure.

Definition 0.90. A Markov chain (X,P ) is uniformly irreducible if ∃K, ε0 > 0 such
that ∀x ∼ y (i.e. p(x, y) 6= 0) pk(x, y) ≥ ε0 for some k < K.

Let X be a graph with bounded geometry (i.e. a bounded number of edges at each vertex).
Let D be the Dirichet norm for a simple random walk. Let DP be the Dirichlet norm for
the random walk for the Markov chain P .

Theorem 0.91. Let (X,P ) be a Markov chain with a P -transition matrix of a uniformly
irreducible random walk on X with excessive measure ν such that inf ν(x) > 0. If (X,P )
is recurrent, then simple random walks on X are recurrrent. Moreover, if P is reversible,
m = ν =total conductance, then ∃ε1 > 0 such that Dp(f) ≥ ε1D(f).

Proof. Let K, ε0 as above and set P = I+P
2 , P̂ = PK. We already know that GP (x, x|z) =

z
2−zGp

(
x, x| z2−z

)
.So P recurrent ⇔ P recurrent. P recurrent ⇒

∑i
n=0 nftyp

i(x, x) =∑k−1
α=0 p

kj+α(x, x) diverges. Therefore, for some 1 ≤ α ≤ K,
∑∞
n=0 p

knα(x, x) = 0 and∑∞
n=0 p̂

(n)(x, x) ≥ 1
2k−α

∑∞
n=0 p

nk+α(x, x) since P ≥ 1
2I. Then pl(x, x) ≥ 1

2p
l+α(x, x). so P

recurrent ⇒ P̂ recurrent. Note: ν is P̂ excessive.
Claim: P̂ dominates a multiple of the simple random walk
Note: in simple random walk, x, y adjacent ⇒ Q(x, y) = 1

deg(x) .

x ∼ y, p̂(x, y) ≥ ε0
2k
≥ ε

2k
1

deg x . Apply the comparison theorem to P̂ and simple random walk
with m(x) = deg(x). Check the rest of this computation. �

Definition 0.92. A Markov chain (X,P ) has bounded range if ∃D > 0 such that if
d(x, y) > D ⇒ P (x, y) = 0.

Theorem 0.93. Let (X,P ) be a Markov chain of reversible random walk on X with bounded
range and with supxm(x) <∞. Then ∃ε2 > 0 such that D(f) ≥ ε2DP (f).

Thus if a simple random walk is recurrent, so is (X,P ).
Motivation: For the moment, assume the conclusion about ε2.
Recall:

• cap(x) = inf{D(f) | f ∈ D0(X), f(x) = 1}
• transience ⇔ cap(x) > 0 for some x

Simple random walk recurrent ⇒ capsimple(x) = 0 ⇒ capP (x) = 0 ⇒ cap(X,P ) is
recurrent.

Lecture 15. October 12, 2009

Proof. Let E be the edges for X. For x, y ∈ X, denote by

π(x, y) = {geodesics from x to y} and πe(x, y) = {geodesics from x to y containing e
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|f(x)−f(y)|2 ≤ 1
|π(x,y)|

∑
π∈π(x,y)

∑
e∈π(∇f(e))2d(x, y) by Cauchy-Schwartz. For f ∈ l0(x),

DP (f) =
1
2

∑
x,y∈X

a(x, y)
(
f(y)− f(x)

)2
≤ 1

2

∑
x,y

a(x, y)
1

π(x, y)

∑
π∈π(x,y)

∑
e∈π

(∇f(e))2d(x, y)

=
∑
e∈E

(∇f(e))2φ(e)

where φ(e) = 1
2

∑
x,y∈X m(x)p(x, y)d(x, y)πe(x,y)

π(x,y) and a(x, y) = m(x)p(x, y). Then Dp(f) ≤
supe∈E φ(e)D(f).
Claim: φ is bounded above Estimate φ(e): Let M ≥ vertex degrees, R be a bound for range
P . and e ∈ E. Suppose x, y ∈ X such that d(x, y) ≤ R and πe(x, y) 6= φ ⇒ x, y are of
distance ≤ R from the closest edge of e. There are at most MR y’s and Mr x’s ⇒ M2R

such (x, y)⇒

φ(e) ≤ R

2
(sup
z∈X

m(z))
∑

x,y∈X,d(x,y)≤R

πe(x, y)
π(x, y)

≤ R

2
sup
z∈X

m(z)M2R

�

Corollary 0.94. Let X(k) be a graph with the same vertices as X and an edge between x, y
if d(x, y) ≤ k. Then ε2 > 0 such that DX(k)(f) ≥ DX(f)ε2.

If X
ϕ- X ′ quasi-isometry, then ∃ a “rough” inverse ψ.

Lemma 0.95. ψ is a quasi-isometry.

ψ ◦ ϕ is bounded distance from the identity.

Theorem 0.96. Suppose X,X ′ are quasi-isometric graphs with bounded degrees of vertices.
Then ∃ε3 > 0 such that DX′(f) ≥ ε3DX(f ◦ ϕ), where X

ϕ- X ′ is a quasi-isometry.

Corollary 0.97. If X is recurrent, so is X ′.

Proof. Consider ϕ(X) ⊂ X ′ and define graph structure of ϕ(X) by:

x′, y′ ∈ ϕ(X) then x′ ∼ y′ if x′ = ϕ(x), y′ = ϕ(y) and x ∼ y in X

ϕ(X) is a network with a′(x′, y′) = #edges from x to y in X with ϕ(x) = x′, ϕ(y) = y′ (i.e.
we are shortening X with partition of it induces ϕ−1(y′), y′ ∈ X ′).
Claim: a′(x′, y′) ≤ (MAB+1)2,
where d(x,y)

A −B ≤ ϕ(x1, x2) ≤ Ad(x, y)B and M ≥ deg x,∀x ∈ X.
Proof: If ϕ(x) = x′ = ϕ(y)⇒ d(x,y)

A −B ≤ d(ϕ(x), ϕ(y)) = 0⇒ d(x, y) ≤ BA.
Let f ∈ l0(X ′), DX(f ◦ϕ) ≤ (MAB+1)2 ·DP (X)(f), where P (X) is the graph defined above.
Now if x′ ∼ y′ in ϕ(X), then

dX′(x′, y′) = dX′(ϕ(x), ϕ(y)) ≤ Ad(x, y) +B = A+B ≡ K
x, y ∈ X such that ϕ(x) = x′, ϕ(y) = y′, d(x, y) ≤ 1 ⇒ ϕ(X) is a subgraph of (X ′)(K) ⇒
Dϕ(X)(f) ≤ D(X′)(k)(f) ≤ ε2DX′(f). �

Lecture 16. October 14, 2009

Brief Summary:
(1) Recurrence of various random walks is equivalent
(2) A simple random walk is recurrent if the volume growth of the group is at most

quadratic (using shortenings and Nash-Williams)
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(3) Volume growth at least cubic implies transient
(4) Γ finitely generated is recurrent (or simple or any other “reasonable” random walk)
⇔ Γ is almost 1,Z,Z2s

Definition 0.98. Γ is almost A means that there is a subgroup of finite index in Γ, which
is A.

Proof of (4). Gromov’s polynomial growth theorem implies that growth is either at most
quadratic or at least cubic. If growth is quadratic, then Γ is nilpotent and (Bass) Γ is almost
1,Z,Z2. �

Example 0.99. If something is quasi-isometric to the plane, then it is recurrent since the
plane is recurrent.

Definition 0.100. Let (X,P ) be a Markov chain. Let

σx(n) = Px
[
d(z, x)) = n

]
=

∑
y,d(x,y)=n

p(x, y)

The kth moment is Mk(x) =
∑
n n

kσx(n). Exponential moment of order < ∞ if
supx

∑
n e

cnσx(n) <∞. Mk(µ) = supx∈XMk(x).

The kth moment could be finite or infinite.
Let Γ be a finitely generated group, µ irreducible probability measure on Γ. Counting
meausre (invariant).

Theorem 0.101. A simple random walk on Γ is recurrent ⇔ some (every) symmetric
irreducible random walk µ on P with M2(µ) <∞ induces a recurrent random walk.

Let e be an edge.

Lemma 0.102. φ(e) = 1
2

∑
x,y∈X p(x, y)d(x, y)#πe(x,y)

#π(x,y) is bounded.

Proof. Note that µ(x−1y) = p(x, y). Let e0 be an edge in the Cayley graph. Given points
x, y ∈ X and an edge e0 in X, we move everything by x−1 to 0, x−1y ∈ X and an edge
x−1(e0). w corresponds to x−1y.

φ(e0) =
1
2

∑
w∈Γ

µ(w)d(0, w)
∑
x∈Γ

πx−1e0(0, w)
π(0, w)

≤ 1
2

∑
w∈Γ

µ(w)d(0, w)
∑

e edge

#πe(0, w)
#π(0, w)

=
1
2

∑
w∈Γ

µ(w)
d(0, w)

#π(0, w)

∑
π∈π(0,w)

#{e | e ∈ π}

=
1
2

∑
w∈Γ

µ(w)
d(0, w)2

#π(0, w)
#π(0, w)

=
1
2
M2(0)

The inequality arises because the group does not act transitively on the edges. �

Lemma 0.103. Let µ be a probability measure on Γ. Decompose µ as µ = µ1 + µ2, with
µ1, µ2 both non-negative measures. Then ∀x ∈ Γ,∀n ∈ N,

µ(n)(x) ≤ µ1(Γ)n + n||µ2||∞,

where µ1(Γ) is the total mass of Γ with repect to µ1 and ||µ2||∞ = supγ∈Γ µ2(γ).
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Let λk = 1
k3 log2 k

, for k ≥ 2 and λ1 = 1−
∑∞
k=2 λk. Let V (k) = #B(k), where B(k) is the

ball of radius k in Γ. Set µ(x) =
∑∞
k=1

λk
V (k)χB(k)(x), where χ is the characteristic function.

Proposition 0.104.
(1) M2(µ) <∞
(2) If V (k) ≥ Ck3, then µ is transient

Proof. (1):

M2(µ) =
∞∑
k=1

λk
V (k)

∑
x∈Γ

d(0, x)2χB(k)(x)

≤
∞∑
k=1

λk
V (k)

V (k)k2

=
∞∑
k=1

1
k log2 k

<∞
(2):
Let m ≥ 2 be arbitrary and decompose µ as µ = µ1 + µ2, where

µ1(x) =
m−1∑
k=1

λk
V (k)

χBk(x) and µ2 = µ− µ1 =
∞∑
k=m

λk
V (k)

χBk(x).

Let sm =
∑∞
k=m λk, then µ1(Γ) = 1− sm.

||µ2||∞ =
∞∑
k=m

λk
V (k)

≤ sm
V (m)

≤
∞∑
k=m

λk
V (m)

µ(n)(1) ≤ (1− sm)n + n sm
V (m) , by a previous lemma.

Fact: smm2 log2m→ 1
2 ⇒ for large m, sm ∼ 1

2m2 log2m

(1− sm)n = en log(1−sm) ∼ en log(1− 1
2m2 log2m

) = e
n log( 2m2 log2m−1

2m2 log2m
)

Therefore , µ(n)(1) ≤ e
−c1n

m2 logm + c2n
m5 log2m

.

∀n,∀ large m, set m = m(n) = n
2
5 ⇒ convergence of

∑∞
n=1 µ

(n)(1)⇒ transience. �

Proof of Theorem. (⇐) obvious. (⇒) similar to (recurrence of simple random walk⇒ recur-
rence of finite range random walk). Use the lemmas and propositions between the statement
of the theorem and this to prove this direction. �

Lecture 17. October 16, 2009

Words on Gromov’s proof of the polynomial growth:
Γ is polynomial growth. Look at Γ from very far away and rescale. Let dΓ be a word
metric and let dl = 1

l dΓ be a new metric. Let X be a metric space and Yn ⊂ X such that
limn Yn = Y . Then liml(Γ, dl) = X. Show that:

(1) X is locally compact
(2) X is locally connected (hint: replace Γ by the Cayley graph, which is locally con-

nected)
(3) The Hausdorff dimension of X is finite
(4) Theorem: by Montgomery-Zippin If X is locally compact, locally connected, finite

dimensional metric space, then Isom(X) is a Lie group.
(5) Γ ⊂ - Isom(X)
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The first two steps are true for groups in general, but the third is not. The third step uses
crucially polynomial growth. The fourth set is closely related to Hilbert’s 5th problem.

Lecture 18. October 21, 2009

Kleiner’s proof of polynomial growth theorem.

Theorem 0.105. Γ graph with bounded geometry and polynomial growth ⇒ space of har-
monic functions is finite dimensional.

Main tool: Poincare inequality,

Theorem 0.106 (Korevic-Schoen). Let Γ be a group with X its Cayley graph. Then ∃H a
Hilbert space with a free faithful action of Γ on H and a “harmonic map” X

ϕ- H which
is Γ-invariant.

Isoperimetric Inequalities:
Riemannian context: cvol(Bp(r))

d−1
d ≤ area(Sp(r)), where Sp(r) is a sphere of radius r.

This is d-dimensional isoperimetric inequality (polynomial growth).
Markov Process-Reversible
Let (X,P ) reversible, m(x) total conductance, a(x, y) conductance, and N network. Think
of m as a measure on X. Let A ⊂ X and D ⊂ E (where E are the edges).

m(A) =
∑
x∈A

m(x), a(D) =
∑
e∈D

a(e−, e+), and δA = { edges e | e− ∈ A, e+ /∈ A}

This is the boundary of the network (and it replaces the sphere). a(δA)“ = ” surface area.

Definition 0.107. Suppose φ : R+ → R+ is non-dereasing. N satisfies a φ-isomperimetric
inequality if ∃κ > 0 such that φ(m(A)) ≤ κa(δA). If this holds for the simple random
walk, then say that the graph satsfies the φ-isomperimetric inequality.

Special Cases:

(1) d-dimensional isomperimetric inequality: φ(t) = t
d
d−1 = t1−

1
d . d = 1 ⇔ a(δA) is

bounded below by some α > 0.
(2) φ(t) = t strong isoperimetric inequality (this is d =∞)

Goal: Relate isoperimetric inequality of quasi-isometric graphs.
Sobolev norm: f : X → R function with P Markov chain.

SP (f) =
∑
e∈E
|∇f(e)| = 1

2

∑
x,y∈X

|f(x)− f(y)|a(x, y) and ||f ||d =
(∑

|f(x)|dm(x)
) 1
d

Proposition 0.108. For 1 ≤ d ≤ ∞, (X,P ) satisfies the d-dimensional isoperimetric in-
equality ⇔ ∀f ∈ e0(X), ||f || d

d−1
≤ κSP (f).

X
ϕ

quasi-isometry
- Y

R

f

?

f ◦ ϕ

-

Corollary 0.109. If X and Y are quasi-isometric, then they satisfy the same d-dimensional
isomperimetric inequality.
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Proof of Proposition. (⇐) easy: Let X = χA.
(⇒) It is sufficient to consider |f | or f ≥ 0. Note:

∣∣|a| − |b|∣∣ ≤ |a− b|. Rewrite SP (f):

SP (f) =
1
2

∑
x,y∈X

|f(x)− f(y)|a(x, y)

=
∑
x

∑
{y|f(y)>f(x)}

|f(y)− f(x)|a(x, y)

=
∑
x

∑
{y|f(y)>f(x)}

a(x, y)
∫ ∞

0

χ[f(x),f(y)](t)dt

=
∫ ∞

0

( ∑
{x,y|f(x)≤t<f(y)}

a(x, y)
)
dt

=
∫ ∞

0

a(δ{y | f(y) > t})dt

Case d = 1:
δ({y | f(y) > t}) 6= ∅ ⇔ 0 ≤ t < ||f ||∞.∫ ∞

0

a(δ({y | f(y) > t}) =
∫ ||f ||∞

0

a(δ{y | f(y) > t}) ≥ 1
κ
||f ||∞

Case d > 1:
Set ρ = d

d−1 .

SP (f) =
∫ ∞

0

a(δ{y | f(y) > t})dt

≥ 1
κ

∫ ∞
0

m({y | f(y) > t})
1
ρ dt

=
1
κ

∫ ∞
0

F (t)dt

where the inequality follows since κa(δ{y | f(y) > t}) ≥ m{y | f(y) > t}
1
ρ . F (t) =

m({y | f(y) > t})
1
ρ is non-increasing.

ρ(tF (t))ρ−1F (t) ≤ ρ
(∫ t

0

F (z)dz
)ρ−1

F (t) =
d

dt

(∫ t

0

F (z)dz
)ρ

Therefore, ∫ ∞
0

ρtρ−1F (t)ρdt ≤
(∫ ∞

0

F (t)dt
)ρ

Therefore,

κSP (f) ≥
∫ ∞

0

F (t)dt

≥
(∫ ∞

0

F (t)dt
) ρ
ρ

≥
(∫ ∞

0

ρtρ−1F (t)ρdt
) 1
ρ

=
(∫ ∞

0

ρtρ−1m({y | f(y) > t})dt
) 1
ρ
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We want to be able to compare this to ||f ||ρ = ||f || d
d−1

. Let 0 = t0 < t1 < · · · < tm be the
values of f (in l0(X)). Then

||f ||ρρ =
m∑
i=0

tρi
(
m({y | f(y) > ti−1})−m({y | f(y) > ti}))

)
=

m∑
i=0

tρim({y | f(y) = ti})

=
m−1∑
i=0

(tρi+1 − t
ρ
i )m({y | f(y) > ti})

=
m−1∑
i=0

∫ ti+1

ti

ρtρ−1m({y | f(y) > t})dt

=
∫ ∞

0

ρtρm({y | f(y) > t})dt

since tρi+1 − t
ρ
i =

∫ ti+1

ti
ρtρ−1dt. �

Lecture 19. October 23, 2009

Note: (X,P ) satisfies a d-dimensional isoperimetric inequality ⇒ Vp(n)) ≥ cnd, for some
c > 0. Vp(n) ≈

∑n
r=0m(SP (r)).

Amenabe Groups:
Goal: ρ(XΓ, µ) = 1, Cayley graph and spectural radius ⇔ Γ is amenable.

Definition 0.110 (Definition/Theorem). Let Γ be a finitely generated group. The following
definitions/results are equivalent.

(0): Γ is a amenable group
(1): ∃Γ-variant mean on l∞(Γ) = {f : Γ → R bounded sup norm} (a mean is f 7→
M(f) where essentially M is a finitelly additive measure)

(2): ∀ actions of Γ on a compact metric space X (by homeomorphisms) Γ→Homeo(X)
has a Γ-invariant probability measure

(3): Fixed point property: ρ : Γ→ U∗(B) and C ⊂ B∗ convex closed Γ-invariant set,
then ∃Γ fixed point in C
Wrote this previous class, but there is a mistake: ∀ρ : Γ → U(B) and ∀A ⊂ B∗

convex and closed, ∃ fixed point for Γ in A (Note: B is a Banach space, U(B) is
unitary (act by isometries on the Banach space), B∗ = { continuous linear func-
tionals B → R})

(4): Folner’s Property: There are three versions:
(a): Folner sequence: {Fi} is an exhaustion of Γ by finite sets such that ∀g ∈

Γ, limi→∞
#gFi∆Fi

#Fi
= 0. Γ satisfies Folner’s property if ∃ a Folner sequence.

(b): Γ finitely generated, S a finite generating set of Γ. ∀ε > 0,∃F ⊂ Γ such that
#∂F
#F < ε.

(c): ∀ε > 0,∀K ⊂ Γ finite, ∃U ⊂ Γ finite such that ∀k ∈ K, #(Uk∆U)
#U < ε.

Special Case: Let X be a compact metric space and Γ acts on X. Let B = C(X) =
{continuous functions on X} and so B∗ =<probability meassure on X > by Riesz Repre-
sentation theorem.

Lecture 20. October 26, 2009

Let Γ be discrete. Condition (1) of the previous definition is:
l∞(Γ)

µ- R, µ(f) ≥ 0, µ(1) = 1⇔ ∃ a finite additive probability “measure” µ on Γ which
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is (left) Γ-invariant (i.e. µ : {A ⊂ Γ} → [0, 1], µ(Γ) = 1).
Examples:

(1) Z is amenable (show by property 4b)
(2) Solvable groups are amenable:

Γ ⊃ Γ1 = [Γ,Γ] ⊃ Γ2 = [Γ1,Γ1] ⊃ · · · ⊃ Γm ⊃ Γm+1 = 1. Γm is abelian, in a similar
way to (1), Γm is amenable. Then repeat: Γm−1/Γm is abelian ⇒ amenable.

(3) Subgroups of amenable groups are amenable. For Λ ⊂ Γ, Γ amenable, ρ : Λ →
U(B) IndΓ

Λ(ρ) : Γ→ {f : Γ→ B | f(λγ) = ρ(λ)f(γ),∀λ ∈ Λ}
(4) Short exact sequence: 1 → Γ1 → Γ → Γ3 → 1. Then Γ is amenable ⇔ Γ1 and Γ3

are amenable.
(5) Γ1,Γ2 amenable ⇒ Γ1 × Γ2 amenable (use fixed point property to prove)
(6) Finitely generated groups with subexponential growth are amenable (the converse

is not true - there are amenable groups with exponential growth)
(7) Γ ⊂ GL(n,R), Γ is amenable ⇔ Γ is a finte extension of a solvable group
(8) A Lie group G is amenable ⇔ G is a compact extension of a solvable group
(9) Free groups are not amenable

Proposition 0.111. Let Γ be finitely generated. Γ is amenable ⇔ ∀ (or some) S a finite
generating set of Γ, the Cayley graph of Γ with respect to S does not satisfy the strong
isoperimetric inequality.

Proof. (⇒) Use 4b in previous definition/theorem
(⇐) Since S does not satisfy the isoperimetric inequality, there is no κ such that #∂S) ≥
κ#F . Therefore 4b is satisfied. �

Remark 0.112. The strong isoperimetric inequality implies that Γ has atleast exponential
growth. Consider V ′(n)“ = ”areaS(n)⇒ V ′(n) ≥ κV (n).

Lecture 21. October 28, 2009

Groups:
(1)⇒ finite,compact ⇒ Z,Z2 ⇒ abelian ⇒ nilpotent ⇒ solvable
⇒ amenable ⇒ F2,Γ ⊂ SL(2,R) surface groups ⇒
“negative curvature” Gromov hyperbolic groups ⇒ SL(n,Z),Mod(g, n), Out(Fn), Cat(0)
Recall: ρ(Q) = limn→∞Q

(n)(x, y)
1
n

Lemma 0.113. Q =
(
Q(i, j)

)
i,j∈I symmetric, non-negative real matrix, irreducible ρ(Q) <

∞. Then Q acts on l2(I) as a bounded linear operator with operator norm:

||Q|| = sup
06=f∈l2(I)

||Q(f)||
||f ||

= ρ(Q)

Proof. 〈, 〉 standard inner product on l2(I) and f ∈ l2(I).

〈Qn+1f,Qn+1f〉2 = 〈Qnf,Qn+2f〉2

≤ 〈Qnf,Qnf〉〈Qn+2f,Qn+2f〉2

⇒ 〈Qn+1f,Qn+1f〉
〈Qnf,Qnf〉

≤ 〈Q
n+2f,Qn+2f〉
〈Qnf,Qnf〉

cf root
test
- lim

n→∞
〈Qnf,Qnf〉 1

n ≤ ρ(Q)2

〈Qf,Qf〉
〈f,f〉 ≤ ρ(Q)2,∀f ∈ l0(I ⇒ ∀f ∈ l2(I).
||Q(f)||
||f || ≤ ρ(Q). Check simple function like f = δx + δy. �

Theorem 0.114. (X,P ) reversible Markov chain. TFAE:
(a): (X,P ) satisfies a strong isoperimetric inequality
(b): ∃κ > 0 such that ||f ||22 ≤ κDp(f),∀f ∈ l0(X)
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(c): spectral radius ρ(P ) < 1
(d): the Greens function G(x, y) defines a bounded linear operator G : l2(X,µ) →
l2(X,µ) via (Gf)(x) =

∑
y G(x, y)f(y).

Corollary 0.115 (Kestan). Γ is amenable ⇔ ρ(P ) = 1, where P is a simple random walk
on Γ.

Recall: the spectral raduis is limnP
(n)(x, y)

1
n < 1, P (n)(1, 1) decays exponentially fast.

Proof. (a) ⇒ (b) Recall that SP (f) = 1
2

∑
x,y |f(x) − f(y)|a(x, y). Also, recall that the

strong isoperimetric inequality ⇒ Sobolev inequality:

∃κ > 0,∀f ∈ l0(X), ||f ||1 ≤ κSP (f)

||f ||42 = ||f2||21 ≤ κ2SP (f2)2

≤ κ2

(
1
2

∑
x,y

a(x, y)
(
|f(x)|+ |f(y)|

)
|f(x)− f(y)|

)2

≤ κ2DP (f)
∑
x,y∈X

a(x, y)

(
|f(x)|+ |f(y)|

)2
2

≤ κ2DP (f)
∑
x,y

a(x, y)
(
f(x)2 + f(y)2

)
≤ κ2DP (f)||f ||22

(b)⇒ (a): Take f = χA for some A ⊂ X finite. Then

|f ||1 =
∑

f(x)m(x) =
∑

f2(x)m(x) = ||f ||22 ≤ κDP (f) =? κSP (f)

(b)⇒ (c): Recall the Laplacian L = −∇∗∇ = P − I

〈f, Pf〉 = 〈f, (P − I)f〉+ 〈f, f〉
= −〈∇f,∇f〉+ 〈f, f〉
||f ||22 −Dp(f)

≤ (1− κ)||f ||22

P is self-adjoint, so

〈Pf, Pf〉 = 〈f, P 2f〉 ≤
(

1− 1
x2

)
||f ||22

S(P ) = ||P || ≤ 1− 1
x2 < 1.

(c)⇒ (b): P is self-adjoint ⇒ ||P || = ρ(P ) < 1⇒

DP (f) = ||f | 22 − 〈f, Pf〉 ≥ (1− ρ(P ))||f ||22

(c)⇔ (d): (I − P )Gf = f, ∀f ∈ l0(X)⇒ “G = (I − P )−1”. Finish (d)⇒ (c). �

Remark 0.116. Amenable groups are quasi-isometry invariant.

Lecture 22. October 30, 2009

Now we will be using Random Walks on Groups and Random Transformations by Alex
Furman as a reference (available on his website).
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1. Poisson Boundary: A topological approach

Let G be locally compact. For instance G discrete, Lie group, or a p-adic group.

Definition 1.1. A probability measure µ on G is admissible if the semi-group generated
by the support of µ is G.

Definition 1.2. A Markov operator P is (Pf)(g) =
∫
G
f(g, h)dµ(h).

H∞(G,µ) = {bounded µ− harmonic functions}

Definition 1.3. f is µ-harmonic if f = Pf .

Definition 1.4. f : G → R is left uniformly continuous functions if ∀ε > 0,∃ a neigh-
borhood U of 1 ∈ G such that |f(gh)− f(h)| < ε,∀g ∈ U,∀h ∈ G.

Bluc = {f : G→ R | f is left uniformly continuous}

H∞luc(G,µ) = {bounded, left uniformly continuous µ-harmonic functions} ⊂ Bluc,H
∞(G,µ)

Remark 1.5. Any bounded uniformly continuous harmonic function is the pointwise limit
of left uniformly continuous functions.

Proof. “Mullify” by integrating against a nice bump function. �

Lemma 1.6. ∀f ∈ H∞(G,µ), the limit:

f̃(g, ω) = lim
n→∞

f(gω1ω2 · · ·ωn)

exists ∀g ∈ G and P-almost everywhere sequence ω ∈
∏∞
i=0G = G∞.

Denote f̃(ω) = f̃(1, ω).

Definition 1.7. A sequence of R-valued functions {gn} is martingale if the gn are mea-
sureable with respect to Fn and E{gn | Fn−1} = gn−1.

Note: Fix a measure µ. E(f) = the expectation of f =
∫
fdµ.

Theorem 1.8 (Martingale Theorem). If ∃c such that ∀n, E(ϕn) =
∫
ϕndµ < c <∞, then

ϕn → ϕ with probability 1, where ϕ is measurable with respect to F .

Proof. This involves the “Maringale Theorem.” Supose that F is a σ-algebra and Fn is a
sequence of nested σ-algebras (Fn ⊂ Fn+1). F is generated by the Fn, i.e. F is the smallest
σ-algebra which contains all Fn. Fix a probability measure µ. Let {gn} be a martingale
sequence. E(ϕn | Fn−1} = ϕn−1.

Ω = {sequence (gn)n=0,1,... | gn ∈ G}

Fn = σ − algebra = products of σ-algebras of G for the first n factors

Then fn = f(gω1 · · ·ωn) is a function on Ω measurable with respect to Fn.

E(fn+1 | Fn) =
∫
f(gω1 · · ·ωnh)dµ(h) = f(gω1 · · ·ωn) = fn

�

Lecture 23. November 2, 2009
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Ergodicity
Let G be a group that acts on a probability space (X,µ) such that G preserves sets of
measure zero with respect to µ (i.e. A ⊂ X,µ(A) = 0⇒ µ(gA) = 0. µ is a quasi-invariant
measure. Can define a Radon-Nikodym Derivative;

g∗µ = ρ(g, x)µ, i.e.
∫
fdg∗(µ) =

∫
fρ(g, x)dµ

where f : X → R, g∗µ is a pushforward measure, and ρ : G×X → R.

Definition 1.9. µ iis ergodic if the only invariant measure subsets A ⊂ X (i.e. ∀g ∈
G, gA = A) have measure zero or X −A has measure zero.

Example 1.10. Z acts on S1 by irrational rotations. Then λ =Leb on S1 is ergodic.

Idea:

Lemma 1.11 (Idea of Lemma). ergodic ⇔ every G-invariant L1(L2)-function is constant.

Let Rα be a rotation by α and {Rnα} = S1. For f ∈ L2(S1) that is Rα-invariant ⇒ f is Rnα
invariant ⇒ f is S1-invariant ⇒ f is constant.

Example 1.12. Γ = π1(K), whereK is a compact surface of genus≥ 2. Γ acts on S1 = ∂(H2).
Claim: this action is ergodic.

Example 1.13. Let G be a locally compact group. Ω = GN = {sequence (g1, . . . , gn, . . .), gi ∈
G}, µ on G is an admissible measure. P-measure on Ω.

∏∞
i=1 µ. Bernoulli shift:

θ : Ω→ Ω shift map, so that θ(g1, g2, . . . , gn, . . .) = (g2, g3, . . .)

Warning: θ is not invertible, but A is invariant if θ−1(A) = A. Claim: θ is ergodic.

Note: Classically consider G = Z2 = {0, 1}.

Theorem 1.14 (Ergodic Decomposition Theorem). Let X be a compact metric. G acts on
X by homeomorphisms. Let µ be a quasi-invariant probability measure under G. Then we
can decompose µ as:

µ = intα∈(Y,ν)µαdν(α)
such that the µα are ergodic G-quasi-invariant measures.

This comes from the Choquet Theorem:

Theorem 1.15. C ⊂ B is a convex, w-compact set. Define c ∈ C is extremal if c =
αc1 +(1−α)c2, where c1, c2 ∈ C and α 6= 0. ∀c ∈ C, c =

∫
α∈Y cαdν(α), where Y = {extremal

points of C}.

Example 1.16. T =
(

2 1
1 1

)
on T 2 = R2/Z2 leaves λ-Lebesgue measure invariant. λ is

ergodic with respect to T . For A ∈ SL(n,Z) and Tn, A is ergodic ⇔ no eigenvalue of A is
a root of unity.

Let G be locally compact and µ admissible. Recall:

f ∈ H∞(G,µ) = {l.u.c. bounded harmonic functions} f̃(g, ω) = lim
h→∞

f(gω1ω2 · · ·ωn)

exists ∀g and P-almost everywhere ω.
Construct µ-harmonic functions:
Suppose G acts on (M,ν), where µ is a probability measure on M .
Problem: There may be no G-invariant probability measures.
New idea: Let µ be a measure on G. Then for G×M A- M , A∗(µ× ν) ≡ µ ∗ ν.
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Definition 1.17. Let (G,µ) and (M,ν). ν is stationary with respect to µ ( or µ-stationary)
if µ ∗ ν = ν. If ν is µ-stationary, then (M,ν) is a (G,µ)-space.

Lemma 1.18. µ-stationary measures always exist.

Proof. ∗ : P(M)
ν- P, probability measure on M . µ ∗ ν,P(M) 3 ν 7→ µ ∗ ν = ∗(ν).

limN
1

N+1

∑N
n=0 ∗n(ν). �

Lecture 24. November 4, 2009

R.N. Derivative:
µ = f · λ, where µ and λ are measures, then dµ

dλ (x) = f(x).
Special Case: µ = g∗(λ). Suppose µ and λare absolutely continuous with respect to each
other (have same null sets) ⇒ µ = ρ(g, x)λ.
Super special case: g diffeomorphism of a manifold, λ a smooth volume form. ρ(g, x) =Jacobian
of g.

Theorem 1.19 (Fuestenberg). Suppose (M,ν) is a measurable (G,µ)-space (ν is µ-stationary).
Given φ ∈ L∞(M,ν), define

fφ(g) =
∫
M

φ(gx)dν(x) =
∫
M

φdg(x).

Note that
∫
M
φ(gx)dν(x) =

∫
M
φ(x)ρ(g, x)dν(x), where ρ is the Radon-Nikodym derivative.

Then
(a): fφ ∈ H∞(G,µ)
(b): fφ is constant ∀φ ∈ L∞(M,ν)⇔ ν is G-invariant.

Furthermore, suppose (M,ν) is a compact G-space. Then:
(a’): fφ ∈ H∞luc(G,µ)
(b’): fφ is constant ∀φ ∈ C(M)⇔ ν is G-invariant.

Of Theorem. fφ is bounded by ||φ||∞.∫
G

fφ(gg′)dµ(g′) =
∫
G

∫
M

φ(gg′x)dν(x)dµ(g′)

=
∫
G

∫
M

φ(g, y)d(µ ∗ ν)(y)

= fφ(g)

where we get last equality from µ ∗ ν ↔ ν. Therefore fφ is harmonic. The second equality
follows from:∫

M

f(z)d(µ ∗ ν)(z) =
∫
G

∫
M

f ◦ α(g′, z)dµ(g′)dν(z) =
∫
G

∫
M

f(g′z)dµ(g′)dν(z)

replacing y by g′(x). This proves (a). �

Lemma 1.20. Suppose (M,ν) is a compact G-space. For P-a.e. ω = (ω1, ω2, . . . , ωn, . . .) ∈
Ω = GN of the right µ random walk, then ∃ a limit measure νω on M such that νω =
limn→∞ ω1ω2 · · ·ωnν.

Proof. P
νω(φ) , φ  fφ : G → R, h : G → R, h̃ = limn→∞ h(ω1 · · ·ωn) is defined for P-a.e. ω.

Set νω(φ) = f̃φ(ω). �

We expect that νω will be a point measure (this occurs P-a.e).

Definition 1.21. A compact (G,µ)-space (M,ν) is a compact (G,µ)-boundary if νω is
a Dirac measure for P-a.e. ω ∈ Ω.
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We get a map ∂ : (Ω,P)→ (M,ν) given by ω 7→ the support of νω.
Sometimes one wants a meas. definition

Definition 1.22. An abstract (G,µ)-space (M,ν) is a (G,µ)-boundary if the transform
φ 7→ fφ satisfies f̃φψ = f̃φf̃ψ,∀φ, ψ ∈ L∞(M,ν) and P-a.e. ω.

Notes:
(1) Let M = S1 with Lebesgue measure ν. φ ∈ L∞(S1, ν)  fφ harmonic (from the

Fustenberg theorem) and φ  (via Poisson integral) a harmonic function of the
disk.

(2) Suppose (M,ν) is a boundary. Then we get a map L∞(M,ν) → H∞(G,µ) by
φ 7→ fφ. Respectively, we get a map: C(M) → H∞luc(G,µ), where (C)(M) =
continuous functions on M . These are both isometric embeddings.
For show that these are isometric, use the following. φ(p), δp = νω same ω and
limn→∞ fφ(ω1 · · ·ωn) = f̃φ(ω) = φ(p).

Lecture 25. November 6, 2009

A fun aside: superquick proof that Γ = π1(compact surface) = π1(Hn/Γ), where Γ is an
n-dimensional hyperspace. Γ acts S1, Lebesgue. This action is ergodic more generally same
for Hn/Γ. Γ acts on Sn−1 Lebesgue. Proof: Suppose Γ is not ergodic on S1. Let f be a
Γ-invariant function. f invariant function  H∞(H2,R-metric) via a Poisson integral, so
f 7→ F which is Γ invariant and F ∗ : H2/Γ→ R is harmonic. We can bring F ∗ back up to
a Γ-invariant function, so it must be constant (use Fustenberg).

Construction of the Poisson Boundary: (Fustenberg)
Recall: (X, ν) boundary  (X∗, ν∗) is a boundary.

L∞(X∗, ν∗) ⊂ - L∞(X, ν) ⊂
isometry- H∞(G,µ)

Definition 1.23. (W, ν) is a Poisson boundary if it is a maximal (G,µ)-boundary.

Idea for construction: Look for a maximal suitable subspace of H∞(G,µ).

A = {f ∈ Bluc(G) | ∀g ∈ G and for P− a.e. Ω � GN,∃f̃(g, ω) = lim
n→∞

f(gω1ω2 · · ·ωn)}

A with +, · is a commutative Banach algebra (in fact C∗-algebra).

Z = {f ∈ A | f(g, ω) = 0,∀g ∈ G, a.e. ω ∈ Ω}

A/Z is a commutative Banach algebra.

Theorem 1.24 (Gelfand,Naimark). A C∗-algebra, B = C(X) = {continuous functions on
X}, where X is a compact space.

Idea:
X = {maximal ideals in B} = {α : B → R, α respects +, ·}

So α(b1b2) = α(b1)α(b2), α(1) = 1. Endow Xwith the weak topology.
B = Gelfand dual of A/Z and A/Z = C(B). Get an action of G on B. (G,µ) (B, ?): for

A 3 f Lg-
∫

Ω
f(g, ω)dP(ω). Lg|Z = 0  Lg induces a functional on A/Z, i.e. a measure

νg on B. Check:
(1) νg = g∗ν1

(2) ν1 is µ-stationary
(3) (B, ν1) is a (G,µ)-boundary

Claim: A = Z ⊕H∞(G,µ) (i.e. A/Z = H∞(G,µ)). Then L∞(B, ν) ∼= H∞(G,µ).
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Proof of Claim. Check transversality of Z and H∞(G,µ). Suppose f ∈ Z ∩ H∞(G,µ).
Then f(g) =

∫
Ω
f(g, ω)dP(ω) = 0 since f ∈ Z and f ∈ H∞(G,µ) by assumption. Therefore

Z ∩H∞(G,µ) = {0}.
Check A = Z + H∞(G,µ). Let h ∈ A and denote φ ∈ C(B) which correpsonds to
h + Z. Let fφ ∈ H∞(G,µ) = harmonic functions we get by F ′ berg. Then fφ(ω) =
limn→0 fφ(ω1ω2 · · ·ωn)⇒ h− fφ ∈ Z. �

Why is B maximal? Let B′ be another boundary.

C(B′) - H∞luc(G) - C(B and B′ � B

Problem: Can we identify Poisson boundaries in particular situations?
(A): G is a Lie group and µ an admissable measure
(B): M is a compact Riemannian manifold with negative sectional curvature, Γ =
π1(M). Γ Gromov hyperbolic.

(C): Moduli group
(D): Γ amenable group ?

Γ = π1(compact surface)
Exhibit A: (S1,Leb.) = P 1∂.

PSL(2,R) = IsomH2 = SL(2,R)/{±I}

SL(2,R), z 7→ az+b
cz+d so 0 7→ b

d = 0⇒ b = 0. So P =
(
∗ 0
∗ ∗

)
and S1 = SL(2,R)/P .

Lecture 26. November 9, 2009

Remark 1.25. Let G be a group, (G,µ) admissible and G acts on X. Stationary probability
measures ν such that µ ∗ ν = ν:

(1) stationary measures always exist
(2) {ν | µ stationary } is convex and weakly-closed, thus has extreme points
(3) correspondence to shift invariant measure

C ⊂ B∗ is weakly-closed and convex.

Ex(C) = extreme points of C = {c ∈ C | c is not a convex combination of points in C}
For c ∈ C, c =

∫
e∈Ex(C)

edλ(e) (ergodic decomposition)

Example 1.26. G-action on X, C = {G-invariant probability measure}, Ex(C) = ergodic
invariant probability measure.

(Ω,P) =)GN, µN), θ : Ω→ Ω, (θω)i = ωi+1. X-G space,

T ; Ω×X → Ω×X is given by T (ω, x) = (θω, ω1x)

Proposition 1.27.
(a): P× ν is T -invariant ⇔ ν is µ-stationary
(b): P× ν is T -ergodic ⇔ ν is an extremal µ-stationary measure

Proof. Easy. Just calculate. �

Theorem 1.28 (Fustenberg). Let M be a compact metric G-space and µ an admissible
measure on G. Then the G-action on the space P(M) = {probability measures on M}
contains a (G,µ) boundary.

Why bother?

Corollary 1.29. Let B be the Poisson boundary of G. Then ∃ a G-equivariant map B →
P(M).
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Proof. By universailty of B and the theorem. �

More (but vague) motivation: The Poisson boundary of SL(n,R) is B =SL(n.R)/
(
∗ ∗
0 ∗

)
=

the flag variety. In fact, B is also a Poisson boundary for SL(n,Z).

Γ = SL(n,Z)
r- hoSL(M,R), thus Γ acts on SL(M,R)/

(
∗ ∗
0 ∗

)
.

Theorem 1.30 (Super-rigidity, Margulis). For n ≥ 3,

SL(n,R)

Γ = SL(n,Z)

⊂

∪

6

ρ- SL(M,R)

................................-

If ρ(Γ) is not compact.

Proof of Fustenberg Theorem. Let V = P(M) and V ⊂ - P(V ) given by v 7→ δv. We also
have a map bary: P(V ) → V barycenter map given by extending continuously the map∑
i piδvi 7→

∑
i pivi to P(V ). In particular, P(V ) 3 α =

∫
v∈V dβ(δv) 7→

∫
v∈V dβ(v), for

some probability measure β. Let ν be a µ-stationary measure on M .

Lemma 1.31. There is a decomposition: ν =
∫
ω∈Ω

νωdP(ω).

Proof. Recall that νω(φ) = f̃φ = limn→∞ fφ(ω1 · · ·ωn).∫
ω∈Ω

νωdP(ω) =
∫
ω∈Ω

lim
n→∞

fφ(ω1 · · ·ωn)dP(ω)

= lim
n→∞

∫
ω∈Ω

∫
x∈M

φ(ω1 · · ·ωnx)dν(x)dP(ω)

= lim
n→∞

∫
ω∈Ω

∫
x∈M

φ(ω1 · · ·ωnx)dν(x)dµ(ω1) · · · dµ(ωn)

= lim
n→∞

∫
M

φ(x)dν(x)

Using boundedness and Fatou, we can bring the limit outside of the integral. The last
equality follows since ν is µ-stationary. �

Assume the lemma is true. Define ν̃ ∈ P(V ) as:

ṽ =
∫
ω∈Ω

δνωdP

bary(ν̃) = ν and ν̃ is µ-stationary on V . For P-almost every ω ∈ Ω,

bary(ω1 · · ·ωnṽ) = ω1 · · ·ωnbary(ν̃) = ω1 · · ·ωnν
n→∞
- νω

So ω1 · · ·ωnṽ → δνω . Hence Suppṽ ⊂ V = P(M) is a G-µ-boundary. �

Lecture 27. November 11, 2009

Main Problem: How to determine the Poisson boundary
References: Fustenberg’s paper Annals 1963, Glasner’s Proximal Flows (free online on
Springer)
Boundary (G,µ)-space (M,ν). Characteristic feature: for P-almost every ω ∈ Ω, ω1 · · ·ωnν →
δm, some m ∈M .
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Topological Category:
Let G be a group and X a G-space (i.e. G acts on X by homeomorphisms).

Definition 1.32. X is proximal if ∀x, y ∈ X,∃ a sequence (gn) ∈ G such that gnx, gny
are arbitrarily close (i.e. limn→∞ gnx = limn→∞ gny).

Definition 1.33. X is strongly proximal if the action of G on the space of probability
measures P(X) is proximal (i.e. given two probability measures ν1, ν2,∃gn such that gnνi →
ν).

Examples:

(1): Isometric actions do not lead to proximal spaces.

(2):
(

2 1
1 1

)
on T 2 has periodic points so it is not proximal.

(3): PSL(2,R) on S1 is proximal and strongly proximal.

(3’):
(
∗ ∗
0 ∗

)
on S1,

(
a 0
0 1

a

)
is almost proximal but it has two fixed points so it is

not proximal.

(3”):
(
∗ ∗
0 ∗

)
on S1 (viewing S1 as R ∪ {∞}) is strongly proximal.

(3”’):
(

1 ∗
0 ∗

)
on S1 is proximal and strongly proximal, but not minimal since ∞ is

a fixed point.

Definition 1.34. G acts on a topological space X is minimal if all G-orbits are dense.

Proximal G-space X, Y a G-space and π : X → Y with π(gx) = gπ(x), then Y is proximal.

Theorem 1.35 (Abstract Nonsense 1). There exists a minimal proximal G-space.

Proof. See Glasner. �

Theorem 1.36 (Abstract Nonsense 2). There exists a minimal strongly proximal G-space.

Call the minimial strongly proximal G space: πS(G) or B.-Fustenberg boundary.
Connection to Poisson Boundaries:
(G,µ) with µ admissible and (B, ν) a Poisson boundary.
Claim: There is always a map (B, ν)→ πS(G).
πS(G) is nice in part because it does not depend on µ.

Remark 1.37. G ammenable ⇒ ∃G-invariant probability measure ν on πS(G) = X. Pick
p ∈ X. There exists gn ∈ G such that µ = (gn∗)µ → λ and (gn∗)δp = δgnp → λ. For some
q ∈ X,µ = δq. So πS(G) =point.

Lecture 28. November 13, 2009

Theorem 1.38. Suppose (G,µ) with µ admissible and X a minimal strongly proximal G-
space, then there is a map Poisson Boundary

π- X.

Idea of Proof. Poisson boundary
π- P((X). Let ν be a measure on the poisson bound-

ary.
Claim: π∗(ν) is a Dirac ∂
∃gn ∈ G such that gn(π∗ν)→ δp, p ∈ X.
Claim: π∗(Poisson boundary) is minimal
Poisson boundary compact space. π∗(Poisson boundary) is compact⇒ π∗(Poisson boundary(∩
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Dirac measure 6= ∅. Show that every point in the Poisson boundary maps to a Dirac measure.
Poisson Boundary - X

P((X)

g 7→ δg

?

π

-

�

Fustenberg Boundary of SL(n,R):
(1) G amenable ⇒ πS ∗G(= {point}
(2) G ⊃ S cocompact space, G/S compact

Example 1.39 (Example of (2)). Let G =SL(n,R) and S =
(
∗ ∗
0 ∗

)
.

G acts on Rn. Let e1, . . . , en be the standard basis for Rn.

Re1 ⊂ Re1 ⊕ Re2 ⊂ · · · ⊂ Re1 ⊕ Re2 ⊕ · · · ⊕ Ren−1 ⊂ Rn

is a full flag (increasing sequence of subspaces in Rn).

Examples:
(a): Flag with only one subspace, only dimension k  Gxk = {k-dimensional subspace

of Rn}
(b): Gx1 = RPn−1

(c): SL(2,R)/S = RP1 = S1

Given 2 full flags: 0 ( V1 ( V2 ( · · · ( Vn−1 ( Rn and 0 ( W1 ( W2 ( · · · ( Wn−1 ( Rn,
∃g ∈SL(n,R) such that gVi = Wi.

Corollary 1.40. G/S = {full flags in Rn} = F .

Theorem 1.41. The Fustenberg boundary for SL(n,R) = G/S = {full flags}.

Proposition 1.42. Let G (be general) and S ⊂ G cocompact. If X is a strongly proximal
G-space, then the restriction of the actiion to S is still strongly proximal.

µi  gnµi, i ∈ {1, 2}. Write gn = knsn, where we pick kn ⊂ C and C ⊂ G is compact. We
can do this since G/S is compact. Then snµi

ν- k−1
n ν 7→ ν.

Lemma 1.43. If X is a minimal strongly proximal G-space, then X ⊂ - P (X) given by
p 7→ δp and X ⊂ P((X) is the unique minimal set in P(X).

πS(G), S fixes a probability measure µ on πS(G) and S is strongly proximal on πS(G) ⇒
∃sn ∈ S such that µ = (sn)∗µ → Dirac measure ⇒ µ =Dirac= δp for some p ⇒ S fixes aa
point on πS(G).
p, q ∈ πS(G) ⇒ ∃gn ∈ G such that gnp → q. As before, gn = knsn where k ∈ C compact
and sn ∈ S with kn → k ∈ G. Then gnp = knsnp = knp → kp and gnp → q so q = kp.
Therefore πS(G) = G/H,H closed and G ⊃ S. Claim: H = S. G/S → G/H.

Lemma 1.44. G acts strongly proximally on G/S.

Lecture 29. November 20, 2009

Theorem 1.45. Let f be a bounded continuous function on G/K and f̃ its lift to G (i.e.

G
ef- G/K

f- R). TFAE:

a: ∃φ ∈ L∞(Furstenberg boundary,m) such that f̃(g) =
∫
B
φ(gx)dm(x)
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b: f̃ is µ harmonic for every spherical measure µ on G (i.e. µ is K bi-invariant)
c: f̃(g) =

∫
K
f̃(gkg′)dk, ∀g, g′

Furstenberg’s most crucial theorem:

Theorem 1.46. µ absolutely continuous measure on G. f(g) is a bounded µ-harmonic
function on G such that f(gk) = f(g),∀k ∈ K, g ∈ G. Then f is constant.

Need to average on the other side of where you mod out by K. Note that f is µ-harmonic
means f(g) =

∫
G
f(g′g)dµ(g′). Really f here is a lift of a function of D ≡ G/K. Reformu-

lation of the same theorem:

Theorem 1.47. f : D → R is a bounded µ-harmonic, µ absolutely continuous meaure on
G (i.e. f(p) =

∫
f(g′p)dµ(g′)). Then f is constant.

Corollary 1.48. If g : G→ R is a µ-harmonic function for some spherical measure the it
is right K-invariant.

Corollary 1.49. If f is a continuous bounded µ-harmonic function for some spherical
measure µ, then f is harmonic.

Proof. Fix g ∈ G. Set F (g′) =
∫∫
K
f̃(g′kg)dk. Then F (g′) is µ-harmonic.∫

G

F (g′′g′)dµ(g′′) =
∫
G

∫
K

f̃(g′′g′kg)dkdµ(g′′)

=
∫
K

∫
G

f̃(g′′g′kg)dµ(g′′)dk

=
∫
K

∫
G

f̃(g′kg)dk

= F (g′)

Therefore F is constant (by Furstenburg). Let g = 1. F (g) =
∫
K
f̃(g′k)dk = f̃(g′) by

K-invariance. Then f̃ is constant since F is constant. �

Corollary 1.50. Let µ be an absolutely continuous measure on G. Let (Poiss, ν) be its
Poisson boundary. Then K acts transitively on Poiss.

Since Poiss = G/H,H ⊂ P → G/P =Furstenburg boundary.

Proof. Suppose K is not transitive on Poiss. Then ∃K-invariant closed, disjoint subsets
P1, P2 ⊂ Poiss. Use crucially that K is compact (for instance use Poiss/K is Hausdorff
and two disjoint points in it lead to two different orbits). Let φ be a continuous function
on Poiss such that φP1 = 1 and φP2 = 0. Consider ψ(x) ≡

∫
K
φ(kx)dk. ψ is continuous,

K-invariant, and non-constant on Poiss. Set f(g) ≡
∫
Poiss ψ(gx)dν(x). f is µ-harmonic.

Then f(kg) =∈ ψ(kgx)dν(x) ⇒ f(g) =
∫
ψ(gx)dν(x) (note this is opposite from the 2nd

theorem in this lecture). f 6= constant, which contradicts Furstenburg. �

Corollary 1.51. If µ is absolutely continuous, then the Poisson boundary for µ is a finite
cover of the Furtstenburg boundary.

Corollary 1.52. Let µ is absolutey continuous and µn ≡ µ ∗ · · · ∗ µ. Suppose supp(µn) ⊃
neighborhood 1. Then Poisson boundary for µ = G.P =Furstenburg.

A little measure theory:
Let ν1, ν2 be two measures and ν = ν1 + ν2. Then ν is a measure and ν1, ν2 are absolutely

continuous with respect to their sum ν. Define ν1 ∧ ν2 by d(ν1∧dν2)
dν = min

(
dν1
dν ,

dν2
dν

)
.

Step 1:
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Lemma 1.53. Given c > 0,∃ε > 0 and n ∈ N such that if p1, p2 ∈ D with d(p1, p2) < c,
then (µn ∗ δp1) ∧ (µn ∗ δp2))(D) > ε.


