Symplectic 4–manifolds with $\kappa = 0$

Stefano Vidussi (joint w. Stefan Friedl)

Seminar Talk
Florida State University
October 24, 2008
A smooth, closed 4–manifold M endowed with a 2–form $\omega \in \Omega^2 M$ is called *symplectic* when ω satisfies

$$d\omega = 0, \quad \omega \wedge \omega > 0.$$
A smooth, closed 4–manifold M endowed with a 2–form $\omega \in \Omega^2 M$ is called *symplectic* when ω satisfies

$$d\omega = 0, \quad \omega \wedge \omega > 0.$$

Canonical examples: Kähler surfaces, highly “non–generic”.
A smooth, closed 4–manifold M endowed with a 2–form $\omega \in \Omega^2 M$ is called **symplectic** when ω satisfies

\[d\omega = 0, \quad \omega \wedge \omega > 0. \]

Canonical examples: Kähler surfaces, highly “non–generic”.

If M is symplectic, it admits an almost complex structure $J \in \text{End}(TM)$.

Stefano Vidussi (joint w. Stefan Friedl) Symplectic 4–manifolds with $\kappa = 0$
A smooth, closed 4–manifold M endowed with a 2–form $\omega \in \Omega^2 M$ is called \textit{symplectic} when ω satisfies

$$d\omega = 0, \quad \omega \wedge \omega > 0.$$

Canonical examples: Kähler surfaces, highly “non–generic”.

If M is symplectic, it admits an almost complex structure $J \in \text{End}(TM)$.

\textbf{Definition:} $\kappa := c_1(J) \in H^2(M, \mathbb{Z})$.
Symplectic 4–manifolds with $\kappa = 0$

Goal: Classify symplectic 4–manifolds with $\kappa = 0$.
Goal: Classify symplectic 4–manifolds with $\kappa = 0$.

Examples of 4–manifolds with $\kappa = 0$:
Goal: Classify symplectic 4–manifolds with $\kappa = 0$.

Examples of 4–manifolds with $\kappa = 0$:

1. *K3 surface* (Kähler);
Goal: Classify symplectic 4–manifolds with $\kappa = 0$.

Examples of 4–manifolds with $\kappa = 0$:

1. $K3$ surface (Kähler);
2. T^4 (Kähler)
Goal: Classify symplectic 4–manifolds with $\kappa = 0$.

Examples of 4–manifolds with $\kappa = 0$:

1. $K3$ surface (Kähler);
2. T^4 (Kähler)
3. T^2–bundles over T^2 (some Kähler, some not, e.g. Kodaira-Thurston manifold).
Goal: Classify symplectic 4–manifolds with $\kappa = 0$.

Examples of 4–manifolds with $\kappa = 0$:
1. $K3$ surface (Kähler);
2. T^4 (Kähler)
3. T^2–bundles over T^2 (some Kähler, some not, e.g. Kodaira-Thurston manifold).

Question: Are these the only examples?
Symplectic 4–manifolds with $\kappa = 0$

Potential new constructions:
Symplectic 4–manifolds with $\kappa = 0$

Potential new constructions:

1. **Symplectic fiber sum**: most likely fails (M. Usher)
Symplectic 4–manifolds with $\kappa = 0$

Potential new constructions:

1. **Symplectic fiber sum**: most likely fails (M. Usher)
2. **Dimensional reduction**:
 - 2.1 Knot surgery construction of K_3
 - 2.2 S^1–bundles over N_3.
Symplectic 4–manifolds with $\kappa = 0$

Potential new constructions:

1. Symplectic fiber sum: most likely fails (M. Usher)
2. Dimensional reduction:
 2.1 Knot surgery construction of $K3_K$;
Symplectic 4–manifolds with $\kappa = 0$

Potential new constructions:

1. Symplectic fiber sum: most likely fails (M. Usher)
2. Dimensional reduction:
 2.1 Knot surgery construction of $K3_K$;
 2.2 S^1–bundles over N^3.

Stefano Vidussi (joint w. Stefan Friedl)
Potential new constructions:

1. **Symplectic fiber sum**: most likely fails (M. Usher)
2. **Dimensional reduction**:
 1. Knot surgery construction of $K3_K$;
 2. S^1–bundles over N^3.

It is possible to construct several manifolds, using 2., whose Seiberg–Witten invariants are compatible with the condition $\kappa = 0$.
Main result

Our main result is that, when it comes to 2.2., none of these examples is new:

\[\text{Theorem: If } p: M \to N \text{ is symplectic, } \kappa = 0, \text{ then } M \text{ is a } T^2\text{–bundle over } T^2.\]

(Actually covers all symplectic manifolds \(M\) with \(\text{Kod}(M) = 0\).)

The theorem above is related with (and partially answers to) Conjecture: If \(M \to N\) is symplectic, then \(N\) fibers over the circle with a fiber \(\Sigma\) satisfying \(<e(M), [\Sigma]> = 0\).

Well–known (McCarthy) (using geometrization): \(N\) prime.

To simplify presentation: \(b_1(N) > 1\).

Two cases to consider: \(e(M) \in H^2(N, \mathbb{Z})\) torsion or not torsion.
Our main result is that, when it comes to 2.2., none of these examples is new:

Theorem: If $p : M \xrightarrow{S^1} N$ is symplectic, $\kappa = 0$, M is a T^2–bundle over T^2.
Our main result is that, when it comes to 2.2., none of these examples is new:

Theorem: If $p : M \xrightarrow{S^1} N$ is symplectic, $\kappa = 0$, M is a T^2–bundle over T^2.

(Actually covers all symplectic manifolds M with $\text{Kod}(M) = 0$.)
Our main result is that, when it comes to \textbf{2.2.}, none of these examples is new:

Theorem: If $p : M \xrightarrow{S^1} N$ is symplectic, $\kappa = 0$, M is a T^2–bundle over T^2.

(Actually covers all symplectic manifolds M with $\text{Kod}(M) = 0$.)

The theorem above is related with (and partially answers to)

Conjecture: If $M \xrightarrow{S^1} N$ is symplectic, then N fibers over the circle with a fiber Σ satisfying $< e(M), [\Sigma] > = 0$.

Stefano Vidussi (joint w. Stefan Friedl)
Main result

Our main result is that, when it comes to 2.2., none of these examples is new:

Theorem: If $p : M \xrightarrow{S^1} N$ is symplectic, $\kappa = 0$, M is a T^2–bundle over T^2.

(Actually covers all symplectic manifolds M with Kod$(M) = 0$.)

The theorem above is related with (and partially answers to)

Conjecture: If $M \xrightarrow{S^1} N$ is symplectic, then N fibers over the circle with a fiber Σ satisfying $\langle e(M), [\Sigma] \rangle \geq 0$.

To simplify presentation: $b_1(N) > 1$.

Stefano Vidussi (joint w. Stefan Friedl) Symplectic 4–manifolds with $\kappa = 0$
Our main result is that, when it comes to 2.2., none of these examples is new:

Theorem: If $p : M \xrightarrow{S^1} N$ is symplectic, $\kappa = 0$, M is a T^2–bundle over T^2.

(Actually covers all symplectic manifolds M with $\text{Kod}(M) = 0$.)

The theorem above is related with (and partially answers to)

Conjecture: If $M \xrightarrow{S^1} N$ is symplectic, then N fibers over the circle with a fiber Σ satisfying $\langle e(M), [\Sigma] \rangle \geq 0$.

To simplify presentation: $b_1(N) > 1$.

Two cases to consider: $e(M) \in H^2(N, \mathbb{Z})$ torsion or not torsion.
The case where $e(M)$ is torsion

Lemma: Let $M = S^1 \times N$; M admits a symplectic form with $\kappa = 0 \iff N$ has vanishing Thurston norm.
The case where $e(M)$ is torsion

Lemma: Let $M = S^1 \times N$; M admits a symplectic form with $\kappa = 0 \iff N$ has vanishing Thurston norm.

Proof: \(\implies\) wlog, we can assume that $[\omega] \in H^2(M, \mathbb{Z})$ and $H := PD[\omega]$ is represented by a symplectic surface (Donaldson), hence

$$\chi_-(H) = H \cdot H + \kappa \cdot H = H \cdot H.$$
The case where $e(M)$ is torsion

Lemma: Let $M = S^1 \times N$; M admits a symplectic form with $\kappa = 0 \iff N$ has vanishing Thurston norm.

Proof: \implies wlog, we can assume that $[\omega] \in H^2(M, \mathbb{Z})$ and $H := PD[\omega]$ is represented by a symplectic surface (Donaldson), hence

$$\chi_-(H) = H \cdot H + \kappa \cdot H = H \cdot H.$$

Write $\phi = p_*[\omega] \in H^1(N, \mathbb{Z})$: by Kronheimer’s refined adjunction,

$$\chi_-(H) \geq H \cdot H + \|\phi\|_T$$

hence $\|\phi\|_T = 0$; wiggle ω to get vanishing Thurston norm on N.

Stefano Vidussi (joint w. Stefan Friedl)

Symplectic 4–manifolds with $\kappa = 0$
The case where $e(M)$ is torsion

Lemma: Let $M = S^1 \times N$; M admits a symplectic form with $\kappa = 0 \iff N$ has vanishing Thurston norm.

Proof: \Rightarrow wlog, we can assume that $[\omega] \in H^2(M, \mathbb{Z})$ and $H := PD[\omega]$ is represented by a symplectic surface (Donaldson), hence

$$\chi_-(H) = H \cdot H + \kappa \cdot H = H \cdot H.$$

Write $\phi = p_*[\omega] \in H^1(N, \mathbb{Z})$: by Kronheimer’s refined adjunction,

$$\chi_-(H) \geq H \cdot H + \|\phi\|_T$$

hence $\|\phi\|_T = 0$; wiggle ω to get vanishing Thurston norm on N.

\Leftarrow $SW_{S^1 \times N} \ "=\ " \Delta_N$ and $\kappa \in \text{supp } SW_{S^1 \times N}$, hence

$$0 \leq \kappa \cdot \phi \leq \|\phi\|_A \leq \|\phi\|_T = 0 \implies \kappa = 0.$$
The case where $e(M)$ is torsion

Theorem: If $S^1 \times N$ is symplectic and N has vanishing Thurston norm, then N is a T^2–bundle over S^1, hence $S^1 \times N$ is a T^2–bundle over T^2.
The case where $e(M)$ is torsion

Theorem: If $S^1 \times N$ is symplectic and N has vanishing Thurston norm, then N is a T^2–bundle over S^1, hence $S^1 \times N$ is a T^2–bundle over T^2.

Proof: We can assume that $\phi = p_*[\omega]$ is primitive. Let $\Sigma \in PD[\phi]$ connected, Thurston norm minimizing (a torus).
The case where $e(M)$ is torsion

Theorem: If $S^1 \times N$ is symplectic and N has vanishing Thurston norm, then N is a T^2–bundle over S^1, hence $S^1 \times N$ is a T^2–bundle over T^2.

Proof: We can assume that $\phi = p_*[\omega]$ is primitive. Let $\Sigma \in PD[\phi]$ connected, Thurston norm minimizing (a torus). Denote $\pi = \pi_1(N)$, $A = \pi_1(\Sigma)$, $B = \pi_1(N \setminus \nu \Sigma)$; it is well known that $A \subset B \subset \pi$. By Stallings, we need to show that $A = B$.

Stefano Vidussi (joint w. Stefan Friedl) Symplectic 4–manifolds with $\kappa = 0$
The case where \(e(M) \) is torsion

Theorem: If \(S^1 \times N \) is symplectic and \(N \) has vanishing Thurston norm, then \(N \) is a \(T^2 \)--bundle over \(S^1 \), hence \(S^1 \times N \) is a \(T^2 \)--bundle over \(T^2 \).

Proof: We can assume that \(\phi = p_*[\omega] \) is primitive. Let \(\Sigma \in PD[\phi] \) connected, Thurston norm minimizing (a torus). Denote \(\pi = \pi_1(N) \), \(A = \pi_1(\Sigma) \), \(B = \pi_1(N \setminus \nu \Sigma) \); it is well known that \(A \subset B \subset \pi \). By Stallings, we need to show that \(A = B \).

Let \(\alpha : \pi \to G \) be an epimorphism onto a finite group, \(N_G \stackrel{G}{\to} N \) the regular \(G \)--cover; if \(S^1 \times N \) is symplectic, \(\kappa = 0 \), then \(S^1 \times N_G \) is symplectic, \(\kappa_G = 0 \).
The case where $e(M)$ is torsion

The condition that $\kappa_G = 0$, together with Taubes’ “more constraints” implies that $SW_{S^1 \times N_G} = 1$, hence the twisted Alexander polynomial Δ^α_N associated to the representation $\alpha : \pi \to G$ satisfies $\Delta^\alpha_N = 1$.
The case where $e(M)$ is torsion

The condition that $\kappa_G = 0$, together with Taubes’ “more constraints” implies that $SW_{S^1 \times N_G} = 1$, hence the twisted Alexander polynomial Δ^α_N associated to the representation $\alpha : \pi \to G$ satisfies $\Delta^\alpha_N = 1$.

It follows: $\forall \alpha : \pi \to G$, $\Delta^\alpha_{N,\phi} = \text{ord}_{\mathbb{Z}[t^{\pm 1}]} H_1(\pi; \mathbb{Z}[G][t^{\pm 1}]) \neq 0$.

Stefano Vidussi (joint w. Stefan Friedl) Symplectic 4–manifolds with $\kappa = 0$
The case where \(e(M) \) is torsion

The condition that \(\kappa_G = 0 \), together with Taubes’ “more constraints” implies that \(\text{SW}_{S^1 \times N_G} = 1 \), hence the twisted Alexander polynomial \(\Delta^\alpha_N \) associated to the representation \(\alpha : \pi \rightarrow G \) satisfies \(\Delta^\alpha_N = 1 \).

It follows: \(\forall \alpha : \pi \rightarrow G, \quad \Delta^\alpha_{N,\phi} = \text{ord}_{\mathbb{Z}[t^{\pm 1}]} H_1(\pi; \mathbb{Z}[G][t^{\pm 1}]) \neq 0 \).

We have a Mayer-Vietoris type sequence for HNN extensions

\[
H_1(\pi; \mathbb{Z}[G][t^{\pm 1}]) \rightarrow H_0(A; \mathbb{Z}[G]) \otimes_{\mathbb{Z}} \mathbb{Z}[t^{\pm 1}] \rightarrow H_0(B; \mathbb{Z}[G]) \otimes_{\mathbb{Z}} \mathbb{Z}[t^{\pm 1}] \rightarrow H_0(\pi; \mathbb{Z}[G][t^{\pm 1}])
\]
The case where $e(M)$ is torsion

The condition that $\kappa_G = 0$, together with Taubes’ “more constraints” implies that $SW_{S^1 \times N_G} = 1$, hence the twisted Alexander polynomial Δ_{N}^α associated to the representation $\alpha : \pi \to G$ satisfies $\Delta_{N}^\alpha = 1$.

It follows: $\forall \alpha : \pi \to G$, $\Delta_{N,\phi}^{\alpha} = \text{ord}_{\mathbb{Z}[t^{\pm 1}]} H_1(\pi; \mathbb{Z}[G][t^{\pm 1}]) \neq 0$.

We have a Mayer-Vietoris type sequence for HNN extensions

$$H_1(\pi; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(A; \mathbb{Z}[G]) \otimes_{\mathbb{Z}} \mathbb{Z}[t^{\pm 1}] \to H_0(B; \mathbb{Z}[G]) \otimes_{\mathbb{Z}} \mathbb{Z}[t^{\pm 1}] \to H_0(\pi; \mathbb{Z}[G][t^{\pm 1}])$$

But $H_i(\pi; \mathbb{Z}[G][t^{\pm 1}])$ are $\mathbb{Z}[t^{\pm 1}]$–torsion, hence

$$\text{rk}_{\mathbb{Z}} H_0(A; \mathbb{Z}[G]) = \text{rk}_{\mathbb{Z}} H_0(B; \mathbb{Z}[G]) \iff |\text{Im}(A \to G)| = |\text{Im}(B \to G)|.$$
Now as $\Sigma = T^2$, $A \subset \pi$ is abelian, hence separable: if by contradiction $A \subsetneq B$, then there exist an epimorphism $\alpha : \pi \to G$ s.t. $|\text{Im}(A \to G)| < |\text{Im}(B \to G)|$.

Corollary: By going to a finite cover, we can easily obtain same result for nonzero torsion $e(M)$.

Stefano Vidussi (joint w. Stefan Friedl)
Symplectic 4–manifolds with $\kappa = 0$
The case where $e(M)$ is torsion

Now as $\Sigma = T^2$, $A \subset \pi$ is abelian, hence separable: if by contradiction $A \subsetneq B$, then there exist an epimorphism $\alpha : \pi \to G$ s.t. $|\text{Im}(A \to G)| < |\text{Im}(B \to G)|$.

Corollary: By going to a finite cover, we can easily obtain same result for nonzero torsion $e(M)$.
The case where $e(M)$ is not torsion

We assume now that $e(M)$ is not torsion.
The case where $e(M)$ is not torsion

We assume now that $e(M)$ is not torsion.

Problem: as above, if N has vanishing Thurston norm, then $\kappa = 0$, but we can’t decide \textit{a priori} if the converse holds: no (known) refined adjunction inequality.
The case where $e(M)$ is not torsion

We assume now that $e(M)$ is not torsion.

Problem: as above, if N has vanishing Thurston norm, then $\kappa = 0$, but we can’t decide \textit{a priori} if the converse holds: no (known) refined adjunction inequality.

Solution: use more algebra & topology!

Lemma: If $\kappa = 0$ then $v_b(N, F) \leq 3$.

Proof: let $M \to S^1$ be obvious S^1–bundle over N. As for all $\alpha: \pi \to G$, $\kappa_G \in H^2(M_G, \mathbb{Z})$ is the only basic class, $\text{aug} \Delta N = \text{aug} SW M_G = 1$.

But if $v_b(N, F) > 3$, $\exists \alpha: \pi \to G$ s.t. $\text{aug} \Delta N = 0(p)$ (Turaev).
The case where $e(M)$ is not torsion

We assume now that $e(M)$ is not torsion.

Problem: as above, if N has vanishing Thurston norm, then $\kappa = 0$, but we can’t decide \textit{a priori} if the converse holds: no (known) refined adjunction inequality.

Solution: use more algebra & topology!

\textbf{Lemma}: If $\kappa = 0$ then $\nu b_1(N, \mathbb{F}_p) \leq 3$.
The case where $e(M)$ is not torsion

We assume now that $e(M)$ is not torsion.

Problem: as above, if N has vanishing Thurston norm, then $\kappa = 0$, but we can’t decide a priori if the converse holds: no (known) refined adjunction inequality.

Solution: use more algebra & topology!

Lemma: If $\kappa = 0$ then $v_1(N, \mathbb{F}_p) \leq 3$.

Proof: let $M_G \xrightarrow{S^1} N_G$ be obvious S^1–bundle over N_G. As for all $\alpha : \pi \rightarrow G$, $\kappa_G \in H^2(M_G, \mathbb{Z})$ is the only basic class,

$$\text{aug } \Delta_{N}^{\alpha} = \text{aug } SW_{M_G} = 1.$$

But if $v_1(N, \mathbb{F}_p) > 3$, $\exists \alpha : \pi \rightarrow G$ s.t. $\text{aug } \Delta_{N}^{\alpha} = 0(p)$ (Turaev).
The case where $e(M)$ is not torsion

Theorem: If $p : M \xrightarrow{S^1} N$ is symplectic, $\kappa = 0$ then M is a T^2–bundle over T^2.

Proof: If N is a T^2–bundle over S^1, as $b_1(N) > 1$ it is also an S^1–bundle over T^2, hence the statement follows. Otherwise it satisfies one of the following:

1. N has a nontrivial JSJ decomposition;
2. N is Seifert-fibered with an incompressible T^2 that is not a fiber;
3. N is hyperbolic.
The case where $e(M)$ is not torsion

Theorem: If $p : M \xrightarrow{S^1} N$ is symplectic, $\kappa = 0$ then M is a T^2–bundle over T^2.

Proof: If N is a T^2–bundle over S^1, as $b_1(N) > 1$ it is also an S^1–bundle over T^2, hence the statement follows. Otherwise it satisfies one of the following:
The case where $e(M)$ is not torsion

Theorem: If $p : M \xrightarrow{S^1} N$ is symplectic, $\kappa = 0$ then M is a T^2–bundle over T^2.

Proof: If N is a T^2–bundle over S^1, as $b_1(N) > 1$ it is also an S^1–bundle over T^2, hence the statement follows. Otherwise it satisfies one of the following:

1. N has a nontrivial JSJ decomposition;
The case where $e(M)$ is not torsion

Theorem: If $p : M \xrightarrow{S^1} N$ is symplectic, $\kappa = 0$ then M is a T^2–bundle over T^2.

Proof: If N is a T^2–bundle over S^1, as $b_1(N) > 1$ it is also an S^1–bundle over T^2, hence the statement follows. Otherwise it satisfies one of the following:

1. N has a nontrivial JSJ decomposition;

2. N is Seifert-fibered with an incompressible T^2 that is not a fiber;
The case where $e(M)$ is not torsion

Theorem: If $p : M \xrightarrow{S^1} N$ is symplectic, $\kappa = 0$ then M is a T^2–bundle over T^2.

Proof: If N is a T^2–bundle over S^1, as $b_1(N) > 1$ it is also an S^1–bundle over T^2, hence the statement follows. Otherwise it satisfies one of the following:

1. N has a nontrivial JSJ decomposition;
2. N is Seifert-fibered with an incompressible T^2 that is not a fiber;
3. N is hyperbolic.
The case where $e(M)$ is not torsion

If 1. or 2. hold we have incompressible tori that are not fibers. Using abelian subgroup separability, we can show that $\nu b_1(N) = \infty$ (Kojima, Luecke).
The case where $e(M)$ is not torsion

If 1. or 2. hold we have incompressible tori that are not fibers. Using abelian subgroup separability, we can show that $vb_1(N) = \infty$ (Kojima, Luecke).

If 3. holds, π is f.g. linear group: by Lubotzky alternative, f.g. linear groups must be virtually solvable or $vb_1(N, \mathbb{F}_p) = \infty$; the first implies N covered by torus bundle, impossible.
New directions

Problem: Extend to other 4–manifolds.
New directions

Problem: Extend to other 4–manifolds.

Remarks:

1. It is known that if M symplectic with $\kappa = 0$, $\Rightarrow vb_1(M) \leq 4$ (T.J.Li, Bauer); not known if $vb_1(M, \mathbb{F}_p) \leq 4$;

2. Lubotzky alternative holds, but we don’t have JSJ; are linear groups “interesting enough”;

3. If M is hyperbolic, it has been conjectured that all SW invariants vanish.
New directions

Problem: Extend to other 4–manifolds.

Remarks:

1. It is known that if M symplectic with $\kappa = 0$, $\implies vb_1(M) \leq 4$ (T.J.Li, Bauer); not known if $vb_1(M, F_p) \leq 4$;

2. Lubotzky alternative holds, but we don’t have JSJ; are linear groups “interesting enough”?
New directions

Problem: Extend to other 4–manifolds.

Remarks:

1. It is known that if M symplectic with $\kappa = 0$, $\implies v_{b_{1}}(M) \leq 4$ (T.J.Li, Bauer); not known if $v_{b_{1}}(M, \mathbb{F}_{p}) \leq 4$;

2. Lubotzky alternative holds, but we don’t have JSJ; are linear groups “interesting enough”?

3. If M is hyperbolic, it has been conjectured that all SW invariants vanish.