Two constants appear throughout general relativity: the speed of light
and Newton's gravitational constant
. This should be no
surprise, since Einstein created general relativity to reconcile the
success of Newton's theory of gravity, based on instantaneous action at
a distance, with his new theory of special relativity, in which no
influence travels faster than light. The constant
also appears in
quantum field theory, but paired with a different partner: Planck's
constant
. The reason is that quantum field theory takes
into account special relativity and quantum theory, in which
sets the scale at which the uncertainty principle becomes important.
It is reasonable to suspect that any theory reconciling general
relativity and quantum theory will involve all three constants ,
,
and
. Planck noted that apart from numerical factors there
is a unique way to use these constants to define units of length, time,
and mass. For example, we can define the unit of length now
called the `Planck length' as follows:
For example, quantum field theory says that associated to any mass
there is a length called its Compton wavelength,
, such that
determining the position of a particle of mass
to within one Compton
wavelength requires enough energy to create another particle of that
mass. Particle creation is a quintessentially quantum-field-theoretic
phenomenon. Thus we may say that the Compton wavelength sets the
distance scale at which quantum field theory becomes crucial for
understanding the behavior of a particle of a given mass. On the other
hand, general relativity says that associated to any mass
there is a
length called the Schwarzschild radius,
, such that compressing
an object of mass
to a size smaller than this results in the
formation of a black hole. The Schwarzschild radius is roughly the
distance scale at which general relativity becomes crucial for
understanding the behavior of an object of a given mass. Now, ignoring
some numerical factors, we have
At least naively, we thus expect that both general relativity and
quantum field theory would be needed to understand the behavior of an
object whose mass is about the Planck mass and whose radius is about the
Planck length. This not only explains some of the importance of the
Planck scale, but also some of the difficulties in obtaining
experimental evidence about physics at this scale. Most of our
information about general relativity comes from observing heavy objects
like planets and stars, for which
. Most of our
information about quantum field theory comes from observing light
objects like electrons and protons, for which
. The
Planck mass is intermediate between these: about the mass of a largish
cell. But the Planck length is about
times
the radius of a proton! To study a situation where both general
relativity and quantum field theory are important, we could try to
compress a cell to a size
times that of a proton. We
know no reason why this is impossible in principle. But we have no idea
how to actually accomplish such a feat.
There are some well-known loopholes in the above argument. The
`unimportant numerical factor' I mentioned above might actually be very
large, or very small. A theory of quantum gravity might make testable
predictions of dimensionless quantities like the ratio of the muon and
electron masses. For that matter, a theory of quantum gravity might
involve physical constants other than ,
, and
. The
latter two alternatives are especially plausible if we study quantum
gravity as part of a larger theory describing other forces and
particles. However, even though we cannot prove that the Planck length
is significant for quantum gravity, I think we can glean some wisdom
from pondering the constants
and
-- and more
importantly, the physical insights that lead us to regard these
constants as important.
What is the importance of the constant ? In special relativity,
what matters is the appearance of this constant in the Minkowski
metric
In Newtonian gravity, is simply the strength of the gravitational
field. It takes on a deeper significance in general relativity, where
the gravitational field is described in terms of the curvature of the
spacetime metric. Unlike in special relativity, where the Minkowski
metric is a `background structure' given a priori, in general relativity
the metric is treated as a field which not only affects, but also is
affected by, the other fields present. In other words, the geometry of
spacetime becomes a local degree of freedom of the theory.
Quantitatively, the interaction of the metric and other fields is
described by Einstein's equation
The struggle to free ourselves from background structures began long before Einstein developed general relativity, and is still not complete. The conflict between Ptolemaic and Copernican cosmologies, the dispute between Newton and Leibniz concerning absolute and relative motion, and the modern arguments concerning the `problem of time' in quantum gravity -- all are but chapters in the story of this struggle. I do not have room to sketch this story here, nor even to make more precise the all-important notion of `geometrical structure'. I can only point the reader towards the literature, starting perhaps with the books by Barbour [9] and Earman [15], various papers by Rovelli [25,26,27], and the many references therein.
Finally, what of ? In quantum theory, this appears most
prominently in the commutation relation between the momentum
and
position
of a particle:
There is a widespread sense that the principles behind quantum theory
are poorly understood compared to those of general relativity. This has
led to many discussions about interpretational issues. However, I do
not think that quantum theory will lose its mystery through such
discussions. I believe the real challenge is to better understand why
the mathematical formalism of quantum theory is precisely what it is.
Research in quantum logic has done a wonderful job of understanding the
field of candidates from which the particular formalism we use has been
chosen. But what is so special about this particular choice?
Why, for example, do we use complex Hilbert spaces rather than real or
quaternionic ones? Is this decision made solely to fit the experimental
data, or is there a deeper reason? Since questions like this do not yet
have clear answers, I shall summarize the physical insight behind
by saying simply that a good theory of the physical universe
should be a quantum theory -- leaving open the possibility of
eventually saying something more illuminating.
Having attempted to extract the ideas lying behind the constants
and
, we are in a better position to understand the task of
constructing a theory of quantum gravity. General relativity
acknowledges the importance of
and
but idealizes reality by
treating
as negligibly small. From our discussion above, we see
that this is because general relativity is a background-free
classical theory with local degrees of freedom propagating causally.
On the other hand, quantum field theory as normally practiced
acknowledges
and
but treats
as negligible, because it is
a background-dependent quantum theory with local degrees of freedom
propagating causally.
The most conservative approach to quantum gravity is to seek a theory that combines the best features of general relativity and quantum field theory. To do this, we must try to find a background-free quantum theory with local degrees of freedom propagating causally. While this approach may not succeed, it is definitely worth pursuing. Given the lack of experimental evidence that would point us towards fundamentally new principles, we should do our best to understand the full implications of the principles we already have!
From my description of the goal one can perhaps see some of the difficulties. Since quantum gravity should be background-free, the geometrical structures defining the causal structure of spacetime should themselves be local degrees of freedom propagating causally. This much is already true in general relativity. But because quantum gravity should be a quantum theory, these degrees of freedom should be treated quantum-mechanically. So at the very least, we should develop a quantum theory of some sort of geometrical structure that can define a causal structure on spacetime.
String theory has not gone far in this direction. This theory is usually formulated with the help of a metric on spacetime, which is treated as a background structure rather than a local degree of freedom like the rest. Most string theorists recognize that this is an unsatisfactory situation, and by now many are struggling towards a background-free formulation of the theory. However, in the words of two experts [18], ``it seems that a still more radical departure from conventional ideas about space and time may be required in order to arrive at a truly background independent formulation.''
Loop quantum gravity has gone a long way towards developing a background-free quantum theory of the geometry of space [1,28], but not so far when it comes to spacetime. This has made it difficult to understand dynamics, and particular the causal propagation of degrees of freedom. Work in earnest on these issues has begun only recently. One reason for optimism is the recent success in understanding quantum gravity in 3 spacetime dimensions. But to explain this, I must first say a bit about topological quantum field theory.
© 1999 John Baez
baez@math.removethis.ucr.andthis.edu