Bibliography

1
J. F. Adams, Lectures on Exceptional Lie Groups, eds. Zafer Mahmoud and Mamoru Mimura, University of Chicago Press, Chicago, 1996.

2
M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (1964), 3-38.

3
John C. Baez and Javier P. Muniain, Gauge Fields, Knots and Gravity, World Scientific, Singapore, 1994.

4
Stefano Bertolini, Luca Di Luzio and Michal Malinsky, Intermediate mass scales in the non-supersymmetric SO(10) grand unification: a reappraisal, available as http://arxiv.org/abs/hep-ph/0903.4049 arXiv:0903.4049.

5
Lowell Brown, Quantum Field Theory, Cambridge U. Press, Cambridge, 1994.

6
Claude Chevalley, The Algebraic Theory of Spinors and Clifford Algebras, Springer, Berlin, 1996.

7
Benedict Cassen and Edward U. Condon, On Nuclear Forces, Phys. Rev. 50 (1936), 846, reprinted in D. M. Brink, Nuclear Forces, Pergamon, Oxford, 1965, pp. 193-201.

8
Robert P. Crease and Charles C. Mann, The Second Creation: Makers of the Revolution in Twentieth-Century Physics, Rutgers University Press, New Brunswick, New Jersey, 1996.

9
Andrzej Derdzinski, Geometry of the Standard Model of Elementary Particles, Springer, Berlin, 1992.

10
Howard Georgi, The state of the art--gauge theories, in Particles and Fields--1974, ed. Carl E. Carlson, AIP Conference Proceedings 23, 1975, pp. 575-582.

11
Howard Georgi, Lie Algebras In Particle Physics: from Isospin To Unified Theories, Westview Press, Boulder, Colorado, 1999.

12
Howard Georgi and Sheldon Glashow, Unity of all elementary-particle forces, Phys. Rev. Lett. 32(8) Feb 1974, 438-441.

13
David Griffiths, Introduction to Elementary Particles, Wiley, New York 1987.

14
Brian Hall, Lie Groups, Lie Algebras, and Representations, Springer, Berlin, 2003.

15
Werner Heisenberg, Zeitschr. f. Phys. 77 (1932), 1; English translation in D. M. Brink, Nuclear Forces, Pergamon, Oxford, 1965, pp. 144-154.

16
Laurie Brown, Max Dresden, Lillian Hoddeson and Michael Riordan, eds., The Rise of the Standard Model, Cambridge U. Press, Cambridge, 1997.

17
Kerson Huang, Quarks, Leptons & Gauge Fields, World Scientific, Singapore, 1992.

18
Chris Isham, Modern Differential Geometry for Physicists, World Scientific, Singapore, 1999.

19
T. D. Lee, Particle Physics and Introduction to Field Theory, Harwood, 1981.

20
Harry J. Lipkin, Lie Groups for Pedestrians, Dover, Mineola, New York, 2002.

21
R. N. Mohapatra, Unification and Supersymmetry: The Frontiers of Quark-Lepton Physics, Springer, 1992.

22
Gregory L. Naber, Topology, Geometry and Gauge Fields: Foundations, Springer, Berlin, 1997.

23
Gregory L. Naber, Topology, Geometry and Gauge Fields: Interactions, Springer, Berlin, 2000.

24
Mikio Nakahara, Geometry, Topology, and Physics, Academic Press, 1983.

25
Abraham Pais, Inward Bound: Of Matter and Forces in the Physical World, Oxford University Press, 1988.

26
Jogesh C. Pati, Proton decay: a must for theory, a challenge for experiment, available as http://arxiv.org/abs/hep-ph/0005095arXiv:hep-ph/0005095.

27
Jogesh C. Pati, Probing grand unification through neutrino oscillations, leptogenesis, and proton decay, Int. J. Mod. Phys. A 18 (2003), 4135-4156. Also available as http://arxiv.org/abs/hep-ph/0305221arXiv:hep-ph/0305221.

28
Jogesh C. Pati and Abdus Salam, Lepton number as the fourth ``color", Phys. Rev. D 10 (1974), 275-289.

29
Michael E. Peskin, Beyond the Standard Model, available as http://arxiv.org/abs/hep-ph/970549arXiv:hep-ph/970549.

30
Michael E. Peskin and Dan V. Schroeder, An Introduction to Quantum Field Theory, Westview Press, 1995.

31
Graham G. Ross, Grand Unified Theories, Benjamin/Cummings, 1985.

32
Lewis H. Ryder, Quantum Field Theory, Cambridge U. Press, Cambridge, 1996.

33
Emilio Segrè, From X-Rays to Quarks: Modern Physicists and Their Discoveries, W.H. Freeman, San Francisco, 1980.

34
Shlomo Sternberg, Group Theory and Physics, Cambridge U. Press, Cambridge, 1995.

35
Mark Srednicki, Quantum Field Theory, Cambridge U. Press, 2007. Also available at http://www.physics.ucsb.edu/$\sim$mark/qft.html http://www.physics.ucsb.edu/$\sim$mark/qft.html.

36
Anthony Sudbery, Quantum Mechanics and the Particles of Nature: an Outline for Mathematicians, Cambridge U. Press, Cambridge, 1986.

37
Robin Ticciati, Quantum Field Theory for Mathematicians, Cambridge U. Press, 1999.

38
Michael Tinkham, Group Theory and Quantum Mechanics, Dover, Mineola, New York, 2003.

39
Edward Witten, Grand unification with and without supersymmetry, in Introduction to supersymmetry in particle and nuclear physics, eds. O. Castanos, A. Frank, L. Urrutia, Plenum Press, 1984, pp. 53-76.

40
Anthony Zee, Quantum Field Theory in a Nutshell, Princeton U. Press, Princeton, 2003.



2010-01-11