-
- 1
-
J. F. Adams, Lectures on Exceptional Lie Groups, eds. Zafer Mahmoud
and Mamoru Mimura, University of Chicago Press, Chicago, 1996.
- 2
-
M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules,
Topology 3 (1964), 3-38.
- 3
-
John C. Baez and Javier P. Muniain, Gauge Fields, Knots and
Gravity, World Scientific, Singapore, 1994.
- 4
-
Stefano Bertolini, Luca Di Luzio and Michal Malinsky,
Intermediate mass scales in the non-supersymmetric SO(10) grand
unification: a reappraisal, available as
http://arxiv.org/abs/hep-ph/0903.4049
arXiv:0903.4049.
- 5
-
Lowell Brown, Quantum Field Theory, Cambridge U. Press, Cambridge,
1994.
- 6
- Claude Chevalley, The Algebraic Theory of
Spinors and Clifford Algebras, Springer, Berlin, 1996.
- 7
-
Benedict Cassen and Edward U. Condon, On Nuclear Forces,
Phys. Rev. 50 (1936), 846, reprinted in
D. M. Brink, Nuclear Forces, Pergamon, Oxford, 1965, pp. 193-201.
- 8
-
Robert P. Crease and Charles C. Mann, The Second Creation: Makers of
the Revolution in Twentieth-Century Physics, Rutgers University Press, New
Brunswick, New Jersey, 1996.
- 9
-
Andrzej Derdzinski, Geometry of the Standard Model of Elementary
Particles, Springer, Berlin, 1992.
- 10
-
Howard Georgi, The state of the art--gauge theories, in Particles and
Fields--1974, ed. Carl E. Carlson, AIP Conference Proceedings 23, 1975,
pp. 575-582.
- 11
-
Howard Georgi, Lie Algebras In Particle Physics: from
Isospin To Unified Theories, Westview Press, Boulder, Colorado, 1999.
- 12
-
Howard Georgi and Sheldon Glashow, Unity of all elementary-particle forces,
Phys. Rev. Lett. 32(8) Feb 1974, 438-441.
- 13
-
David Griffiths, Introduction to Elementary Particles, Wiley, New
York 1987.
- 14
-
Brian Hall, Lie Groups, Lie Algebras, and Representations,
Springer, Berlin, 2003.
- 15
- Werner Heisenberg, Zeitschr. f. Phys. 77 (1932), 1; English translation in D. M. Brink, Nuclear
Forces, Pergamon, Oxford, 1965, pp. 144-154.
- 16
- Laurie Brown, Max Dresden, Lillian Hoddeson and
Michael Riordan, eds., The Rise of the Standard Model,
Cambridge U. Press, Cambridge, 1997.
- 17
-
Kerson Huang, Quarks, Leptons & Gauge Fields, World Scientific,
Singapore, 1992.
- 18
-
Chris Isham, Modern Differential Geometry for Physicists,
World Scientific, Singapore, 1999.
- 19
-
T. D. Lee, Particle Physics and Introduction to Field Theory,
Harwood, 1981.
- 20
-
Harry J. Lipkin, Lie Groups for Pedestrians, Dover, Mineola,
New York, 2002.
- 21
-
R. N. Mohapatra, Unification and Supersymmetry: The Frontiers of
Quark-Lepton Physics, Springer, 1992.
- 22
-
Gregory L. Naber, Topology, Geometry and Gauge Fields: Foundations,
Springer, Berlin, 1997.
- 23
-
Gregory L. Naber, Topology, Geometry and Gauge Fields: Interactions,
Springer, Berlin, 2000.
- 24
-
Mikio Nakahara, Geometry, Topology, and Physics, Academic Press,
1983.
- 25
-
Abraham Pais, Inward Bound: Of Matter and Forces in the Physical World,
Oxford University Press, 1988.
- 26
-
Jogesh C. Pati, Proton decay: a must for theory, a challenge for experiment,
available as
http://arxiv.org/abs/hep-ph/0005095arXiv:hep-ph/0005095.
- 27
-
Jogesh C. Pati, Probing grand unification through neutrino oscillations,
leptogenesis, and proton decay, Int. J. Mod. Phys. A 18
(2003), 4135-4156. Also available as
http://arxiv.org/abs/hep-ph/0305221arXiv:hep-ph/0305221.
- 28
-
Jogesh C. Pati and Abdus Salam, Lepton number as the fourth ``color", Phys. Rev. D 10 (1974), 275-289.
- 29
-
Michael E. Peskin, Beyond the Standard Model, available as
http://arxiv.org/abs/hep-ph/970549arXiv:hep-ph/970549.
- 30
-
Michael E. Peskin and Dan V. Schroeder, An Introduction to Quantum
Field Theory, Westview Press, 1995.
- 31
-
Graham G. Ross, Grand Unified Theories, Benjamin/Cummings, 1985.
- 32
-
Lewis H. Ryder, Quantum Field Theory, Cambridge U. Press, Cambridge,
1996.
- 33
-
Emilio Segrè, From X-Rays to Quarks: Modern Physicists and Their
Discoveries, W.H. Freeman, San Francisco, 1980.
- 34
- Shlomo Sternberg, Group Theory and Physics,
Cambridge U. Press, Cambridge, 1995.
- 35
-
Mark Srednicki, Quantum Field Theory, Cambridge U. Press, 2007.
Also available at http://www.physics.ucsb.edu/mark/qft.html
http://www.physics.ucsb.edu/mark/qft.html.
- 36
-
Anthony Sudbery, Quantum Mechanics and the Particles of Nature:
an Outline for Mathematicians, Cambridge U. Press, Cambridge, 1986.
- 37
-
Robin Ticciati, Quantum Field Theory for Mathematicians, Cambridge U. Press, 1999.
- 38
-
Michael Tinkham, Group Theory and Quantum Mechanics,
Dover, Mineola, New York, 2003.
- 39
-
Edward Witten, Grand unification with and without supersymmetry, in Introduction to supersymmetry in particle and nuclear physics, eds. O.
Castanos, A. Frank, L. Urrutia, Plenum Press, 1984, pp. 53-76.
- 40
-
Anthony Zee, Quantum Field Theory in a Nutshell, Princeton U. Press,
Princeton, 2003.
2010-01-11