
1 Introduction

These notes are derived from the “Photons, Shmotons” thread that ran on sci.
physics.research in the summer of 1997. (Later corrected to “Photons, Schmo-
tons”.) As editor, I’ve wielded a pretty free hand, correcting minor errors, im-
posing a consistent set of conventions, rearranging the order and condensing the
discussion in places. On the other hand, I’ve kept some of the false starts and more
rough-hewn derivations, even when slicker approaches appear later. I’ve omitted
material that distracted from the main thrust of the argument (IMHO). Some of
the omitted material has a natural place in a sequel; watch those photons on s.p.r!

—Michael Weiss, editor

These notes are also available in HTML form: see
http://math.ucr.edu/home/baez/photon/schmoton.htm. The HTML ver-
sion just has worse typesetting.

There is also a second group of notes, available at the same website, but currently
only in postscript.

[Note: sections usually correspond to posts; the original author is given in the
title, but I’ve chosen the section titles. —ed.]

2 John Baez: Things that Really Really Exist

Michael Weiss wrote:

By the way, a mighty battle has been raging over on sci.physics over
whether Photons Really Exist.

I’ll join in as soon as I figure out the difference beween things that Exist and things
that Really Exist — not to mention those that Really Really Exist.

Throwing out 98.462% of this, I realize that I have but the vaguest
conception of the sense in which Photons Really Exist according to
QED. They can’t be localized (if I understand Haag’s comments about
the Newton-Wigner wavefunction), they don’t have identity — you
can’t say the photon absorbed by Nick Nitrogen over here is The
Same Photon as was emitted a nano ago by Harry Hydrogen over
there (do I have that right?) — a fine excuse for a particle!

If photons seem a bit dodgy, it’s because:
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1) They are bosons, so they are gregarious and like to travel in packs where you
can’t tell which one is to blame for anything.

2) They are massless, so it’s hard to tell where the hell they are, more so than for
your average particle.

Remember how a while back I showed how you could rewrite the Klein-Gordon
equation as a first-order differential equation, which boiled down to Schrödinger’s
equation in the nonrelativistic limit? You need to pull this trick to get a nice
“position operator” for a particle in relativistic quantum mechanics, analogous to
the good old position operator for nonrelativistic quantum mechanics. It’s called
“Newton-Wigner localization”. It doesn’t work well for massless particles —
which shouldn’t be utterly surprising, since is no such thing as a nonrelativistic
massless particle.

3) They carry no conserved charge, so it’s easy to create or destroy a bunch of the
rascals with the flick of a switch.

How unlike you and I, who Really Really Exist — at least according to ourselves!
We are made of charged massive fermions. The Pauli exclusion principle makes
us individualistic: we can’t both be in the same place at the same time. Our
massiveness makes us easier to localize, and we don’t have to be running around
at the speed of light all day. Finally, conservation of baryon and lepton number
makes it hard to create or destroy us — or at least our underlying atoms. We
naturally look with disdain on massless uncharged bosons.

3 Michael Weiss: A Trivial Exercise

Here’s what ought to be a trivial exercise. Say we have a mono-chromatic beam of
light, photon densityN photons per square meter per second, angular frequency
ω. Well, this is also a plane electromagnetic wave with amplitudeA and angular
frequencyω. Ought to be possible just using dimensional analysis to figure out
the relationship ofA to N and vice versa.

Last time I tried that, I didn’t get what I expected. . .

4 Cinematic Interlude

Camera pans in on John Baez, strapped in a chair. A maniacal Michael Weiss
hovers over him, holding a dentist’s drill, whose tip contains, instead a diamond,
a gleaming photon. Michael asks with a grating voice that sends phonons racing
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up and down one’s spine (simultaneously):

“Is it real?”

Baez groggily looks around. “Huh. Most people just post to sci.physics.research
and hope for someone to answer, not kidnap the moderator and strap him to a
dentist’s chair! I know I’m overdue for a checkup, but this is ridiculous. Are you
getting back at me for avoiding questions about ontology, or something? Iswhat
real, anyway?”

“Shaddup, wiseguy.” Weiss clobbers Baez with a cosh.

After a few more bizarre special effects, changes of scene, and a whole lot of
dreamy music, Baez wakes up. All he remembers is a question. . .

5 John Baez: A Rather Odd Question

Say we have a mono-chromatic beam of light, photon densityN pho-
tons per square meter per second, angular frequencyω. Well, this
is also a plane electromagnetic wave with amplitudeA and angular
frequencyω. Ought to be possible just using dimensional analysis to
figure out the relationship ofA to N and vice versa.

Hmm. Who wanted to know that, anyway? The maniacal Weiss? The judge?
(What judge? I seem to remember a judge.) Anyway, it’s a rather odd question
if the goal is to learn quantum field theory, as Weiss apparently wanted. While it
should indeed be possible to answer it using only dimensional analysis, that would
sort of miss the interesting aspect: namely, that electromagnetic field strength and
photon number are probably noncommuting observables, so an electromagnetic
plane wave with a precisely measured amplitude probably doesn’t have a precise
photon density, and conversely. Maybe Weiss meant theaveragephoton density.

Let’s see if I can work out the answer using just dimensional analysis, the way
Weiss wanted. Then if he kidnaps me again I can tell him about coherent states
and all thatif he promises to pay for it.

This is not gonna be very precise, after being dosed with nitrous and then knocked
over the head.

First let’s think of light as being classical. Then the energy density is (E2+B2)/2,
modulo a possible factor of 4π that comes from using funny units. In a plane
wave of lightE andB keep wiggling back and forth and turning into each other,
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but the overall size of either of them is the amplitudeA. So the energy density is
something likeA2. Maybe there’s supposed to be a 1/2 or something somewhere,
since neither theE nor theB field is equal to its maximumA all the time, but let’s
not worry about that. . . we’ll be glad if we get anything close to the right answer.
Okay, soA2 is the energy density, measured in something like joules per cubic
meter.

On the other hand, let’s think of light as being made of photons. The energy of a
photon isE = ~ω where~ is Planck’s constant andω is the angular frequency, not
the number of full wiggles per second but that times 2π (which is why~ = h/2π).
So the energy density should be~ωd, whered is the average number of photons
per cubic meter. So we should have

A2 = ~ωd

Does that make sense? The lower the frequency, the more photons we need to get
a particular energy, so that part makes sense. It’s sort of odd how the number of
photons is proportional to thesquareof the amplitude; you mighta thunk it would
just be proportional.

Hmm, this is sort of like a physics qualifying exam. . . which is one of the reasons
I didn’t go into physics. . . all those questions like “Say you drop a pion from a
height of 2 meters in an external magnetic field of 40 Gauss pointing along the
y axis. How high will the pion bounce and what is its charge?” So full of weird
kinds of intuitive reasoning, so much harder than proving theorems.

Anyway, let’s see, for some reason Weiss wanted to know the densityN of photons
per square meter per second, instead of per cubic meter. Since photons move at
the speed of light, I guess “per second” is the same as “c times per meter” here,
soN = cd, so

A2 = ~ωN/c.

Hmm. So what might be fun is to remember how coherent states work and see
why the state that looks like a plane wave of amplitudeA has average photon
density proportional to

√
A, if that’s actually true.

6 John Baez: A Six-Step Program

I suggested:
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Let’s work out the QFT description of an electromagnetic plane wave,
and see how many photons it has in it (on average).

and Michael Weiss wrote:

I thought we did the “how many photons on average” part already:
A2/ω per unit volume.

We figured that out by a combination of black magic and seat-of-the-pants intu-
ition. Namely, we took the classical formula for the energy density of the elec-
tromagnetic field, and the quantum formula for the energy of a photon of a given
frequency, combined them, and used that to guess the photon density of a plane
wave. This is known as “semiclassical” (i.e., half-assed) reasoning. It’ll probably
give the right answer here, but it’s not as satisfying as doing it all properly using
quantum field theory.

So let’s work it out using quantum field theory! It’s always crucial, when doing
an involved calculation, to know the answer ahead of time. Now that we know the
answer to “what’s the photon density of the quantum-field-theoretic description of
an electromagnetic plane wave”, we are in a good position to derive the answer in
a more careful way.

This should be fun, because it’sreally not so obviousto me why the answer is
what it is. In redoing the computation carefully, we can try to make it obvious
why the answer isA2/ω (if it really is.)

For example, when I start picturing an electromagnetic plane wave, I
say, OK, that’sAei(k·x−ωt). And I picture stacked planes, and I remem-
ber that this is really 4d spacetime and (k, ω) are really the coordi-
nates of a 1-form. Hmm, what aboutA? Well, there’s a vector field
on each of the stacked planes. Gee, I should really somehow drag
in the 2-forminess of (E,B) and that fact that it’s the differential of
the vector potential, and theU(1) gauge and all that, but I can’t pic-
ture any of that stuff yet. Also there’s something wrong with saying
that Aei(k·x−ωt) is a vector. I think I complexified somewhere without
realizing it.

Let’s see, I think you are trying to do too many things at once here. You are
trying to understand classical electromagnetism while simultaneously trying to
understand coherent states. I suggest the following game plan:
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1. understand coherent states for a harmonic oscillator with one degree of free-
dom.

2. understand coherent states for a harmonic oscillator withn degrees of free-
dom.

3. understand coherent states for a free massless scalar field in one dimensional
space.

4. understand coherent states for a free massless scalar field in 3 dimensional
space.

5. undestand how the equation of a free massless scalar field is related to that
of a free massless spin-1 field, i.e. electromagnetism.

6. understand coherent states for the electromagnetic field.

This may seem to multiply our difficulties by six, but I really think it will make
the problem much easier. Break it down into bite-sized pieces! Steps 1–4 are a
nice gentle ramp, and then mixing in the answer to 5 it should be a snap to get 6.

7 John Baez: A Gaussian Bump

Let me sketch step 1 here and see if I can get Michael to do the actual work.

We can think of states of the harmonic oscillator as wavefunctions, complex func-
tions on the line, but they have a basis given by eigenstates of the harmonic os-
cillator HamiltonianH. We call these states|n〉 wheren = 0,1,2,3, etc., and we
have

H|n〉 = (n+ 1/2)|n〉

As wavefunctions,|0〉 is a Gaussian bump centered at the origin. This is the
“ground state” of the harmonic oscillator, the state with least energy. The state
|n〉 is the same Gaussian bump times a polynomial of degreen, giving a function
whose graph crosses thex axisn times.

We can think of|n〉 as a state withn “quanta” in it. Quanta of what? Quanta of
energy! This is a little weird, but it’ll come in handy to think of this way later. By
the time we get to step 6, these “quanta” will be honest-to-goodness photons.

So it’s nice to have operators that create and destroy quanta. We’ll use the usual
annihilation operatora and creation operatora∗, given by
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a|n〉 =
√

n |n− 1〉

and

a∗|n〉 =
√

n+ 1 |n+ 1〉

One can relate these guys to the momentum and position operatorsp andq, which
act on wavefunctions as follows:

p = −i
d
dx

q = x

In the latter equation I really mean “q is multiplication by the functionx”; these
equations make sense if you apply both sides to some wavefunction.

So maybe Michael can remember or figure out the formulas relating thep’s and
q’s to thea’s anda∗’s.

Once we have those, there’s something fun we can do.

To translate a wavefunctionψ to the right by some amountc, all we need to do is
apply the operator

e−ipc

to it. The reason is that

(
d
dc

e−ipcψ

)
(x) = (−ipe−ipcψ)(x)

= −

(
d
dx

e−ipcψ

)
(x)
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so the rate at whiche−ipcψ changes as we changec is really just minus the deriva-
tive of that function. . . meaning that it’s getting translated over to the right. (We’ll
give some more detail for this step at the end of this section.) Folks say that the
momentum operatorp is the “generator of translations”.

So we can get a wavefunction that’s a Gaussian bump centered at the pointx = c
by taking our ground state|0〉 and translating it, getting:

e−ipc|0〉

This is called a “coherent state”. In some sense it’s the best quantum approxima-
tion to a classical state of the harmonic oscillator where the momentum is zero
and the position isc. (We can make this more precise later if desired.)

If we expressp in terms ofa anda∗, and write

e−ipc = 1− ipc+
(ipc)2

2!
+ . . .

we can expand our coherent state in terms of the eigenstates|n〉. What does it look
like?

If we figure this out, we can see what is the expected number of “quanta” in the
coherent state. And this will eventually let us figure out the expected number
of photons in a coherent state of the electromagnetic field: for example, a state
which is the best quantum approximation to a plane wave solution of the classical
Maxwell equations. It looks like there should should be aboutc2 “quanta” in the
coherent statee−ipc|0〉. This should shed some more light (pardon the pun) on why
our previous computations gave a photon density proportional to the amplitude
squared and thus the energy density.

The thing to understand is why, even when we have a whole bunch of photons
presumably in phase and adding up to a monochromatic beam of light, the am-
plitude is only proportional to the square root of the photon number. You could
easily imagine that a bunch of photons completely randomly out of phase would
give an average amplitude proportional to the square root of the photon number,
just as|heads− tails| grows on average like the number of coins tossed (for a fair
coin).

A few more details:

Suppose we have a wavefunctionψ. What ise−icpψ? The answer is: it’s justψ
translatedc units to the right.

Why? If we takeψ and translate itc units to the right we get

ψ(x− c)
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so we need to show that

(e−icpψ)(x) = ψ(x− c).

To show this, first note that it’s obviously true whenc = 1. Then take the derivative
of both sides as a function ofc and note that they are equal. That does the job.

We are assuming that if two differentiable functions are equal somewhere and
their derivatives agree everywhere, then they can’t “start being different”, so they
must be equal everywhere.

Or if that sounds too vague:

Technically, we are just using the fundamental theorem of calculus. Say we have
two differentiable functionsf (s) andg(s). Then

f (x) = f (0)+
∫ x

0
f ′(s)ds

It follows from this that if f (0) = g(0) and f ′(s) = g′(s) for all s, then f (x) = g(x)
for all x.

8 Michael Weiss: Hmm, homework on the week-
end!

Hmm, homework on the weekend!(grumble, grumble)Oh, well, beats cleaning
out the attic (“Whaddya mean we have wasps!? Sure they’re not photons?”)

John Baez assigns:

So maybe Michael can remember or figure out the formulas relating
the p’s andq’s to thea’s anda∗’s.

Hey, I know that! Basic QM. . . just toss off the answer,q+ ip, q− ip,. . . No, wait,
what does it say here: “Show all work!!”

All righty, then. Actually this is kind of fun. I still remember how slick and utterly
unintuitive this seemed when I first encountered it in Dirac’s book.

Moreover, this slick calculation evokes even earlier memories, of two jewels of
high-school algebra: (a + b)(a − b) = a2 − b2, and (a + bi)(a − bi) = a2 + b2.
If these have lost their luster over the years, try them out on your favorite bright
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8-year old. I think of (a + b)(a − b) as the primordial instance of that staple of
mathematical physics: cancellation of terms, leaving a simple final result.

Well, if having the cross-term cancel is cool, having themnot cancel turns out to
be even cooler!

Dirac does offer one slender reed of motivation, a single sentence: “The above
equations are all as in the classical theory.” The ultimate incarnation of Bohr’s
correspondence principle. In fact, Olivier Darrigol wrote a book about that a few
years back:

From C-Numbers to Q-Numbers: The Classical Analogy in the His-
tory of Quantum Theory. California Studies in the History of Science,
University of California Press, December 1992.

OK, so let’s start with a classical dot racing around in a circle. Projecting onto
the x-axis gives simple harmonic motion. We’ll useq for the x-coordinate andp
for they-coordinate, following Hamiltonian tradition. (Whyp’s andq’s? Because
Hamilton hung out in Irish pubs, minding his pints and quarts?)

Now as complex number,q+ ip is that racing dot. Everything flows fromq+ ip.
Let me be ruthless with factors ofm and the spring constant and the like— set
them all to 1. The total energy isH = (q2 + p2)/2, or 1

2(q + ip)(q − ip). As
a function of time,q + ip = e−it (for clockwise motion). The velocity vector is
−i(q+ ip).

OK, so let’s do the same thing in Quantum Land. Nowq and p no longer com-
mute; in fact,qp− pq= i. So we setZ = q+ ip and try to computeH, which was
ZZ∗/2 last time. But this time the cross-terms don’t cancel, and we get:

ZZ∗/2 = (q2 + p2 + 1)/2 = H + 1/2
Z∗Z/2 = (q2 + p2 − 1)/2 = H − 1/2
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I guess I won’t go through the whole development. To get the annihilation oper-
atora and the creation operatora∗, we just need to absorb that pesky factor of 2
into a anda∗: a = Z/

√
2, a∗ = Z∗/

√
2. So we get:

aa∗ = H + 1/2 [a,a∗] = aa∗ − a∗a = 1
a∗a = H − 1/2 [q, p] = qp− pq= i

a = (q+ ip)/
√

2 p = (a− a∗)/i
√

2
a∗ = (q− ip)/

√
2 q = (a+ a∗)/

√
2

I think that will do it for HW, part 1.

Hmmm. John Baez promised that the plain old harmonic oscillator would have
something to do withE andB. Hey wait, the energy for the harmonic oscillator is
p2+q2

2 ; for the electromagnetic field,E
2+B2

2 . Coincidence? You be the judge.

OK, part 2 of the homework. First John Baez defines a coherent state to bee−ipc|0〉,
then asks:

If we expressp in terms ofa anda∗, and write

e−ipc = 1− ipc+
(ipc)2

2!
+ . . .

we can expand our coherent state in terms of the eigenstates|n〉. What
does it look like?

Since p = (a − a∗)/i
√

2, −ipc = −c(a − a∗)/
√

2. Let’s write D for c/
√

2, so
−ipc = −D(a− a∗). So our coherent state is:

|0〉 −
D(a− a∗)

1!
|0〉 +

D2(a− a∗)2

2!
|0〉 −

D3(a− a∗)3

3!
|0〉 + . . .

The problem is to figure out the coefficient of |n〉 , i.e., express the coherent state
in the form:

C0|0〉 +C1|1〉 +C2|2〉 + . . .

[At this point, the poor student went off on a long detour. Inspired by John Baez’s
remarks about coin-tossing, he rambled through the theory of random walks— at
random! Alas, this lead nowhere, but (by a process to tortuous to summarize) it
did inspire his next step. —ed.]

So I guessed that

Cn =
D
√

n
Cn−1
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so of course

Cn =
Dn

√
n!

C0

Hmmm. Let’s use this guess for theCn, and applya to
∑

n Cn |n〉; to make things a
little simpler, let’s divide through byC0 first. We get:

a

(
|0〉 +

D
1
|1〉 +

D2

√
2!
|2〉 + . . .

)
=

0+
D
1
|0〉 +

D2

√
2!

√
2|1〉 + . . . =

D
(
|0〉 +

D
1
|1〉 + . . .

)
I.e., the coherent state would be an eigenstate of the annihilation operatora!

So I tried to provethiswith combinatorial tricks, but no luck. Then I had the idea
of going back to usingq andp, instead ofa anda∗. With hindsight, the suggestion
to rewrite 1− ipc+ (ipc)2

2! − . . . in terms ofa anda∗ looks like a false lead. Say it
ain’t so, John!

So here’s how my solution goes: [slicker solutions will be found later in these
notes. —ed.]

First off, we need a generalization of [q, p] = i. Here it is:

[q, pn] = qpn − pnq = nipn−1

or
qpn = pnq+ nipn−1

which allows us to moveq’s pastp’s.

Next we apply this rule toqe−ipc:

q

(
1− icp+

(ic)2

2!
p2 −

(ic)3

3!
p3 + . . .

)
=

(
1− icp+

(ic)2

2!
p2 −

(ic)3

3!
p3 + . . .

)
q

+

(
0− ic1i +

(ic)2

2!
2ip −

(ic)3

3!
3ip2 + . . .

)

or qe−ipc = e−ipcq+ ce−ipc. So:
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(q+ ip)e−ipc|0〉 = e−ipc(q+ ip)|0〉 + ce−ipc|0〉

= ce−ipc|0〉

sinceq+ ip does annihilate|0〉. Soe−ipc|0〉 is an eigenstate ofa, with eigenvalue
c/
√

2 (= D).

And now for the payoff!

If the coherent state is proportional to:

|0〉 +
D
√

1!
|1〉 +

D2

√
2!
|2〉 + . . .

then the probability distribution over the energy eigenstates is:

|0〉 : e−D2
1

|1〉 : e−D2 D2

1!

|2〉 : e−D2 D4

2!
. . .

|n〉 : e−D2 D2n

n!
. . .
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that is, a Poisson distribution with parameterD2. (Thee−D2
is just the normaliza-

tion factor, to make the probabilities add up to 1.) The expectation value for this
Poisson distribution isD2.

In other words, the average number of photons—err, quanta— in the coherent
state isD2.

Hmm, Baez has already pointed out how the coherent statelooks like a bump
displacedc units from the origin.

Suddenly the “classical dot” racing in a circle has a whole new lease on life.
Therewassomething pretty unsavory about what Dirac did to it. It reminds me
of those “before and after” pictures— are they really the same person? Before:
the dot races in a circle ofany radius. After: nothing races around at all, instead
we have a bunch of wavefunctions that justsit there. Yeah, I know— only after
we’ve factored out the time-dependent parte−i(n+1/2)t. But this kind of motion is
in an imaginary direction, and doesn’t affect thewheraboutsof the particle, if you
know what I mean.

Could these utterly different kinematics really come from the same cinematogra-
pher?

Sure! Just use coherent states. AsD increases continuously, the average energy
increases continuously, as does the range of motion of the bump.

Hmm. Guess I should check that last assertion.

Hokay, we want the time evolution of the bump. Should be a piece of cake. The
time evolution of|n〉 is juste−i(n+1/2)t|n〉, and we’ve expressed the coherent state as
a sum of energy eigenstates.

Let’s redefine the zero-point of energy to get rid of that annoying1
2. Soe−iHte−ipc|0〉

is equal toC0 times:

|0〉 + e−it D
√

1!
|1〉 + e−2it D2

√
2!
|2〉 + . . .

that is, exp(−ipe−itc)|0〉, since basically we’ve just replacedD with e−it D, andc
with e−itc. (The argument above didn’t actuallyusethe assumption thatc was real
anywhere.)

Hmmm. A bump that swang back and forth harmonically would look like this:
exp(−ip(cost)c)|0〉. How to relate this to exp(−ipe−itc)|0〉?

Aha! Euler to the rescue:e−it = cost−i sint. Uh-oh, now we’ve gote−ip(cost)ce−p(sint)c|0〉.

What doese−p(sint)c|0〉 look like?

Help!
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9 John Baez: Ever wonder why they call it “phase
space”?

OK, so let’s start with a classical dot racing around in a circle. Pro-
jecting onto thex-axis gives simple harmonic motion. We’ll useq for
the x-coordinate andp for the y-coordinate, following Hamiltonian
tradition.

Of course, by “x-coordinate” you mean “position” and by “y-coordinate” you
mean “momentum”. We’ve got here a point in phase space, oscillating harmon-
ically. And as you note, one key to understanding quantum mechanics is to see
this phase space as the complex plane!

Now as complex number,q+ ip is that racing dot. Everything flows
from q+ ip.

Indeed. Ever wonder why they call it “phase space”? I don’t know the history,
but here we see a damn good reason: as our pointZ = q + ip circles the origin,
nothing changes but itsphase.

The whole point of coherent states is to see very clearly what happens to this
picture when we go into quantum mechanics. Of course, everybody knows that
when p andq become operators, we can makeZ and its complex conjugate into
operators too, which are basically just the creation and annihilation operators:

a =
Z
√

2
, a∗ =

Z∗
√

2

But the cool part is that there are alsostatesthat are quantum analogues of points
circling the origin: the coherent states. As you note, these are just the eigenstates
of the annihilation operator. But I prefer to visualize them as Gaussian wavefunc-
tions: a kind of blurred-out version of a state in which a particle has a definite
position and momentum. If you start with such a state, and evolve it in time, its
(expectation value of) position and momentum oscillate just like that of a classi-
cal particle, and if I remember correctly, they maintain a basically Gaussian shape,
though probably with some funny complex phase factor stuff thrown in. . .

. . . nothing races around at all, instead we have a bunch of wavefunc-
tions that justsit there. . .

16



Yeah, sure, theeigenstatesof the Hamiltonian just sit there, after we ignore the
time-dependent phase. But these states are very unlike the classical states we
know and love. I like to pose the following puzzle to kids just learning quantum
mechanics:

“Take this eraser. [I brandish my eraser threateningly as I stand before the black-
board.] Put it into an eigenstate of the Hamiltonian. Now it’s in a stationary state!
It doesn’tdo anythingas time passes. It just sits there, except for a time-dependent
phase! [I demonstrate an eraser nonchalantly hovering in midair, only its phase
wiggling slightly.] So what does this mean, that you can levitate an eraser just by
putting it into an eigenstate?”

And of course they eventually get the point: it’s not so easy in practice to put
anything big into an eigenstate of the Hamiltonian. It’s thecoherent statesthat are
close to the classical physics we know and love.

Could these utterly different kinematics really come from the same
cinematographer?

Sure! Just use coherent states. AsD increases continuously, the aver-
age energy increases continuously, as does the range of motion of the
bump.

Hmm. Guess I should check that last assertion.

That should be true. Remember, the expected value of the Hamiltonian is

〈H〉 =
〈p2〉 + 〈q2〉

2

As we take our basic Gaussian bump (the ground state) and translate it,〈p2〉 stays
the same, since its shape stays the same.〈q2〉, on the other hand, gets bigger,
basically because the average value ofq gets bigger (though I’m being a bit rough
here). So we can tune〈H〉 to whatever value we want. . . at least for values bigger
than the “zero-point energy”, which is12.

10 John Baez: Perhaps the nicest Gaussian of all

Let’s see. In my first reply to Michael Weiss’ post I said a few words about
coherent states. Let me say a few more general remarks about coherent states.
Eventually in some later post I will turn towards the practical business at hand:
calculating what coherent states look like in the basis given by eigenstates of the

17



harmonic oscillator Hamiltonian. (Michael already did this, so I’ll just say a bit
about what he did.)

A coherent state is supposed to be roughly a “best quantum approximation to a
classical state”. There is a big theory of coherent states which makes this a lot
more precise, but let’s not get into that. Instead, let’s just ponder what this might
mean.

Classically, a particle on the line has a definite positionq and momentum p, so it
is described by a point in phase space, (q, p). Quantum mechanically, the more
we know about position, the less we know about momentum, and vice versa. Our
ability to know both at once is limited by Heisenberg’s uncertainty principle:

∆p∆q ≥
1
2

(Here, as always in this thread, we are working in units where~ is one, as well as
the mass of our particle and the spring constant of our harmonic oscillator.)

Which states do the best job of simultaneously minimizing the uncertainty in posi-
tion and momentum? Which states make∆p∆q equalto 1

2? It turns out that these
states are precisely the Gaussians, possibly translated, and possibly multiplied by
a complex exponential.

Perhaps the nicest Gaussian of all is

e−x2/2

since this is the ground state of the harmonic oscillator Hamiltonian, at least after
we normalize it.

This function is its own Fourier transform (if we define our Fourier transform
right). Since you can compute the uncertainty in momentum by taking the Fourier
transform of your wavefunction and then computing the uncertainty in position
of that, this Gaussian must have the same uncertainty in position as it does in
momentum. If everything I’ve said so far is true, we must therefore have

∆p = ∆q =
1
√

2

for this Gaussian.

Of course, there are lots of other Gaussians centered at the origin with∆p∆q = 1
2.

We can squish our Gaussian or stretch it out like this:

e−x2/2σ
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The Fourier transform of a squished-in skinny Gaussian is a stretched-out squat
Gaussian and vice versa. So all these Gaussians have

∆p∆q =
1
2

but the one we chose is the only one where

∆p = ∆q

That can be our definition of a “coherent state”: a state that simultaneously min-
imizes the uncertainty in position and momentum, and makes these uncertainties
equaleach other. Later we can think more about “squeezed states” where the un-
certainties are not equal. There was recently a big fad where everyone was making
squeezed states of light in the lab. But for now, we will not squeeze our states.

So: the Gaussian

e−x2/2

is the primordial “coherent state”. In this state, the expectation value of position
is obviously zero, since the bump is symmetrically centered at the origin. The
expectation value of momentum is also obviously zero, since:

1) the Fourier transform of this function is itself, so whatever applies to position
applies to momentum as well,

or if you prefer,

2) the expectation value of momentum is zero for anyreal-valuedwavefunction.
(Hint: to see this, just use integration by parts.)

Soe−x2/2 is a coherent state with expectation values

〈p〉 = 〈q〉 = 0.

We can get lots more coherent states by taking this Gaussian and translating it in
position space and/or momentum space. Translating in position space byc, we
get a Gaussian

e−(x−c)2/2

This is the coherent state I wanted Michael to express in terms of eigenstates of
the harmonic oscillator Hamiltonian. This obviously has
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〈q〉 = c

and since it’s real-valued it still has

〈p〉 = 0.

Translating in momentum space by some amountb is the same as multiplying by a
complex exponentialeibx. Or, if you prefer, just take a Fourier transform, translate
by b, and take an inverse Fourier transform. Same thing. If we do this to our
primordial Gaussian bump, we get

eibx−x2/2

which is our coherent state with

〈q〉 = 0

and

〈p〉 = b.

Why does it still have〈q〉 = 0? Well, we are just multiplying our Gaussian bump
by a unit complex number or “phase” at each point, and this doesn’t affect the
expectation value of position.

Finally, we can translate inbothpositionandmomentum space directions. These
two operations don’t commute, of course, since the position and momentum op-
erators don’t commute, and momentum is the generator of translations in position
space, while position is the generator of translations in momentum space (possibly
up to an annoying minus sign).

What do we get? Well, take our bump and first translate it in position space byc:

e−(x−c)2/2

and then in momentum space byb:

eibx−(x−c2/2)
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Or, alternatively, first translate it in momentum space byb:

eibx−x2/2

and then in position space byc:

eib(x−c)−(x−c)2/2

I claim that these are equalup to a phase. . . one of them iseibc times the other.
This is always how translations in position space and momentum space fail to
commute.

While terribly important in some ways, the phase is not such a big deal in other
ways. (That’s the weird thing about quantum mechanics when you are first learn-
ing it: sometimes a phase is very important, while other times it doesn’t matter at
all. Of course, it just depends what you’re doing.) A phase times a coherent state
is still a coherent state in my book. So we have gotten our hands on a coherent
state with

〈p〉 = b

and
〈q〉 = c

A translated Gaussian bump, with a corkscrew twist thrown in! I hope youvisual-
izethis thing for various values ofb andc; it’s a very pretty thing, and it will serve
as our quantum “best approximation” to a particle with momentumb and position
c.

Then, later, we will use a souped-up version of this as the quantum- field-theoretic
“best approximation” to a particular state of a classical field theory, like electro-
magnetism.

11 John Baez: The Most Enlightening Set of Names

Before I dig into the business of working out what coherent states look like in the
basis of eigenstates of the harmonic oscillator Hamiltonian, let me comment on
one thing:

Hmmm. John Baez promised that the plain old harmonic oscillator
would have something to do withE andB. Hey wait, the energy for
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the harmonic for the harmonic oscillator isp2+q2

2 ; for the electromag-

netic field,E2+B2

2 . Coincidence? You be the judge.

Of course it’s no coincidence; the electromagnetic field is just a big bunch of
harmonic oscillators, one for each “mode”, and the formula for the energy is just
like that for the harmonic oscillator.B is sort of like the “position” andE is sort
of like the “momentum”. But let’s leave the details for later on.

What we’re doing now is like finishing school. Everyone bumps into the harmonic
oscillator in quantum mechanics, but rather few get to see its full beauty. There
are three main representations to learn:

1. the Schr̈odinger representation

2. the Heisenberg (or Fock) representation

3. the Bargmann-Segal representation

The first should really be called the “wave” representation. In this representation
we diagonalize the position operator, thinking of the state as a function on position
space.

Similarly, the second should be called the “particle” representation. In this we
diagonalize the energy, thinking of the state as a linear combination of states|n〉
having n “quanta” of energy in them.

The equivalence of these first two representations is the basis of “wave-particle
duality” in quantum field theory.

The third representation could be called the “complex wave” representation. At
least that’s what it’s called in the bookIntroduction to Algebraic and Constructive
Quantum Field Theory, where the first representation is called the “real wave rep-
resentation”. In some rough sense, this representation diagonalizes the creation
operators. Of course, not being self-adjoint, the creation operators can’t be diag-
onalized in the usual sense. There is a nice substitute, however. In the complex
wave representation, we think of phase space as a complex vector space using the
trick

Z = q+ ip

and then think of states asanalytic functions on phase space. Then the creation
operator becomes multiplication byZ.

Perhaps this would be the most enlightening set of names for these three repre-
sentations:
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1. the configuration space representation

2. the particle representation

3. the phase space representation

Everyone who studies quantum mechanics learns about the first two representa-
tions. The third, while in many ways the most beautiful, is somewhat less widely
known. We won’t get into it much here. The only reason I mention it is that it’s
lurking in the background whenever you relate quantum mechanics to the classical
phase space and drag in theZ = q+ ip trick.

Anyway, if you master these three basic viewpoints on the harmonic oscillator,
it’s a snap to generalize to quantum field theory, at least for free quantum fields,
which are just big bunches of harmonic oscillators.

12 Michael Weiss: Roll over Beethoven

John Baez writes:

Before I dig into the business of working out what coherent states look
like in the basis of eigenstates of the harmonic oscillator Hamiltonian,
let me comment on one thing:

Uh-oh, better get the rest of my homework in before the professor goes over the
assignment in class.

OK, last time I figured out that the coherent state you get by sliding the Gaussian
bumpc units to the right:

e−icp|0〉

is proportional to this, in the basis of eigenstates of the Hamiltonian, aka “particle
representation”:

e−D2/2
∑

n

Dn

√
n!
|n〉

whereD = c/
√

2. This time I’ve included the factore−D2/2, so as to get a nor-
malized state-vector. Sincee−icp is a unitary operator, by some theorem or other,
e−icp|0〉 is also normalized. So we’ve expressed the coherent state in the particle
representation, up to a phase.
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The probability distribution of this state-vector is a Poisson distribution with mean
valueD2:

Prob(we’re in state|n〉) = e−D2 (D2)n

n!

Mean value=
∑

n

nProb(we’re in state|n〉)

(To do the mean-value sum, notice that then = 0 term politely disappears, and if
you pull out a factor ofD2, what’s left is just the sum of all the probabilities—
which had better add up to 1.)

Now this is nice. The original question was:

“If an electromagnetic wave has amplitudeA and angular frequency
ω, how many photons does it contain per unit volume, on the aver-
age?”

and dimensional analysis said:A2/ω. Well, presumablyc andD will end up being
proportional toA, once we actually start talking about electromagnetic waves, and
not this mickey-mouse-dot racing around a circle! And the mean value should be
proportional to the photon density. So we have our explanation for theA2 factor.

But to make this convincing, we have to know thatD really doescorrespond to
the radius of the dot’s racetrack. So we need the time-evolution of the coherent
state.

Now here I got stuck for a while, for I ignored the old adage: “Never compute any-
thing in physics unless you already know the answer!” (Who said that, Wheeler?)
I was trying to show thate−icp|0〉 would evolve toe−icpcost|0〉, since that’s the for-
mula for simple harmonic motion.

No good! The coherent state wavefunction has both positionand momentum
encoded in it. You can’t expect the position to change without the momentum
alsochanging.

OK, let’s start over. First, we have to consider a more general coherent state, say
one with momentumb and positionc, thus:

eibqe−icp|0〉

which I’ll call Coh1(c + ib). [Coh1 because it’s “coherent state, take 1”: John
Baez will shortly introduce a better choice. —ed.]

Now we want to express this in the particle representation, because we know how
the states|n〉 evolve: |n〉 evolves toe−int|n〉 (if we factor out the commone−it/2, i.e.,
redefine the energy zero-point).
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I did this for the special coherent state Coh1(c) a while back, but I was working
entirely too hard. I used the fact:

[q, pn] = inpn−1

Now this looks a lot like a derivative formula: [q, pn] = i dpn

dp . (Ignore the fact that
I haven’t definedd/dp.) Actually, this shouldn’t be surprising: we know that

[p,A] = −i
dA
dx

i.e., bracketing withp is just about the same as taking derivatives with respect to
x. Now q andx are pretty closely related, and what holds forq ought to hold for
p, using Fourier transforms and all.

So we should have:

[p, f (q)] = −id f /dq
[q,g(p)] = idg/dp

at least if f (q) is a power series inq, andg(p) is a power series inp.

As a check, let’s verify the product rule. If that works, then we should have our
result for all powers ofp andq just by induction, and then for all power series by
continuity arguments. The continuity arguments might take up a chapter or two in
a functional analysis textbook, but hey, I’m sure the kindly moderator will cut us
some slack.(Pause for thunderbolts to dissipate.)

[s,AB] = sAB− ABs

[s,A]B+ A[s, B] = (sA− As)B+ A(sB− Bs)

= sAB− AsB+ AsB− ABs

It works!

So:

[q,e−icp] = i(−ic)e−icp = ce−icp

[p,eibq] = −i(ib)eibq = beibq

[(q+ ip),eibqe−icp] = (c+ ib)eibqe−ipc
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You have to be a little bit careful here.eAeB is notgenerally equal toeA+B if A and
B don’t commute.

If that last equation doesn’t leap out at you from the previous two, well it’s just a
bit of straightforward grinding.

And so:

(q+ ip)Coh1(c+ ib) = (q+ ip)eibqe−icp|0〉

= eibqe−icp(q+ ip)|0〉 + (c+ ib)eibqe−icp|0〉

= (c+ ib)Coh1(c+ ib)

So Coh1(c+ ib) is an eigenvector ofq+ ip with eigenvaluec+ ib. It then follows
that, up to a phase (call itι):

Coh1(c+ ib) = ιe−(c2+b2)/2
∑

n

(c+ ib)n

√
n!
|n〉

Remember now that we want to time-evolve this. (So much physics, so little
e−iHt . . .) As I said earlier,|n〉 evolves toe−int|n〉 (if choose our energy zero-point
so as to get rid of the vacuum energy).

So then-th term of our formula for Coh1(c + ib) will acquire the factore−int in
t-seconds. But we can absorb this into the factor (c+ ib)n, just by replacingc+ ib
with (c+ ib)e−it . So:

e−iHtCoh1(c+ ib) = Coh1(e−it(c+ ib))

Roll over Beethoven, how classical can you get! If I told you that Coh1(c + ib)
was my symbol for a dot in the complex plane at positionc + ib, you’d say the
equation I just wrote is obvious.

[Moderator’s note: The aphorism, “Never calculate anything until you know the
answer,” is indeed due to Wheeler. It appears in Taylor and Wheeler’s bookSpace-
time Physicsunder the name of “Wheeler’s First Moral Principle.” No other moral
principles are mentioned, so maybe it’s Wheeler’s Only Moral Principle. —Ted
Bunn]
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13 John Baez: A Gaussian bump with a corkscrew
twist!

OK, last time I figured out that the coherent state you get by sliding
the Gaussian bumpc units to the right . . .

Very nice. I would like to understand this better and think more about the best way
of deriving it. The way I suggested to you was stupid and grungy, but you seem to
have fought your way through and then discovered some much nicer approaches.
I haven’t thought about this stuff enough, so I’d like to polish your work to a fine
sheen before moving on.

So. . . let me go back to our general picture of coherent state.

What’s the best quantum approximation to a classical particle on the line with
specified position and momentum? A Gaussian bump with a corkscrew twist! We
will only be interested here in bumps that have equal uncertainty in position and
momentum:

∆p = ∆q =
1
2

The simplest case is when

〈p〉 = 〈q〉 = 0

Then we use the ground state of the harmonic oscillator:

|0〉 = e−x2/2

where I left out the normalization factor to reduce clutter.

To get coherent states with other expectation values of position and momentum,
say

〈p〉 = b, 〈q〉 = c

we can take our ground state, translate it in position space by an amountc, and
then translate it in momentum space by an amountb:

eibqe−icp|0〉 = eibx−(x−c)2
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where I have attempted to make an even number of sign errors. [An allusion
to Dirac’s comment on the first presentation of the Klein-Nishina formula (by
Nishina). See Gamow,Thirty Years That Shook Physics. —ed.]

But wait! We could also have translated itfirst in momentum space andthen in
position space, getting

e−icpeibq|0〉 = eib(x−c)−(x−c)2

How does this answer fit with the other? Well, it differs only by a phase.

“Only a phase”. . . ah, what an understatement! When physicists and mathemati-
cians mutter darkly about “cocycles”, “projective representations”, “double cov-
ers”, “central extensions”, and even more intimidating things like “anomalies”,
“the Virasoro algebra” and “affine Lie algebras”, they are secretly complaining
about the many subtleties that can caused by a mere phase!

So let us think about this a little bit. The two coherent states above differ by the
phasee−ibc. That should be no surprise; the Heisenberg commutations relations

pq− qp= −i

lead directly — with a dose of mathematical optimism — to the exponentiated
version called the “Weyl commutation relations”

e−icpeibq = e−ibceibqe−icp

which describe how translations in position space and momentum space commute
only up to a phase. Actually, mathematical physicists of the rigorous variety pre-
fer to take the Weyl relations as basic and derive the Heisenberg relations as a
consequence. But we are being relaxed here so we can think of them as two ways
of saying the same thing.

Now, Michael has taken

Coh1(c+ ib) = eibqe−icp|0〉

as his definition of a coherent state with expected momentumb and expected
position c. This is fine. . . up to a phase. . . but it’s slightly annoying how one needs
to “break the symmetry” between momentum and position in this definition. Why
not
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Coh2(c+ ib) = e−icpeibq|0〉 ?

Or even better, how about some choice that treats position and momentum even-
handedly! “Mind yourp’s andq’s!” There’s much wisdom in that phrase. . .

Here’s a nice way to mind ourp’s andq’s; we make the following new definition:

Coh(c+ ib) = e−icp+ibq|0〉

Here we “simultaneously translate in position and momentum space” instead of
favoring one or the other. This state is not equal toeitherof the two choices listed
above, but again it differs only by a phase.

Why?

Well, one can show that

e−icp+ibq = e−ibc/2eibqe−icp

= e+ibc/2e−icpeibq

at least if I’ve not made a sign error. So this new definition “steers a middle
course” between the other two choices, phase-wise.

(Also, fans of symplectic geometry will appreciate the funny skew- symmetric
quality of the expression−icp + ibq in our new definition. But let’s not get into
that.)

Here’s a little assignment for Michael, or any other students willing to pitch in!
Remember thatc representspositionandb above representsmomentum, so (c,b)
represents a point in phase space. Also remember that it’s good to think of phase
space here as thecomplex plane. So let’s define

z= c+ ib.

(Don’t confuse this lower-casezwith the upper-caseZ we had before. The upper-
caseZ was an exhalted operator; the lower-casez is just a lowly complex number.)

Now: take the expression

e−icp+ibq
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and rewrite it in terms ofz and its complex conjugatez∗, while simultaneously
rewriting p andq in terms of annihilation and creation operators. Remember that

a = (q+ ip)/
√

2 q = (a+ a∗)/
√

2
a∗ = (q− ip)/

√
2 p = (a− a∗)/i

√
2

Some nice stuff should happen.

If we do this, we will get a cool expression for our coherent state in terms of
annihilation and creation operators applied to the vacuum state. This won’t im-
mediately solve all our problems, but it should help us understand a lot about how
our coherent states of the harmonic oscillatorevolve in time.

14 Michael Weiss: Now for a bit of straightforward
grinding.

OK, so let’s set

z= c+ ib

Coh(c+ ib) = e−icp+ibq|0〉

Now for a bit of straightforward grinding. We want to express−icp+ ibq in terms
of z anda.

−icp = −i
z+ z∗

2
a− a∗

i
√

2

= −
1

2
√

2
(za+ z∗a− za∗ − z∗a∗)

ibq =
z− z∗

2
a+ a∗
√

2

=
1

2
√

2
(za− z∗a+ za∗ − z∗a∗)

−icp+ ibq =
1
√

2
(za∗ − z∗a)
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15 John Baez: My lysdexia has a variety of origins

[You, dear reader, have been shielded by your valiant editor from the sign errors
and inconsistent conventions of the original newgroup thread. At least I hope I’ve
caught them all! But just to make your editor’s life difficult, John Baez here uses
these very errors as a jumping off point for an informative discussion.—ed.]

My lysdexia above has a variety of origins. Indeed, this subject is littered with
banana peels on which the unwary can slip, so it is probably pedagogically useful
to list them.

The main reason for my slip, writingeipc instead ofe−ipc, was the usual symplectic
switcheroo: the momentum operatorp generates translations in position space,
while the position operatorq generates translations in momentum space. More
precisely,p generates translations to theright in position space, whileq generates
translations to theleft in momentum space. This is built into the classical Poisson
brackets:

{p,q} = 1, {q, p} = −1

and thus in the commutators of the corresponding operators:

[p,q] = −i, [q, p] = i.

where an extra factor of−i is traditionally thrown in to further confuse the unini-
tiated.

Thus in the statee−icp+ibq|0〉, the expectation value of position isc and the expec-
tation value of momentum isb.

Second, there is a somewhat arbitrary convention about whether we think of a
point in phase space with momentumb and positionc and as being the pointc+ ib
in the complex plane, orb+ic. Time evolution for the harmonic oscillator amounts
to having our complex plane rotate as time passes, and if we usec+ ib the plane
will rotateclockwise, while if we useb+ ic the plane will rotatecounterclockwise.
The former means that after a timet, the pointc+ ib will evolve to

e−it(c+ ib),

while the latter means that after a timet, the pointb+ ic will evolve to

eit(b+ ic)

The latter seems nicer to me, which is another reason for my slip, but we seem to
be working with the former convention.
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16 John Baez: Michael has roamed ergodically

Okay, after having caught various slips by the absentminded professor, Michael
has shown the following:

Let z= c+ ib be a point in the phase space of a particle on the line, corresponding
to positionc and momentumb.

The coherent state with average positionc and momentumb is

Coh(z) = e−icp+ibq|0〉

= e(za∗−z∗a)/
√

2|0〉

Very good!

Here’s some more homework. Actually, looking back over this thread, I see that
Michael has roamed ergodically over the space of ways of thinking of this stuff,
and has come very close to almost all possible ways, so this homework is not
terribly novel.

A) Use the formula

Coh(z) = e(za∗−z∗a)/
√

2|0〉

to get a curiously similar formula involving an exponential of onlycreationoper-
ators, applied to the vacuum.

The formula issomethinglike

Coh(z) = e−|z|
2
eza∗ |0〉

but you’ll need to stick in a couple of constant factors here and there.

(Actually Michael has already done something like this, starting from a different
angle.)

B) Use the commutation relations betweenH anda∗ to work out

eitHa∗e−itH

and then

eitHeza∗e−itH
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Together with A), use this to work out the time evolution of the coherent state
Coh(z).

C) Show that if we evolve a coherent state over one period of our oscillator — i.e.,
taket = 2π — it doesnot return to the same wavefunction, unlike for the classical
oscillator.

This corrects a little mistake of Michael’s [HA! see below. —ed.] where he
claimed that

e−itHCoh(z) = Coh(e−itz).

It’s not quiteso simple and nice. Hint: vacuum energy.

17 Michael Weiss: Okay, thanks, Baker, Campbell,
and Hausdorff!

Just stopping by for a sec, to drop off some homework. I’ll be by again later for a
longer chat.

But first—oh professor, I think you took too much off! You say:

This corrects a little mistake of Michael’s where he claimed that

e−itHCoh(z) = Coh(e−itz).

It’s not quiteso simple and nice. Hint: vacuum energy.

But I explicitly said I was redefining the zero-point of energy to get rid of those
pesky factors ofe−it/2. Hmm, maybe you’re saying the formulas are trying to tell
me something— that Ishouldn’tmonkey around with the zero-point?(Ominous
music wells up on the soundtrack). (Flash to the final scene in a 50s sci-fi movie, as
the grey-haired senior scientist portentously intones, “There are aspects of Nature
that we change at our peril. Let this be a Lesson To Us All. . . ”)

(Actually, the grey-haired senior scientist has already said something about this
zero-point stuff: see http://math.ucr.edu/home/baez/harmonic.html)

Okay.

A) Use the formula
Coh(z) = e(za∗−z∗a)/

√
2|0〉
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to get a curiously similar formula involving an exponential of onlycreationoper-
ators, applied to the vacuum.

Herez= c+ ib.

I did almost this computation once before, but let’s do a quick recap.

First: we want to show that Coh(z) is an eigenvector of the annihilation operator
a. For this we need to compute some commutators, and the slick way is to notice
that [a, ·] acts like a derivative on many operators. At least this works for power
series ina anda∗. Say f (a,a∗) is a power series with complex coefficients. Since
[a,a] = 0 and [a,a∗] = 1, we’ll get the right result for [a, f (a,a∗)] with this recipe:
compute (d/dx) f (a, x) formally, treatinga like a constant; then replacex with a∗

in the final result.

Using this rule oneza∗−z∗a, we get

[
a,e(za∗−z∗a)/

√
2
]
=

[
a,

za∗ − z∗a
√

2

]
e(za∗−z∗a)/

√
2 =

z
√

2
e(za∗−z∗a)/

√
2

Now put |0〉 on the right, we get

aCoh(z) = ae(za∗−z∗a)/
√

2|0〉 =
z
√

2
e(za∗−z∗a)/

√
2|0〉

sincea annihilates|0〉. SoaCoh(z) = z/
√

2 Coh(z).

Next we expand Coh(z) in the basis|0〉, |1〉 . . .. From the eigenvalue equation, we
get immediately:

Coh(z) = C0

|0〉 + z
√

2
|1〉 + . . . +

(z/
√

2)n
√

n!
|n〉 + . . .


whereC0 is the coefficient of |0〉.

We can evaluate|C0| pretty easily. The norm squared of Coh(z) is |C0|
2e|z|

2/2, from
the formula we just got. But Coh(z) has norm 1. How do I know that? Well,
e(za∗−z∗a)/

√
2 is unitary. How do I know that? Well, (za∗ − z∗a)/

√
2 is i times a self-

adjoint operator (just take the adjoint and see what you get), so by some theorem
or other its exponential is unitary.

So |C0| = e−|z|
2/4. So we’ve determinede(za∗−z∗a)/

√
2|0〉 up to a phase (let’s call the

phaseι):

Coh(z) = ιe−|z|
2/4

∑
n

(z/
√

2)n
√

n!
|n〉
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Hmmm, now for a new twist. The professor asked for the answer in terms ofa∗.
Well, a∗

n
|0〉 =

√
n! |n〉, —hey, this works out nicely:

e(za∗−z∗a)/
√

2|0〉 = ιe−|z|
2/4

∑
n

(z/
√

2)n

n!
a∗

n
|0〉 = ιe−|z|

2/4eza∗/
√

2|0〉

What are we going to do about that phaseι?

Hmmm, let’s take another approach. If life wasreally simple, we could just say
that eza∗−z∗a = eza∗e−z∗a (it isn’t), and sincea annihilates|0〉, e−z∗a|0〉 = |0〉 (just
expand oute−z∗a in a Taylor series). So we’d have:

eza∗−z∗a|0〉 = eza∗ |0〉 (NOT!!)

But skimming back over the thread, we get strong hints that

eza∗−z∗a = enumbereza∗e−z∗a

Let’s ask. Oh, professor!

The Baker-Campbell-Hausdorff formula says that when [A, B] com-
mutes with everything

eA+B = e−[A,B]/2eAeB

Hey, keen! How do I prove that?

You don’t. You thank Baker, Campbell, and Hausdorff for proving it.

Okay, thanks! (They all read the newgroups? I’ve seen a post from Galileo, so
maybe.)

Well, thatmakes short work of this half of the problem. Let’s set:

A = za∗/
√

2
B = −z∗a/

√
2

[A, B] = −
1
2

zz∗[a∗,a] = zz∗/2

which is a number and so commutes with everything, so
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eA+B = e−zz∗/4eAeB

so

Coh(z) = e−|z|
2/4eza∗/

√
2e−z∗a/

√
2|0〉 = e−|z|

2/4eza∗/
√

2|0〉

so the factorι is 1.

Whew! Heavy firepower, just to determine that measly little phase factorι! But
then, rumor has it that Gauss spent two years of Sundays just trying to determine
the sign of a certain square root.

18 John Baez: Messing around with the vacuum en-
ergy, eh?

Michael Weiss complained:

Oh professor, I think you took too much off!

Oh, sorry. So you replaced the Hamiltonian

p2 + q2

2
=

aa∗ + a∗a
2

by its normal-ordered form, where all annihilation operators are pushed to the
right:

p2 + q2 − 1
2

= a∗a

Somehow I hadn’t noticed that. This will come in handy in full-fledged quantum
field theory, but it’s not necessary here, and it’s sort of enlighteningnot to do it.

Hmm, maybe you’re saying the formulas are trying to tell me something—
that Ishouldn’tmonkey around with the zero-point?

Messing around with the vacuum energy, eh? You may unleash powerful forces
— forces that mankind was never meant to meddle with! For example, you have
a perfectly nice representation of the Lie algebra of the symplectic group on your
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hands; getting rid of the vacuum energy will turn it into a nastyprojectiverepre-
sentation. But never mind, go ahead, just don’t blamemefor what happens. . .

In simpler terms: there are lots of interesting classical observables built using
quadratic expressions in thep’s andq’s, of which the Hamiltonian is one. When
we replace the classicalp’s andq’s by operators, we’d like Poisson brackets to go
over to commutators. If we try to do this for general polynomials in thep’s and
q’s, it doesn’t work very well. However, for quadratic expressions in thep’s and
q’s it does,if we don’t mess with them by normal-ordering.

As for the rest of your post. . .

Great. You got a very nice formula:

Coh(z) = e−|z|
2/4eza∗/

√
2|0〉

implying

Coh(z) = e−|z|
2/4

∑
n

(z/
√

2)n
√

n!
|n〉

which is a very precise way of stating what you noted quite a while ago:the
number of quanta in a coherent state is given by a Poisson distribution.

But now let’s see what happens if we evolve our coherent state in time. We’ll
see something nice, a cute relation between the harmonic oscillator and the spin-1

2
particle, which we discussed once upon a time. . .

19 Michael Weiss: Dangerous signs of normality

So you replaced the Hamiltonian [. . . ] by its normal-ordered form

So that’s what I was doing. Though actually I had already noted dangerous signs
of normality in my thought processes, when trying to prove the Baker-Campbell-
Hausdorff formula. After all, if we setA = za∗/

√
2, B = −z∗a/

√
2, theneAeB is

the normally ordered form ofeA+B.

Speaking of Baker-Campbell-Hausdorff: is there a slick proof of their formula, or
does one just have to fight it out with Taylor series? I did notice one thing: we
can prove pretty easily thateA+Be−Be−A is anumber(i.e., a multiple of the identity
operator) in the case at hand. First we show that this product of exponentials
commutes withA, using the “derivative= bracket” trick:
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[A,eA+Be−Be−A] = 0

I omit the details (which are not messy), but it’s essential here that [A, B] com-
mutes withA andB. Next we appeal to Schur’s lemma. The irreducibility hypoth-
esis is satisfied since|0〉,A|0〉, . . . ,An|0〉, . . . span the whole Hilbert space.

20 Michael Weiss: Vacuum energy, source of all of
humanity’s future energy needs

OK, time evolution. We have:

Coh(z) = e−|z|
2/4eza∗/

√
2|0〉

and

H =
aa∗ + a∗a

2
= a∗a+

1
2

including the vacuum energy this time, source of all of humanity’s future energy
needs. (Right.)

We want to know how Coh(z) evolves (in the Schrödinger picture, since itdoesn’t
evolve in the Heisenberg picture). I.e., we want to compute

e−iHtCoh(z)

Now it would be nice if we could just plug in the formulas we just obtained. Alas,
we’d need to computeea∗aeza∗ (give or take an annoying factor), and the Baker-
Campbell-Hausdorff formula we have only helps witheAeB when [A, B] commutes
with A andB. Is that the case here?

[a∗a,a∗] = [a∗,a∗]a+ a∗[a,a∗] = 0+ a∗ = a∗.

No such luck, the commutator doesnotcommute witha∗a.

Probably we could do something slick anyway, but at least the dull way is quick.

Coh(z) = e−|z|
2/4

∑
n

(z/
√

2)n
√

n!
|n〉
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e−iHt |n〉 = e−it/2e−int|n〉

so

e−iHtCoh(z) = e−|z|
2/4e−it/2

∑
n

(z/
√

2)n
√

n!
e−int|n〉

but sincee−int = (e−it)n, we can fold this into the (z/
√

2)n factor and get:

e−iHtCoh(z) = e−it/2Coh(ze−it)

So after 2π seconds, we’ve got minus the original state vector.

21 John Baez: To quote a student of Segal. . .

Michael Weiss wrote:

So after 2π seconds, we’ve got minus the original state vector.

Right! Just like a spin-12 particle, the harmonic oscillator picks up a phase of−1
when it goes all the way around. Coincidence?

Before I answer that, let me describe another way to do the computation Michael
just did, which takes advantage of the relation between the Heisenberg picture and
the Schr̈odinger picture.

In the Heisenberg picture, operators evolve in time while states stand still. After a
time t, an operatorA evolves to

A(t) = eiHt Ae−iHt

Measuring an observableA(t) just means “measuring the observableA at timet”.

If we differentiate this equation with respect tot we see that operators change at a
rate given by their commutator with the Hamiltonian:

d
dt

A(t) = i[H,A(t)] (Heisenberg)

Okay, so how does the creation operator evolve in time in our problem? I claim
it evolves in time in the simplest possible way: just like the classical harmonic
oscillator, it goes round and round!
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a∗(t) = eita∗

How do we show this? Well, it’s clearly true fort = 0, so let’s just check that it
satisfies (Heisenberg). First note that

[H,a∗] = [a∗a+ 1/2,a∗] = [a∗a,a∗] = a∗

Its commutator with the Hamiltonian is itself! Thus we have

i[H,a∗(t)] = i[H,eita∗]

= ieita∗

=
d
dt

eita∗

=
d
dt

a∗(t)

as desired.

So:

eiHta∗e−iHt = eita∗

raise both sides to then and you get:

eiHta∗
n
e−iHt = (eit)na∗

n

since adjacent factors ofe−iHt andeiHt cancel out on the left hand side. Thus

eiHteza∗/
√

2e−iHt =
∑

n

(z/
√

2)n

n!
(eit)na∗

n
= exp(zeita∗/

√
2)

Now replacet with −t and move a factor to the other side, getting

e−iHteza∗/
√

2 = exp(ze−ita∗/
√

2)e−iHt

and thus
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e−iHtCoh(z) = e−iHte−|z|
2/4eza∗/

√
2|0〉

= e−|z|
2/4 exp(e−itza∗/

√
2)e−iHt |0〉

= e−|z|
2/4 exp(e−itza∗/

√
2)e−it/2|0〉

= e−it/2Coh(e−itz)

The coherent state Coh(z) is the quantum analog of a particle at the pointz in
phase space. Our dot races around clockwise (with our sign conventions).

The moral is clear: when we quantize the harmonic oscillator, the creation oper-
ator evolves in a way that completely mimics the evolution of classical solutions.
Since coherent states are built from the vacuum by hitting it with exponentiated
creation operators, it’s also true that coherent states evolve in a way which com-
pletely mimics the evolution of the corresponding classical solutions!Exceptfor
a phase, coming from the vacuum energy.

All this will apply to quantum field theory as well, which is why it’s worthwhile
going over it in such painstaking detail.

I think we are done with the harmonic oscillator! When we turn to quantum field
theory, we’ll find that we’ve already done most of the hard work.

Now, on that analogy between the harmonic oscillator and the spin-1
2 particle. . . to

quote a student of Segal:

This funny extra1
2 in the eigenvalues of the harmonic oscillator Hamil-

tonian can be thought of as the “zero-point energy” or “vacuum en-
ergy” due to the uncertainty principle. However, we’ve seen that the
fact that it’s exactly1

2 is no coincidence! Just as you need to give a
particle of half-integer spintwo rotations of 360 degrees for it to get
back to the way it was, with no funny phase factor of−1, so you need
to let the harmonic oscillator waittwo classical periods for it to get
back to exactly the way it was. In the first case we are using the fact
thatS O(3) has a double coverS U(2) — or more generally,S O(n) has
a double coverS pin(n). In the second case we are using the fact that
S p(2) has a double coverMp(2) — or more generally,S p(2n) has a
double coverMp(2n).

As I’ve said before,S O(n) is to fermions asS p(2n) is to bosons. The
first has to do with the canonical anticommutation relations, and Clif-
ford algebras, while the second has to do with canonical commutation
relations, and Weyl algebras. So there is a big beautiful pattern here.
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22 John Baez: A lower bound on slickness

Michael Weiss wrote:

Speaking of Baker-Campbell-Hausdorff: is there a slick proof of their
formula, or does one just have to fight it out with Taylor series?

The Baker-Campbell-Hausdorff formula is complicated enough to set a certain
lower bound on the slickness of any proof thereof. It doesn’t make strong as-
sumptions on the special nature ofA andB, and it says

eAeB = exp(A+ B+
1
2

[A, B]

+
1
12

[[A, B], B] −
1
12

[[A, B],A]

−
1
48

[B, [A, [A, B]]] −
1
48

[A, [B, [A, B]]] + . . .)

It comes in handy you want to define the product in a Lie group knowing the
bracket in the Lie algebra: it says that the latter uniquely determines the former,
and says in painstaking detail exactly how.

I’ve never really understood the proof; I see it before me on pages 114–120 of
Varadarajan’sLie Groups, Lie Algebras, and their Representations, but it looks
like black magic.

However, we don’t need the full-fledged version here, since in our example [A, B]
commutes with everything and all the higher terms go away. This watered-down
version is a lot easier to prove.

I did notice one thing: we can prove pretty easily thateA+Be−Be−A is a
number. . . Next we appeal to Schur’s lemma.

Watch it! Someday Schur’s lemma is going to get sick of all these appeals. . . compassion
fatigue will set in, and then where will we be?

If you could compute that number you’d be done. But here’s a closely related
approach that should also work. Assume [A, B] commutes withA andB. Then to
show

eA+B = eAeBe−[A,B]/2

43



it’s obviously enough to show

et(A+B) = etAetBe−[tA,tB]/2

for all real t. And for this, it suffices to show that the right-hand side satisfies the
differential equation that defines the left-hand side. In other words, we just need
to check that

d
dt

etAetBe−[tA,tB]/2 = (A+ B)etAetBe−[tA,tB]/2

(If you are concerned about rigor, wave your hands and mutter the phrase “Stone’s
theorem” here.)

But this is just a computation! By the product rule:

d
dt

etAetBe−[tA,tB]/2 = AetAetBe−[tA,tB]/2

+ etABetBe−[tA,tB]/2

+ etAetB(−t[A, B])e−[tA,tB]/2

Then push stuff to the front and hope it all equalsA+ B. In the third term there’s
no problem pushing−t[A, B] up to the front since it commutes with everyone. For
the second term we use a fact that I think you mentioned somewhere, namely that
bracketing withB acts as [B,A] d

dA in this context, so

[B,etA] = t[B,A]etA

hence

etAB = BetA + t[A, B]etA

We get:

AetAetBe−[tA,tB]/2 +

etABetBe−[tA,tB]/2 +

etAetB(−t[A, B])e−[tA,tB]/2 =

(A+ B)etAetBe−[tA,tB]/2
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which is just what we need!

Let me decode my somewhat cryptic remarks about the drawbacks of normal-
ordering. Considerhomogeneousquadratic expressions in the classicalp’s and
q’s. If we have just onep and oneq, a basis of these is given by the harmonic
oscillator Hamiltonian:

H =
p2 + q2

2

the kinetic energy operator:

K =
p2

2

and the generator of scale transformations or “dilations”:

S = qp

The Poisson brackets of any two of these guys is a linear combination of these
guys, so what we’ve got on our hands is a little 3-dimensional Lie algebra. Now,
the group of symplectic transformations of a 2d phase space isS L(2,R), so its Lie
algebra issl(2,R), which is a 3-dimensional Lie algebra. So it’s natural to guess
that we’ve gotsl(2,R) on our hands.

Exercise: work out the Poisson brackets ofH, S, andK and show they form a Lie
algebra isomorphic tosl(2,R).

Now, it turns out that if we replace the classicalp’s andq’s in these expressions by
quantump’s andq’s, and pick the right factor ordering forS — carefully, because
pq isn’t the same asqp in quantum-land — we get operators whose commutators
perfectly mimic the classical brackets. In other words, we get a representation of
sl(2,R)!

This is quantization like physicists always dreamt it would be: the classical Lie
algebra of symmetries is now the quantum one. Ah, were it always so simple!
However, it only works if we use the above formula forH. It doesn’twork if we
use the normal-ordered version of the harmonic oscillator Hamiltonian, where we
subtract off the vacuum energy. Then our commutation relations only mimic the
classical Poisson bracketsup to constants.

Exercise: show that’s true.

And this is a pity, because in quantum field theory wehave touse the normal-
ordered version of the Hamiltonian. This leads to “anomalies” and other scary
things.
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23 Appendix: Notational Conventions

Plane wave with momentumk and energyω: eikx−iωt.

Metric dτ2 = dt2 − dx2 − dy2 − dz2

Momentum p = −id/dx
Position q = “multiply by x”
Hamiltonian H = id/dt
Annihilator a = (q+ ip)/

√
2

Creator a∗ = (q− ip)/
√

2
q = (a+ a∗)/

√
2

p = (a− a∗)/(i
√

2)
commutator [A, B] = AB− BA

dA/dt = i[H,A]
dA/dx= −i[p,A]

product rule [s,AB] = [s,A]B+ A[s, B]

H =
q2 + p2

2

aa∗ =
q2 + p2 + 1

2
= H + 1/2

a∗a =
q2 + p2 − 1

2
= H − 1/2

[a,a∗] = 1

[a,a∗
n
] = na∗

(n−1)

[an,a∗] = nan−1

[q, p] = i

[q, pn] = nipn−1

[p,q] = −i

[p,qn] = −niqn−1

[q,e−icp] = ce−icp

[p,eibq] = beibq

a∗a is also called the number operator, sometimes denotedN.

Coherent states, take 1:

Coh1(c+ ib) = eibqe−icp |0〉
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Coh1(c+ ib) = ιe−(c2+b2)/2
∑

n

(c+ ib)n

√
n!
|n〉

Coh1(c+ ib) = Keibx−(x−c)2

where|ι| = 1, and the last equation gives Coh1 as a complex wavefunction, andK
is a normalization factor.

Coherent states, final version:

Coh(c+ ib) = e−icp+ibq|0〉

Coh(c+ ib) = e−(c2+b2)/2
∑

n

(c+ ib)n

√
n!
|n〉

Coh(c+ ib) = Keibx−(x−c)2

If z= c+ib, thene−iHtCoh(z) = e−it/2Coh(ze−it). Heree−it/2 represents the “vacuum
energy”.

Baker-Campbell-Hausdorff formula, full-blown version:

eAeB = exp(A+ B+
1
2

[A, B]

+
1
12

[[A, B], B] −
1
12

[[A, B],A]

−
1
48

[B, [A, [A, B]]] −
1
48

[A, [B, [A, B]]] + . . .)

Baker-Campbell-Hausdorff formula, special case: if [A, B] commutes with bothA
andB, then:

eA+B = eAeBe−[A,B]/2
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